Grössere Eisenbeton-Balkenbrücken in Deutschland

Autor(en): **Spangenberg, H.**

Objekttyp: Article

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band (Jahr): 1 (1932)

PDF erstellt am: **25.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-583

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

essentially in accordance with the German official stipulations: steam roller of 24 tons service weight, crowd of people weighing 500 kg/m^2 , impact coefficient 1.3. The permissible tensile stresses were chosen as follows: for ordinary commercial iron 1200 kg/cm^2 , for high-strength constructional steel $1500 \text{ and } 2000 \text{ kg/cm}^2$. For each form of cross-section illustrated in a Figure, the highest possible moment M_{max} was derived and thereby first the limits of span l_{max} of the encastré beams were determined. These are brought together in a table, and they amount for beam I to 21.5-28.3 m, and for beam II to 25.5-33.6 m. For beam III the limits of span amount to 29.7 and 39.2 m.

In continuous structures, these spans increase to

$$L_{\text{max}} = 1.4 l_{\text{max}}$$

and with cantilever constructions

$$L_{\text{2max}} = 2.5 l_{\text{max}}$$

may even be used. From this we derive limits of span for beams I and II of 30-47 m and 54-84 m respectively, and for beam III 42 and 55 m and 74 and 98 m respectively.

For beams IV and V, still greater spans are obtained, i.e. $l_{\text{max}} = 41.3-57.5 \text{ m}$

 $L_{\text{max}} = 58-81 \text{ m}, \text{ and } L_{2\text{max}} = 103-144 \text{ m}.$

If the reinforcement is not extra strong, it is possible to have bridges with solid-web T-shaped beams with spans up to about 100 m, and, with particularly strong reinforcement, up to about 140 m.

IV 2

PONTS A TRAVÉES RECTILIGNES EN ALLEMAGNE GRÖSSERE EINSEBETON-BALKENBRÜCKEN IN DEUTSCHLAND LARGE GIRDER BRIDGES IN GERMANY

Dr. Ing. e. h. **H. SPANGENBERG**, Professor an der Technischen Hochschule, München.

Voir « Publication Préliminăire », p. 385. — Siehe « Vorbericht », S. 385. See " Preliminary Publication", p. 385.

Participants à la discussion Diskussionsteilnehmer Participants in the discussion:

Dr. Ing. K. W. MAUTNER,

Professor, Direktor i. Fa. Neue Baugesellschaft Wayss & Freytag A.-G., Frankfurt a. M.

Der Bericht des Herrn Spangenberg weist auf den grossen Abstand zwischen den bisher ausgeführten Balkenbrücken und dem preisgekrönten Projekt der Dreirosen-Brücke, Basel, der Wayss & Freytag A.-G. (Abb. 1) (Berater Prof.