
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 6 (1960)

Artikel: Methods of safety analysis of highway bridges

Autor: Freudenthal, Alfred M.

DOI: https://doi.org/10.5169/seals-6991

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-6991
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


rvbi

Methods of Safety Analysis of Highway Bridges

Methodes pour l 'etude de la securite des ponts-routes

Methoden für die Untersuchung der Sicherheit von Straßenbrücken

ALFRED M. FREUDENTHAL
Columbia University, New York

1. Introduction

The Interpretation of the safety factor used in the design of engineering
structures as a multiplier to compensate for the expected variations of the
acting loads and of the carrying capacity of the considered strueture, as well
as for unavoidable shortcomings in design and construction is gradually
gaining admission into design speeifications, mainly in the form of "load-
factors". There is, however, considerable reluctance to aeeept the consequence
of this re-interpretation and to admit, at least for important structures,
"safety analysis" as an integral part of the structural analysis, based on the
relation between safety factor and probability of structural failure or probability

of functional unserviceability, depending on the definition of the critical
condition with respect to which the "safety" has to be estabhshed. Most
likely this is due to the reluctance of the profession to discuss the possibility
of structural failure and its probabihty with the same rational detachment
as that of other possible types of aeeidents. It is not generally understood that
the introduction of the probabihty of structural failure into the discussion of
structural safety does not imply an unjustified attempt to lower the present
safety Standards, but simply expresses the recognition of the fact that no
other rational measure of such safety exists and that, therefore, the level of
structural safety implicit in the working stresses or load factors of current
conventional speeifications is actually unknown.

Since all assumptions of design parameters are based on extrapolations to
values so unlikely that they are far beyond the ränge of actual Observation,
the risk of failure (or of unserviceability) due to this inherent uncertainty in
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the assumptions can never be completely eliminated; it may, however, be

reduced to an "acceptable" very low level, the numerical specification of
which removes the associated safety factor from the realm of irrational guess-
work to that of rational probabihty analysis. The fact that, for instance, a
"minimum" strength value defined as the smallest value obtained in samples
of 4 specimens, or a "maximum" load value defined as the largest value
obtained in 99 observations are associated, respectively, with a chance of one
in five of the strength not being attained or of one in a hundred of the load
being exceeded makes it impossible to deal with the concept of structural
safety on any other than on a probabihty basis. Methods of safety analysis
for simple structures estabhshed on this basis have been proposed by various
investigators, including the present author [1]. However, most of these methods
not only introduce a number of restrictive assumptions, but also disregard the
effect of the service life of the strueture on its probabihty of failure and on
the associated safety factor. The present approach attempts to ehminate those

shortcomings, which particularly affect the safety analysis of structures
subjeet to moving composite loading, of which highway bridges represent the
most important example.

2. The Safety Factor as a Statistical Variable

One feature of the new approach to safety analysis is the consideration of
the safety factor v as a Statistical variable rather than as a definite number.
The central problem in safety analysis is therefore the development of the

V

frequency-distribution p(v) or cumulative distribution P(v)=jp(v)dv from
o

the distribution functions, p2 (S), of the load-intensity S over the ränge of
operating conditions, and, p1(R), of the carrying capacity or "resistance" R
of the strueture over the ränge of Variation of the relevant material properties

and the effects of geometry of the structural parts and connections.

Defining the safety factor as the ratio

v R/S (2.1)

the distribution p (v) is defined as the distribution of a quotient of two Statistical

variables R and S. Considering that

R vS and dRjdv^S, (2.2)

the distribution

Pi{v S)p2(S)(d Rjdv)dvd S p±(v S)p2(S) Sdvd S. (2.3)

is the Joint distribution p(v,S) of the quotient v and the variable S. The

"marginal" distribution of (2.3), obtained by integrating over 0 #<oo is

the distribution of the quotient v alone
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p(v)=jjSp1(vS)pi(S)dS (2.4)
0

and the associated cumulative distribution

P(v)=jp(v]dv sfsPl(vS)p2(S)dSdv. (2.5)
0 0 0

Changing the order ofthe Integration in eq. (2.5) the expression is obtained [2]

P (v) Jp, (v S) p2 (S)dS jP1 (v S) d P2 (2.6)
0 0

which represents the relation between P (v) and the known distribution functions

of R and S. The probability P (1) of a value v < 1 or of R < S expresses
directly the probability of failure PF.

Eq. (2.6) can be evaluated either directly or by numerical Integration,
depending on the assumed form of the functions P1(R) and P2(S). Thus of
the asymptotic extremal distributions [3] which have been found to repro-
duce strength test results and observations of high load intensities quite well

P1(R) l-exV[-(R/R)^], (2.7)

with R>0, P1(R) (1 — 1 Je) at the modal value R, and aÄ 77/0-(In Ä) |/6,
where o* denotes the Standard deviation, represents the (asymptotic)
distribution of smallest values R, and

Ps(S) exp[-(SIS)-°>] (2.8)

with S> 0, P2(S) 1/e at the modal value S and ocs 7r/(j(lnS) Vü, represents
the (asymptotic) distribution of largest values S. Introducing the auxihary
variable P2(S) y and the ratio between the modal values v0 R/S, eq. (2.6)
is transformed into

i i

'M-j{i-«p[-OT'",.->-j-p[-fer(-'-»)
0 0

)-<*r/cxs dy. (2.9)

The integral on the right-hand side of eq. (2.9) must be numerically evaluated

to obtain the probability function P (v) and the probability density of
the safety factor p(v)=dP (v)jdv. The probabihty of failure PF P(v) for
v= 1 is, according to eq. (2.9),

PiP P(l) l-Jexp[(-i;0)^(-lny)-^^]rfy (2.10)
o

and is thus directly related to the ratio v0, which might be considered a "central"

safety factor based on the modes R and S of the distributions Px{R)
and p2(S), and the exponents aR and <xs, that are inversely proportional to
the Standard deviations o-(lnJ?) and cr(ln£), respectively. The probabihty of
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failure PF refers to a single apphcation of the (statistically variable) load
intensity S to any of a large number of nominally identical structures or
structural parts of (statistically variable) resistance R.

Fig. 1 presents the results of the numerical evaluation of eq. (2.10) for
several ratios arsjtS and cRjR which clearly illustrates the dependence of the
probabihty of failure on the selection of v0 and the ränge of Variation of S

and R [4]. The fact that the values of v0 associated with low probabihties of
failure are much higher than the conventional safety factors is due to the
selected design basis of the modal or most likely values S and R rather than
the conventional "maximum" and "minimum" values.

If the strueture is designed for a constant maximum load Smax S S

<t )4>

m>0

wJ

w'

(1) <7Ä/£ 0.00 aR/R 0.05 (7) as/S 0.20 aR/R 0.10
(2) =0.10 0.05 (8) 0.10 0.15
(3) =0.00 0.10 (9) 0.20 0.15
(4) =0.10 0.10 (10) 0.30 0.05
(5) =0.00 0.15 (11) 0.30 0.10
(6) =0.20 0.05 (12) 0.30 0.15

Fig. 1 Relation of "central" safety factor v0 R/S and probability of failure Pf-
(extremal distributions).

7y (s31 k2 ß^

to-"

3V,

(1) as/S 0.00 aR/R 0.05
(2) 0.10 0.05
(3) 0.00 0.10
(4) 0.10 0.10
(5) 0.00 0.15
(6) 0.10 0.15
(7) 0.20 0.05
(8) 0.20 0.10
(9) 0.20 0.15

(10) 0.30 0.05
(11) 0.30 0.10
(12) 0.30 0.15

Fig. 2. Relation of "centrar' safety factor v0 R/S and probability of failure Pf.
(log-normal distributions.)
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rather than for a statistically variable load-intensity,aÄ->oo ; therefore according

to eq. (2.10)
PF P(l) l-exp(-v0)-**, (2.11)

where vQ R\Smax.
A particularly simple distribution of v arises when both R and S are

logarithmic-normally distributed

A<*)--ÜSrW 0°**-***r
8RÄ|/2^ ^L *&%

(2.12)

with log R log R where R is the median of R at Px (R) 0.5, and 8R cr (log R)
|/0.434log [1 +v%), where vR (aRjR) is the coefficient of Variation of R, and

^Ä-t-2*^
with log S log S, where S is the median of S at P2 (S) 0.5, and Ss a (log S)

=/0.434log(l+v|), where vs (gs/S) is the coefficient of Variation of S.

Writing eq. (2.1) in the form

logv logÄ-logS (2.1a)

it is clear that when (log R) and (log S) are normally distributed their difference
logv is also normally distributed with mean logP — log$ log(P/AS) logy0
and Standard deviation 8 j/Sf^ + 8|, where v0 represents a central safety factor
based on the medians. Introducing the reduced variate y -log I—) the
distribution p(v) and function P (v) can be plotted directly from Normal tables;
the reduced variate corresponding to logv 0 or P^ P(1) is y0= r-logl-)
so that PF P(y0) can be read off. Fig. 2 presents the relations PF(vQ) for
various ratios (osIS) and (aRjR) [4].

3. The Influence of Service Life

The effect of the anticipated service life of a strueture on its safety arises
from the dependence on the service life of the distribution of extreme load-
intensities produced either by random configurations of composite loads, as in
long-span highway bridges, or by the random application of one load-type of
statistically variable intensity, as in short-span highway bridges or bridge-
elements, airplane wings and other strueture subjeet to gust-loads, or in
flood-protection dams. This dependence is most expediently expressed by
introducing the concept of the "recurrence period" T (S) of a specified or
higher load intensity in relation to the anticipated service life of the strueture.



660 ALFRED M. FREUDENTHAL IVb 1

For structures subjeet to a non-configurational loading of statistically variable
intensity S, recurrence periods are derived from the observed distribution
function of load intensities p (S) on the basis of the relation

T(S) 1I[1-P(S)], (3-1)

where T(S) is expressed in terms of the number of "observations", i.e., of
load applications expected between oecurrences of stress-intensities equal to
or exceeding S. Since, however, the application of a specific load intensity ^ S
will produce failure only if it eoineides with the condition S > R or v < 1, the
"recurrence period" of failure TF is identical with the recurrence period of
values v < 1 or

TF T(v<l) ljP(l) llPF, (3.2)

expressed in terms of the number of load applications of variable intensity S

to any of the large number of nominally identical structures or parts, of which
the considered strueture is one. Since, in general, p(S) is not derived from all
load-observations, but only of observations of "extremal" intensity, such as
the highest intensity observed in groups of 10 (highest 10 percent), 100 (highest
1 percent) or 365 (highest, per year, of daily observations), the number of
load applications is only that of such "extremal" loads, rather than of all
load-intensities.

The large differences in the factors v0 required to produce the same values
PF and TF, arising from the assumptions of extremal or of logarithmic normal
distributions of R and S (see figs. 1 and 2) should be considered in the hght
of the fact that logarithmic-normal distributions, when they are apphcable,
usually represent all observations, while extremal distributions, as their name
suggests, represent only the extreme (largest or smallest) observations out of
rather large samples of observations. They will, therefore, be characterized
by much narrower ranges of Variation than comparable logarithmic-normal
distributions.

With a recurrence period of failure in terms of number of load applications
determined from eq. (3.2) and figs. 1 or 2, the probabihty of failure PF(L)
during the anticipated service life L of the strueture associated with n load
applications (which do not produce fatigue effects) per unit of life can be

expressed by the Poisson distribution

PF(L) l-exv(-Ln/TF) (3.3)

since the probabihty of failure of any adequately designed strueture can
obviously be considered a "rare event". Thus the probabihty of "survival"
l (L) during the life of the strueture can be expressed by the straightline semi-

logarithmic relation

lnl(L) =ln[l-PF(L)] 2.3026log(l -PF(L)] -(nL/TF). (3.4)
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Since the population sizes of structures of service hfe L, to which eq. (3.4)
refers, are usually quite hmited, it appears that the specification of PF (L)^10-1
will ensure adequate safety. Thus according to eq. (3.4) 2.30 TF~ 22 nL
where n for bridge-structures depends on the density of the traffic. Assuming
that the passage of a single vehicle is equivalent to a single load application,
and that an extremal distribution represents the load-intensities of the heaviest
five percent of vehicles with a ratio crÄ/>S 0.10, while the low end of the
distribution of the resistance is represented by an extremal distribution with
aR/R 0.10, the relation between PF and v0 can be read off fig. 1. With an
assumed medium-heavy traffic density on a highway bridge of 5000 vehicles

per day per lane or roughly N 2 x IO6 vehicles per year, of which the heaviest
one-twentieth only is counted so that n= IO5, the recurrence period of failure
will be roughly 105L with respect to load application; with L 25 years this
is associated with a safety factor based on R and S of v0 4.2, which would
represent the safety-factor to be apphed to short-span structures and structural

parts of medium-heavily travelled highway bridges the critical load of
which is represented by a single heavy vehicle of modal weight S.

It is interesting to use the safety analysis for comparison of the above
safety factor with the factor that would be required to design a medium or
long-span girder of a bridge the critical load of which is represented by sequences

of r heavy vehicles; their percentage in the total number is, as before,
5 percent.

The probabihty of occurrence of such sequences can be evaluated on the
basis of the theory of runs [5]. The expected number, per year, of runs of
length r of heavy vehicles within a long sequence of n>r vehicles is given by

\(r)~N(l-p)2pr, (3.5)

where N is the total number of vehicles per year and p the expected percentage
of heavy vehicles. With N 2 x IO6 and p 0.05

A(r) 1.8 x10V (3.6)

the mean recurrence time of such runs T(r) N/X(r) 1.11 p~r. For rather
unhkely and therefore not too short runs the probabihty of exactly x runs of
length r is governed by the Poisson distribution, so that

p(x) =e-xM[\(r)]xlx\ (3.7)

Hence the probabihty of at least one run of such length

P(z=l) l-p(0) l-e~x^. (3.8)

A bridge span accommodating 6 heavy vehicles on one lane would be
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critically loaded by a sequence of r 6 such vehicles; its recurrence time, under
the above assumptions, is T(6) 71xl06 which, with iV 2xl06, represents
35.5 years. The expected number of such runs during a service life of L 25

25
years being X(r) 7—— 0.11, the chance of at least one such run during this
life is as high as 1 — e~°-71 0.51. Hence the füll heavy vehicle sequence must
be considered as the critical (maximum) design load, although the probability
of occurrence of an individual heavy vehicle is only p 0.05. The expected
load intensity of a single or a very small number of occurrences of a sequence
of 6 heavy vehicles is closely enough represented by the mode S of the
distribution of single vehicle loads, considering that the average load intensity
arising from simultaneous action of r vehicles has a fairly normal distribution
and a much narrower ränge of Variation [Standard deviation (a/j/r)] than the
distribution p (S) of the individual heavy vehicle loads (central limit theorem).
Since the maximum load intensity Smax ~ S can be expected to occur not
more than a few times during the service life (nL< 10), the recurrence period
of failure in terms of these repetitions for PF(L) ~10_1 as before is roughly
TF~§0 and therefore P^^IO-2, with an associated safety factor for o-Ä 0

and aR/R 0.10 according to fig. 1 of v0=1.4.
The comparison of v0 for the short-span and medium-span structural parts

of the considered highway-bridge suggests that for the same design-load
intensity S the specific resistance R provided in the short-span structural

4 2
parts should be about y-r 3 times higher than that for the medium-span
strueture. Alternatively, if the resistance analysis is based on uniform values
of material resistance the design load intensity of the medium-span strueture
can be reduced by a factor of 3 in comparison to that of the short span parts,
disregarding the effect of impact which may further increase the difference,
as well as the fact that the ratio cjrJR is likely to decrease with increasing size

of the structural section because of the increasing number of elements making
up the section.

For long-span structures sequences of heavy vehicles occupying the whole

span will have recurrence times several order of magnitude higher than the

anticipated service life. In this case the maximum load is represented by a
vehicle sequence shorter than that filling the whole span, with recurrence
period of a length comparable to the service life. The average load-intensity is

therefore further reduced in a ratio roughly equal to the ratio of sequence
length and span, if the relatively small effect of the weight of hght vehicles

filling the remainder of the span is neglected. Thus, for a variety of spans the
decrease of design load intensity with span can be evaluated.

It is implied that the estimated recurrence times of heavy vehicle sequences
are determined only by the probabilities of "runs" of such vehicles, independently

of their spacing, while in reality the average spacing in free travel,
which is a function of speed, may be so high as to increase the length of the
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critical sequence far beyond the length of the span it would occupy at rest
or in congested slow travel [6]. To correct for this effect it would be necessary
to consider the probability of occupancy of a span of given length by the r
vehicles in the "runs" on the basis of the average number of such vehicles

on the span in uncongested travel. However, there are so many non-statistical
effects that may cause close spacing ("bunching") such as repairs, traffic
congestion, etc., that the probabilities of spacing, derived statistically may
considerably overestimate the actual recurrence time.
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Summary

The presented method of safety analysis illustrated by its application to
highway bridges demonstrates the significance of the anticipated traffic density
and service hfe as well as that of a uniform probabihty of failure in the estab-
lishment of the basis for designs of balanced safety. They also show that the
current practice of specifying design loads or load factors independently of
working stresses will, in general, not lead to structures of uniform safety.

Resume

La methode de determination de la securite qui est ici exposee, avec
application aux ponts-routes, met en evidence l'importance de la densite du
trafic ä prevoir, de la duree de vie de l'ouvrage, ainsi que d'une probabilite
uniforme de rupture, pour l'etude d'un projet impliquant une securite*

homogene.

L'auteur montre egalement que la pratique courante consistant ä fixer des

charges de service ou des coefficients de charge independants des taux de
travail ne permet pas, en general, d'obtenir des ouvrages offrant une securie
uniforme.
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Zusammenfassung

Die dargestellten Methoden zur Bestimmung der Sicherheit mit Anwendung
auf Straßenbrücken zeigen die Bedeutung der zu erwartenden Verkehrsdichte

und Lebensdauer wie auch diejenige einer gleichmäßigen
Bruchwahrscheinlichkeit bei Aufstellung von Bemessungsgrundlagen für Konstruktionen
mit ausgeglichener Sicherheit.

Sie zeigen auch, daß die übliche Praxis der Annahme von Normenlasten
oder von Lastfaktoren unabhängig von den Materialbeanspruchungen im
allgemeinen nicht zu einer Konstruktion gleichmäßiger Sicherheit führt.
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