Calcul du spectre de résonance électronique du radical CH à l'état polycristallin

Autor(en): Lefebvre, R.

Objekttyp: Article

Zeitschrift: Archives des sciences [1948-1980]

Band (Jahr): 13 (1960)

Heft 9: Colloque Ampère

PDF erstellt am: **25.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-738576

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Calcul du spectre de résonance électronique du radical CH à l'état polycristallin

par R. Lefebyre

Centre de Mécanique ondulatoire appliquée, rue de Sèvres, Paris, 15e

Le spectre de résonance électronique d'un radical organique à l'état solide est compliqué par la présence des interactions dipole-dipole [1, 2, 3]. Le spectre dépend à la fois de l'intensité du champ magnétique externe imposé à la substance et de l'orientation du radical dans ce champ. Le spectre d'un échantillon polycristallin ou amorphe résulte alors de la superposition des spectres correspondant à toutes les orientations possibles.

Nous avons calculé [4] ce spectre dans le cas du radical CH à l'état polycristallin en partant du traitement proposé par McConnell, Heller, Cole et Fessenden pour le monocristal [1]. Il y a, en général, dans le spectre quatre lignes d'absorption dont l'intensité et la position dépendent du champ magnétique et de l'orientation. Nous supposons que par suite des différentes causes d'élargissement chaque ligne est une gaussienne. La ligne d'absorption pour l'échantillon polycristallin est alors donnée par:

$$g(h) = \frac{1}{8\pi\lambda} \sqrt{\frac{2}{\pi}} \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \sin\theta \left[\cos^2 \frac{\xi}{2} \left\{ e - \frac{2(h - h_1)^2}{\lambda^2} + e - \frac{2(h - h_4)^2}{\lambda^2} \right\} + \sin^2 \frac{\xi}{2} \left\{ e - \frac{2(h - h_2)^2}{\lambda^2} + e - \frac{2(h - h_3)^2}{\lambda^2} \right\} \right]$$

Dans cette formule h_1 , h_2 , h_3 et h_4 sont les champs auxquels se produisent l'absorption pour le radical isolé, θ et φ les angles polaires donnant la direction du champ magnétique externe dans le système d'axe diagonalisant l'interaction dipole-dipole électron-proton, ξ un angle dépendant de θ et φ et aussi de l'intensité du champ magnétique externe, λ la largeur de la gaussienne de base utilisée pour la représentation d'une ligne d'absorption. Cette intégrale double sur la sphère a été programmée pour la calculatrice IBM 704.

A titre d'essai, le paramètre λ a été pris d'abord égal à 4 gauss et le spectre calculé pour les bandes X, K et J [3]. On constate sur les spectres

des bandes X et J la présence de faibles bandes qui se situent de part et d'autre du centre du spectre à un champ correspondant à la fréquence de résonance du proton. Ceci est conforme à l'analyse approchée que l'on peut faire du spectre dans ces deux cas: les lignes satellites provenant du fait que le spin du proton ne se quantifie pas suivant le même axe dans l'un et l'autre état de spin de l'électron sont relativement isotropes et se situent approximativement en ces positions pour l'échantillon monocristallin. Le paramètre λ a ensuite été pris égal à 8 gauss. Les spectres aux bandes X, K et J ont alors sensiblement la même allure. On a un doublet constitué par deux bandes larges. Les bandes additionnelles de faible intensité ont maintenant disparu.

Ce travail est actuellement étendu afin de pouvoir traiter le cas d'un radical contenant plusieurs protons en interaction avec l'électron impair.

^{1.} McConnell, H. M., C. Heller T. Cole et R. W. Fessenden, *J. Am. Chem. Soc.*, 82, 766 (1960).

^{2.} Atherton, N. M. et D. H. Whiffen, Mol. Phys., 3, 1 (1960).

^{3.} MIYAGAWA, L. et W. GORDY, J. Chem. Phys., 32, 255 (1960).

^{4.} Lefebure, R., J. Chem. Phys. (à paraître).