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Summary
1 Due to economic pressure on agriculture and forestry, more and more areas in the
mountainous regions of Europe will no longer be managed. In the Swiss National Park

(SNP), this process started in 1914 when all agricultural, silvicultural and hunting activities

were abandoned. Understanding the concomitant changes in vegetation at the

landscape, ecosystem and species levels is crucial for pinpointing undesired developments
and designing effective remedial actions.
2 In this study, a general succession model for grassland vegetation within the SNP was
modified to simulate the development of the small-scale patterns ofvegetation and plant
species diversity on a small subalpine pasture in the SNP for the period from 1900 to
2500. The simulation was based on both present and historic data on the abundance of
vascular plants, micro-relief and grazing intensity by red deer {Cervus elaphus L.).
Present-day vegetation data consisted of 149 relevés on systematically arranged 1-m

plots. Historic data and vegetation maps dating back to 1917 allowed a detailed calibration

of the model.
3 Our results show that on the whole, the pace of succession is extremely slow. In order

to accurately model the past development, the succession rate proposed by the general
succession model had to be increased or decreased, depending on the microrelief and on
the grazing intensity observed in 1998. Our calculations predict that by the year 2500,

plant species associated with the herb layer of mountain pine forests will be predominant
on 98% of the area sampled, even though the trees will not yet form a closed canopy.
4 Between 1917 and 1998, the total number of vascular plant species present on the

pasture increased by 50%, despite the massive re-immigration of red deer into the area

and the associated high grazing pressure. According to the model, maximum diversity
will be reached in the year 2200 with twice as many species as in 1917. Between 2200 and

2500 the number of species will slightly decrease to a level still significantly higher than

today. A more substantial decrease in the number of vascular plant species, e.g. to the

level observed in 1917, will probably only occur once the trees form a closed canopy.

Keywords: biodiversity, Cervus elaphus L., long-term succession, space-time model, sub-

alpine grasslands, Swiss National Park
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other half of the Park area. The elevation

ranges from 1350 to 3170 m.a.s.l. Between
1917 and 1998, the meteorological station
located in the Park (Buffalora, 1977 m.a.s.l.)
recorded a mean annual precipitation of 925 +

162 mm and a mean annual temperature of
0.2 ± 0.7 °C. The study area, the subalpine

pasture Plan Praspöl, is located at 1680

m.a.s.l. and covers an area of approximately
0.4 ha (co-ordinates 808.508/171.451). Up to
1910, Plan Praspöl was grazed by sheep

(Parolini 1995). In 1917, Braun-Blanquet
established a 3000-m2 permanent plot, where

floristic vegetation relevés were made once

every ten years until present (Braun-Blanquet
1931; Braun-Blanquet et al. 1954; Grämiger
& Krüsi 2000). Plan Praspöl is surrounded

by subalpine spruce and mountain pine forests

{Piceetum subalpinum, Mugeto-Ericetum)

(Kurth et al. 1960; Campell & Trepp 1968).

In addition to the vegetation, ungulates in
the Park were also permanently monitored.
Chamois {Rupicapra rupicapra L.) and roe

deer {Capreolus capreolus L.) were already
there when the Park was founded. Shortly
after 1914, red deer {Cervus elaphus L.) began to
re-colonise the Park, and since 1965 it has

become the most important large herbivore in
the area (Schütz et al. 2000c). Ibex {Capra ibex

L.) were successfully re-introduced into the

Park around 1930. Today, red deer have by far
the greatest impact on vegetation on Plan

Praspöl (Märki et al. 2000).

Sampling design
In the summer of 1998, a grid of 5 m x 5 m
was established on Plan Praspöl covering the

entire permanent plot established in 1917 by
Braun-Blanquet (1931). At each of the 149

grid points, a vegetation relevé was made on a
1 m x 1 m plot, considered to represent the

vegetation of the surrounding 5 m x 5 m plot.
Species abundance was recorded in percent

cover; nomenclature followed Hess et al.

(1991). In addition, grazing intensity was
estimated at each grid point based on vegetation

Pinus forest
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Trisetum meadow

Festuca short
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Fig. 1. The general succession model (SNP-vegetation-model) established by Schütz et al. (2000a,b) for all the

grasslands ofthe Swiss National Park, based on a total of456 original relevésfrom 59 long-term permanent plots.
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of all 149 plots, and (2) by checking for each

plot whether or not the historic vegetation

maps from 1927 and 1947 corresponded
to the simulated predominant succession

phase, derived from the simulated relevés

according to the procedure described above

(Risch 1999). For each stratum the succession

rate leading to the best fit between
simulated and historic data was identified.
These stratum-specific succession rates

were then used to adjust the general SNP-

vegetation-model to the specific conditions
of the study area Plan Praspöl. With the

adjusted model the development of the vegetation

between 1917 and 2500 was then simulated

for each of the 149 plots. Finally,
vegetation maps of Plan Praspöl were
constructed for different points in time by
assigning to each point in space and time the

predominant succession phase, derived
from the simulated relevés according to the

procedure described above.

Species abundance
Based on our adjusted successional model
and on the 118 relevés describing the SNP-

vegetation-model, expected species composition

was calculated for each of the 149 grid
points for each year in which relevés had
been taken on Plan Praspöl, i.e. 1917, 1927,

1938,1947,1958,1975,1979 and 1998, as well
as for every 50* year from 2050 until 2500.

This simulation included only those 96 species

of the SNP-vegetation model which are

known to grow on Plan Praspöl or in the herb

layer of the immediately adjacent forests. For
each of these 96 species and for each of the

above-mentioned years, cover values from
the 149 simulated relevés were averaged.

Subsequently, the cover values of each species

were normalised by dividing them by the

maximum value obtained during the simulated

succession between 1917 and 2500. The

normalised values were compiled in a table

showing for each species how its abundance

changed during succession.

Floristic diversity
Based on the relevés generated to describe the
abundance of individual plant species during
the simulated succession, it was possible to
establish the total number of vascular plant
species present on the pasture at different

points in time. This was done for 1917, 1927,

1938,1947,1958,1975,1979 and 1998, as well

as for every 50th year from 2050 until 2500.

Again, only those 96 species were taken into
account which (1) are present on Plan Praspöl

or in the herb layer of the immediately adjacent

forests and (2) which are considered in
the SNP-vegetation-model. We calculated
several regression models (linear, logarithmic
and second-order polynomial) to (1) find the

best fit between simulated and observed species

numbers for the period from 1917 to
1998, and (2) to best describe the simulated

development of the species number during
the 600-year period covered by the model.

Results

Vegetation pattern
In order to simulate the pattern indicated on
the vegetation map of 1927 (Braun-Blanquet
1931), the rate of succession predicted by the

general SNP-vegetation-model had to be
decelerated or accelerated on some of the 149

plots, depending on grazing intensity and
relief position (Table 1). The rate of change was

found to be only half the one predicted by the

SNP-vegetation-model on 98 plots in
nutrient-losing (convex or slope) and flat relief
positions subjected to high or medium grazing

intensity. In contrast, on the 23 plots in

nutrient-accumulating (concave) relief positions
subjected to medium to low grazing intensity

Bulletin ofthe Geobotanical Institute ETH, 67, 27-40 31
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Fig. 2. Spatially detailed simulation of the succession on Plan Praspöl from 1917 to 2500. On the maps, the

predominant succession phase is shown onlyfor each ofthe 149 25-m plots, even though usually other succession

phases arepresent as well. Thepie-chart shows the true presence ofthe different succession phases on the study area
in the year 2500.
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Long-term development of a subalpine pasture

pasture during the 600 years of simulated
succession (Table 2) reveals that some species

reach their maximum abundance during the

first 150 years of simulated succession (species

typical for the nutrient-rich areas occupied

by the Aconitum tall-herb community or
the Deschampsia tall-grass community), some

species attain their highest cover between
2050 and 2250 (species typical for the succession

phases Festuca short-grass pastures or
Carex/Nardus community), and some are

most abundant towards the end of the simulated

period (species associated with the
succession phase Pinus forest).

Floristic diversity
The simulated long-term development of
floristic diversity on Plan Praspöl shows a

substantial increase in the number ofvascular

plant species between 1917 and 1998, which
will continue up to the year 2200 (Fig. 3).

Later, the number of vascular plant species

will slowly decrease (Fig. 3). The high number

of species predicted for the year 2500 is

due to the fact that remnants of all succession

phases will still be present, even though by
then 98% of the plots will be dominated by
the herb layer community oi Pinus forests. As
the forest becomes denser, floristic species

richness will probably decrease considerably.
A highly significant correlation between the
simulated and the observed developments of

o> 100 n
<D

O
S 80

Fig. 3. Simulated development ofspecies diversity on
Plan Praspöl between 1917 and 2500. The second-order

polynomial regression line is indicated.

species richness between 1917 and 1998 {r
0.934; P < 0.001; n 8) indicates that the

simulation is meaningful and realistic.

Discussion

Our simulation shows that, during the past 80

years, different areas of the subalpine pasture
Plan Praspöl have developed at different
rates. In particular, we found that areas in a

relief position conducive to nutrient loss and

subject to high to medium grazing in 1998

developed at half the rate predicted by the

general SNP-vegetation-model. Most likely,
this was due to the fact that the grazing pressure

observed on Plan Praspöl differed from
the pressure on the permanent plots used by
Schütz et al. (2000a,b) to develop their model:
in the general SNP-vegetation-model, plots
on nutrient-poor sites were generally only
subject to light grazing. The observation that

heavy grazing on sites with intermediate to

poor nutrient supply slows down succession

during the second half of the Festuca phase
and prevents the transition into the Nardus/
Carex phase has also been made on Plan

Minger, another small pasture in the Swiss

National Park (Wirth 2000). In the Swiss

National Park, in general, the current combination

of grazing pressure and nutrient supply
seems not to be adequate for maintaining the

nutrient regime of the short-grass pasture in

equilibrium, which, in turn, would be the

prerequisite for a prolonged persistence of this

succession phase. Given the abundance of
nutrient-rich grasslands in the Park, up to

now, wild ungulates can in general afford to
abandon a pasture before nutrients are

depleted to equilibrium conditions. So far, the

only exception seems to be Plan Minger, an
isolated small pasture in the forests, which
because of its low elevation plays a crucial
role during the seasonal migration of red deer

36 Bulletin of the Geobotanical Institute ETH, bl, 27-40
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between summer and winter habitats (Wirth
2000).

McNaughton et al. (1997), studying interactions

between ungulates and vegetation in the

Serengeti, Tanzania, report that large ungulate
herds grazing are indeed able to prolong
substantially or even maintain indefinitely certain

succession phases. Augustine & McNaughton

(1998) explained their observation that the

large ungulate herds of the Serengeti do not
deplete their pastures as follows: grazing by
ungulates increases nutrient cycling in the

soil, which in turn increases the amount of
nutrients available for plant growth. Similar
results were found by Frank & McNaughton
(1993) investigating the influence of elk on
meadows in the Yellowstone National Park,

USA, as well as by Pastor et al. (1988) and

Collins et al. (1998) studying moose and bison

impact in different areas of the USA. In addition

to stimulating nutrient cycling in the soil

by grazing, herbivores can also improve the

nutrient supply in an area via faeces,

especially, if a sizeable part of their food intake

occurs elsewhere (Georgiadis & McNaughton

1990). Again, more available nutrients in
the soil will lead to increased biomass production

and therefore more forage will be available

for grazers. Further, due to co-evolution
between plants and ungulates (Owen &
Wiegert 1982), many grasses are able to
compensate grazing damage with increased nutrient

uptake (Wallace & Macko 1993) and
increased biomass production (Georgiadis &
McNaughton 1990).

Between 1917 and 1998 the number of
vascular plant species present on the study area

increased by roughly 50%. This increase in
floristic diversity is most likely due to the
activities of red deer, which re-immigrated into
the Park from 1920 to today in steadily
increasing numbers. The concomitant increase

in grazing pressure broke the dominance of

large-leafed species such as Chenopodium bo-

nus-henricus L., Urtica dioeca L. or Aconitum

compactum Rchb. which had become abundant

in the study area after commercial grazing

with sheep was stopped in 1910. The fact

that grazing can break the dominance of
large-leafed species and subsequently lead to
increased species diversity has been reported
by many authors from grasslands both in

Europe and the USA (Dirzo 1985; Scherfose

1993; van Wieren 1995; ten Harkel & van der

Meulen 1995; Willems & van Niewstadt

1996; Schiess & Schiess-Bühler 1997; Collins
et al. 1998; Schütz et a! 2000c).

According to our simulation, floristic diversity

will peak around 2200 when half of the

149 plots will be dominated by species of the

herb layer community of Pinus forests, i.e.

when succession from grassland to forest will
have reached its mid-point. This corresponds

very well to the findings of Bazzaz (1975) and

Sousa (1979, 1980) who reported diversity to
be highest in mid-succession. During later

succession stages when the forest canopy
closes, many light-demanding species will
disappear from the herb layer (Bazzaz 1975;

Barnes et al. 1998; Schütz et al. 2000b). In
addition, once slow-growing and long-lived species

such as trees replace the fast-growing,
and mostly shorter-lived herbaceous plants,

changes in abundance and floristic composition

will proceed at slower rates.

Consequently, the number of unoccupied niches

and, thus, opportunities for the establishment

of new species become smaller (Grime 1979;

Foster & Tilman 2000). A further reason for
the decrease in species richness during later

succession stages is the fact that many herbaceous

species associated with forests are

more vulnerable to grazing than typical grassland

species (Tilghman 1989).

Overall, our model shows that under the

grazing regime of wild ungulates as observed

Bulletin ofthe Geobotanical Institute ETH. 67, 27-40 37
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today and as implemented in our model, the

floristic diversity of abandoned subalpine
grasslands is likely to be maintained for a very
long period of time. Therefore, our findings

support the hypothesis that the ungulate
densities observed in the Swiss National Park

during the past 30 years (1968-1998), with on

average 22.2 red deer, 14.2 chamois, 3.1 ibex,
and 0.6 roe deer per vegetation-covered

square kilometre, are still in an order of
magnitude where the beneficial impacts exceed

the harmful ones. Other studies made in the

Park both on grasslands and in the forests

support this hypothesis (Krüsi et al. 1996;

Krüsi & Moser 2000; Schütz et al. 2000c).

In conclusion, we found that at the scale of
the whole study area (3000 m2) the general

SNP-vegetation-model of Schütz et al.

(2000a,b) correctly simulates the floristic
changes. However, for a spatially more
detailed simulation (25 m2) it is of crucial

importance to take into account factors such as

grazing intensity and microrelief to accurately
predict the successional development of the

vegetation, as well as changes in species number

and species composition of a pasture in
the study area.
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