On a rotational-invariant dynamic susceptibility
for dilute alloys

Autor(en):  Rivier, N.

Objekttyp:  Article

Zeitschrift:  Archives des sciences [1948-1980]

Band (Jahr): 27 (1974)

Heft 2-3: EPR of magnetic ions in metals

PDF erstellt am: 24.05.2024

Persistenter Link: https://doi.org/10.5169/seals-739314

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-739314

ON A ROTATIONAL-INVARIANT DYNAMIC
SUSCEPTIBILITY FOR DILUTE ALLOYS

BY

N. RIVIER

Physics Department, Imperial College. London, S.W.7.

ABSTRACT

General conditions for a rotational invariant susceptibility are derived. The particular case
of a single impurity is investigated and a phenomenological susceptibiiity is observed which is
similar but not identical, to that used in localised spin fluctuation theories.

1. Several metallic systems containing spins (isolated impurity, spin glass) have
full local rotational (or cubic) invariance at all temperatures. In other words, they
never undergo a phase transition to some state of long range magnetic order. A
field theoretical treatment of these systems presents important difficulties: One may
write an expression in terms of Feynman diagrams, keeping rotational—or crossing—
invariance at each order. Such diagrams are complicated to keep track of and no
obvious way of isolating and summing a series of dominant diagrams has yet been
found. Or one can attempt to find a summable series of diagrams dominating the
scattering, but those diagrams are usually not rotationally invariant. An alternative
approach, taken in the present paper, consists in looking for a phenomenological
expression, which is manifestly rotational invariant but includes the physically
dominant process.

This note has two purposes: First to derive generally the necessary and sufficient
conditions for the dynamic susceptibility (or precisely the fluctuation or noise
spectrum K~ (w) mentioned also by Dr. Gdétze in this conference) to be rotational
invariant. Second to obtain this noise spectrum in a particular case, that of a damped
spin 4 impurity in a metal which corresponds to the single pole dominance or localized
spin fluctuation (LSF) treatment of the Anderson model [1].

2. Consider first an impurity S, described by the fluctuation or noise correlation
function

K*" () = (ST (ST (0) + ST(0) ST (1> (1)
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The fluctuation-dissipation theorem relates the Fourier transform of the noise
spectrum K*~ (w) to the imaginary part of the transverse susceptibility (h = I,
p = 1/kT)

Imy* ™ (w) = tanh { (fw) K~ (w) (2)

where ¥~ (1) =i 0 () {[ST(1), ST(0)]_ >. K*™ (w) satisfies the hermicity rela-
tions

K* " (w) = K" (0)* = K" (—w) >0 (3)

and must be non-negative at all frequencies to insure dissipation of energy. From
eq. (2) and the Kramers-Kronig relations, one obtains the static transverse suscep-
tibility

*‘(0)—f—t n P (4
with Im y*~ (0) =

The longitudinal susceptibility is defined as the zero field derivitive of the
magnetization g ug < S*)

8¢ S
o H,

x*(0) = g ug (5)

H,=0 0w,

where w, = guy H,. From the identities — §7 = S¥2 + §*2 — §* §7,((§**+ 8% ) =

dw
2—K+ (w), and a relation between { S™ S~ ) and the noise spectrum which
n

can be obtained by a similar spectral decomposition as that used to prove the
fluctuation-dissipation theorem (2),

_ dw _
(S§*S§y = J._?,E(l + tanh 7) K" (w) (6)

one obtains

Sy = o thK"" 7
(S, = f‘z_nta“ B3 (w) (7)

Rotational invariance implies { $* > = 0 in the absence of an external field, at any
temperature, hence our first condition,

K* " (w;w, =0) = K* " (—w; w, = 0) (D
Moreover,
| oK*
= 99 tann Pe 9K (@) 9)
2n 0 w, o
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Rotational invariance requires that x* (0) = 4 ¥~ (0) at all temperatures, thus,

4 0K ()
K*" 7 (0) | g=0 = 0 ——— (0
a w, we=0
Equations I and II form the general conditions of rotational invariance on the
noise spectrum.

3. Consider now the particular case of a spin 1 impurity precessing in an external
field and losing correlation at a rate I' (which varies with the external field at most
as ' =T, + O(wz')). With the initial condition K~ (t=0) = 4 for spin 1, the
simplest noise correlation function can be written as

K*~ (1) = Jemiocte Ml (10)
and the spectrum is

r

K™ (@) = (w—w,) + r?

(11)

Clearly, this is not rotational invariant. Indeed, from (4) and (9), and after integrating
term by term the expansion of the tanh around its poles, one obtains (I' = I'y)

o ‘8 '(:L + /ir) (12)

T o 2

which remains finite at T = 0, whereas

1 =148 u (13)
2 X T T 2 n 2

diverges logarithmically at 7 = 0. y is the logarithmic derivative of Euler’s gamma
function. The two susceptibilities are similar only when AT > I' where they follow
a Curie-Weiss law. There is however, a factor 2 discrepancy in their respective
Curie temperatures which are 0° =20~ = —I'|y" (1) |/ 7> ~ — 1. When
kT < TI', ¥* falls below the Curie-Weiss curve whereas y*~ rises above it.

4. The spectral density (11) is identical to that introduced in the localised spin
fluctuation approximation of the Anderson model in an attempt to solve the Kondo
problem [2, 3] 1. A single pole dominating the scattering of a d electron and a 4 hole
of opposite spin is equivalent to a unique lifetime for a transverse spin fluctuation
described by (10). The relation between fluctuation spectrum and transverse suscep-
tibility has been actually the original approach to LSF by Lederer and Mills [4].

! The LSF thermal propagator (iw, + iI')~! is written in term of the spectral density ¢ (w)
as (lo, + iI")! = [dwp(w)/(iw,—w) It then follows that wp (w) = K+~ (w).
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It can be shown [5] that the single pole dominance approximation describes satis-
factorily the physics of the Kondo problem. Moreover, in the U = 0 limit of the
Anderson model, the susceptibility is given exactly by eq. (12) ([3], p- 58; see also
[6]). Indeed, the susceptibility for U = 0 can be written as
0
F o= jdw( — 7—f)u-t"(a)) (14)

dw

as in any non-interacting electron gas, where 4" (w) = 4 [ n (w?* + A?) is the electronic
. _ o

density of states including a virtual bound state of width4 and f(w) = 1 (1 —tanh ﬁ?)

is the Fermi distribution function. Integrating by part, one obtains eq. (12) with
the spin correlation time I'~' corresponding to the life time 4~ ' of an electron in
the virtual bound state. These facts have enabled the author to write the same suscep-
tibility for U # 0, i.e. when I' < 4 [2, 3]. Subsequently, scaling from the Toulouse
limit [7] of the J S.c model where, for some value of the coupling constant J this
model is thermodynamically identical to the U = 0 Anderson model, K D. and U.
Schotte [6] have reached the same conclusion.
We have therefore in the single pole dominance an approximation which

(i) includes most of the physics of the Kondo effect

(1) yields an exact expression for y* in the U = 0 limit. But the simplest
spectrum (11) is not rotational invariant and this precludes renormalizability of the
theory . We want therefore a spectrum which combines rotational invariance with
simple scaling to the U = 0 limit and with the simple physical interpretation summar-
ized by (10). Thus, writing, to preserve the form (12) of the susceptibility,

K"~ (w) = —————— + even function of , 15
) = o (15)

we obtain unambiguously, using condition II, the rotational invariant spectrum,

. 2 T w?
K*~ ()] o,=0 = (I + o) (16)
and the susceptibility
p pr
w2 — LT = 11 _—
X =24 —an'ﬁ 2‘*_‘27[ (17)

1 Rotational invariance is associated to crossing invariance in the Anderson model since the
longitudinal susceptibility bzlongs to the r channel when the transverse susceptibility dominates
the s channel. The « channel describes then the scattering of two d electrons of opposite spins and
is a self-regulating mechanism renormalizing U. A self-consistent theory must therefore be crossing
invariant.



ON A ROTATIONAL-INVARIANT DYNAMIC SUSCEPTIBILITY FOR DILUTE ALLOYS 299

An identical expression is obtained for the susceptibility of some spin glasses [9],
where I' is the width of the distribution of local molecular fields P (H).
By Fourier transform, one obtains the correlation function,

K* = () =3(-r|t])e (18)

where the unique relaxation term is apparent. Eq. (I8) is no longer a solution of
the Bloch equation, but that of the second order differential equation representing
a harmonic oscillator critically damped at a rate I', with initial condition and the
requirement that the fluctuations average to zero, i.e. [dt K* (1) = K* “(0=0) = 0.
Finally, for I = 0, one checks that (16) reduces to the well-known spectrum
d d (w)
dw

K'" " (w) = —w = 0 (w).

5. We have obtained in (16) a simple phenomenological expression for the noise
spectrum of a rotational invariant system. The importance of this result is that it
enables us to construct a propagator for some collective excitation of the many-
body system (the LSF) which has the required symmetry of the system. This symmetry
requirement on the propagator is essential for the self-consitence or renormalizability
of a field theory which includes this propagator. The spectrum (16) should yield a
renormalizable theory of the Kondo effect, but this last step remains to be done.
Discussions with K. Adkins and V. Zlatic are gratefully acknowledged.

Note added in proof.

Recently, J. R. G. Armytage (Thesis, Cambridge 1974) has obtained by scaling
the J S.0 model an expression for y* at all temperatures. It differs from our eq. (12)
at high temperatures where y* deviates first above the Curie-Weiss curve before
falling below it, a deviation which could be obtained by perturbation theory. See
also the Mossbauer measurements of P. Steiner (Proc. Disk. Kondo Effekt, F. U.
Berlin, Dec. 73, fig. 6) on Cu Fe.

REFERENCES

[11 P. W. ANDERSON, Phys. Rev. 124, 41 (1961).

[2] H. SuHL, Phys. Rev. Letters 79, 442 (1967). N. Rivier and M. J. ZUCKERMANN, Phys. Rev.
Letters 2/, 904 (1968).

[3] N. RIVIER, thesis, U. of Cambridge (1968), unpublished.

[4] P. Leperer and D. L. MiLLs, Phys. Rev. 7165, 837 (1968).

[5] V. ZLaTi¢, G. GrRUNER and N. Rivier, Solid State Comm., /4, 639 (1974).

[6] K. D. ScHotTE and U. ScHoTTE, Phys. Rev. B4, 2228 (1971).

[7) G. TourLousg, C. R. Acad. Sc. Paris 268B, 1200 (1969).

[8] J. S6Lyom and A. Zawabpowskl, J. Phys. F., 4, 80 (1974).

[9] K. Abpkins and N. Rivier, J. Physique (Paris) 35, C4-237 (1974).






	On a rotational-invariant dynamic susceptibility for dilute alloys

