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Berechnung von Briickentrigern nach dem Nielsen-System mat Hilfe von digitalen
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Introduction

It has been said that in the tied arch (Langer girder) bridge with inclined
hangers, the truss action of the inclined hangers reduces the bending moment
of the arch (girder), and that such bridges are more economical than the usual
types of bridge with vertical hangers. Many Nielsen System bridges have been
erected in Sweden, and there are papers dealing with the analysis of the system
by the force method. However, no bridge on this system has yet been con-
structed in Japan and little work has been done in connection with the system
in that country. The recent construction of the Fehmarnsundbriicke in Ger-
many induced the authors to initiate analytical work on the Nielsen System
bridge by the displacement method. This paper describes the analytical
solution, its programming and application, and the model test. The main
reasons why the displacement method was used are as follows:

1. It is simpler than the force method for purposes of analysis.

2. The mechanical tabulation of the stiffness matrix is possible and is more
convenient for use with a digital computer.

3. It is possible to use the same analytical procedure not only for Nielsen
System bridges, but also for similar bridges with vertical hangers.

Part I. Analysis by the Displacement Method

The fundamental equation in the displacement method for the member ¢
of a plane frame is expressed by Eq. (1) in Cartesian coordinates (Fig. 1),
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where,

Bii:Qy;, and IM;; : are the components of the force acting on the end 4 of the
member 27 in the direction of the z-axis and the y-axis, and the moment
at the same point, respectively;

u;,v; and 6;: are the displacement of the end ¢ of the member 7j in the direc-
tion of the z- and y-axes, and the rotation of the tangent at the end ¢
of the elastic curve of the member ¢, respectively,

E I,;: flexural rigidity of the member 47,

E A;;: extensional rigidity of the member 17,

l;;: length of the member 7.

ij
Substituting Eq. (1) in the equilibrium equations at the panel point ¢ we
have the following Eq. (2):

{2 (@)} u— 2 (@) (w)]+[{Z (bz,)} v;— 2 (by) (v;)]
+[{- z (ci5)} 05— 2 (c5) (6;)] = By,
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+{ 23 (AN 0+ (d:) 0,1 = M

where, P,, Q, and M,: are the components of the external force applied to the
panel point ¢ in the direction of the - and y-axes, and the external

moment applied to the panel point 7, respectively
a;; ~d;;: the coefficients calculated by the following Eq. (3):

i) (v;)]
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If Eq. (2) is formulated at each panel point of the frame, the stiffness matrix
is obtained. The arrangement of the element can be tabulated mechanically
according to the following procedures:

1. Number the panel points of the given frame from left to right.

2. Calculate the six coefficients for each member from the given data.

3. Prepare the space in which the element of the stiffness matrix will be
written, and write the same numbers as the panel points in the outer side
of the row and column of submatrices 1, 2, 3, 4 and 7.

4. Write the coefficients a, b and ¢ of the unknown terms », v and 6 of Eq. (2.1)
in submatrices 1, 2 and 3.

5. Write the coefficients b, @ and ¢ of the terms u, v and 6 of Eq. (2.2) in sub-
matrices 4, 5 and 6.

6. Write the coefficients ¢, ¢ and d of the terms %, v and 8 of Eq. (2.3) in sub-
matrices 7, 8 and 9 (Table 1).

At steps 4, 5 and 6, each element must be written according to the rule
shown in Table 1, observing the panel points in the order of the numbers.

Up to step 6, no consideration is paid to the conditions of the supports and
hinged points. In the following step 7 these must be considered in order to
complete the stiffness matrix.

7. When the conditions of the supports are taken into consideration, the
unnecessary rows and columns are eliminated. In this case, u=v=0=0,
u=v=0 and v=0 are obtained at the fixed support, hinged support and
horizontally movable support, respectively. The unnecessary columns
corresponding to the support numbers are first eliminated, and thereafter
the rows corresponding to these columns are eliminated.

8. From the conditions of the hinged points, the columns of 8 corresponding
to the number of hinged points and the rows of submatrices 7, 8 and 9 of
the same number must be eliminated. In this case, where the system con-
tains the member hinged to the other member at both ends, the coefficients
a ~d must be calculated in advance on the assumption 7 =0 for the member.

In the stiffness matrix thus completed, the elements are symmetrical about
the main diagonal and at the same time about the subdiagonal in each sub-
matrix except the signs.



Table 1. Rule for Arrangement of Element of Stiffness Matrix

Unknown Terms
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The matrix inversion of the above stiffness matrix leads to the influence
coefficients of the displacement and rotation of each panel point due to unit
panel point loads. In order to calculate the sectional forces of each member,

the following Eq. (4) is used, after obtaining B, O and M in Eq. (1):

M S’:RU ( xj) qu — _{sBij (xj —xi) +Q‘i)‘ (y] —yi)}’
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(4)

The signs of the sectional forces are the same as those used in ordinary
structural analysis.

Part II. Programming for the NEAC 2203 Computer

All the steps of the analytical method described in Part I were programmed
for the electronic digital computer NEAC 2203. The block diagram is shown
in Fig. 2. The memory of the NEAC 2203 comprises a total of 12,000 words
and the calculable maximum number of the panel is 14 for all types of the
system, because magnetic tape is not used.

Each step of the programme is almost same as those described in Part I,
and only the following steps are different; that is to say, in the computation
of the stiffness matrix, steps 7 and 8 are calculated in advance in the internal
magnetic drum for every row of the stiffness matrix, and its elements are
transferred to be stored in the external magnetic drum.

The following data are prepared as input data:

1. Length of the member projected to the z- and y-coordinates, (x; —x,;) and
(Y —Ys)-

2. Sectional area 4;; and moment of inertia I;; of each member.

Total number of members connected to each panel point and the point

number of the other end of the member.

Type of loads and their position of application.

Total number of members.

Total number of panel points including supports.

Total number of hinged panel points except supports.

Minimum point number of the hinged panel points.

s

PR RE

The data are arranged from lower numbers to higher numbers with regard
to the number of the panel point and also in the same order with regard to the
number of the other end of the member connected to a certain panel point. From
these data, the computer can determine automatically whether the bridge to be
analysed is a Lohse girder, Langer girder, or tied arch bridge, and can adopt
the calculation corresponding to each system. The result of the computer
calculation is printed in the form of the influence coefficients of the displace-



70

HIROYUKI KOJIMA - MASAO NARUOKA

S

initialize
[ ]

computation and storage of the coefficients of equilibrium eq.
T

r

arrangement of the coefficients of stiffnes matrix for every row
without consideration of type

[ ]
judgment of type

1

elimination of unnecessary elements by taking into consideration
the condition of the supports and hinged panel points

transfer of the elements of the equilibrium eq. from the internal
drum to the external drum

count

computation of inverse matrix

Dl

transfer of the elements of the inversed matrix from the external
drum to the internal drum

non-existent judgment of

load existence

existent

computation of the sectional forces for unit external load

1

printing of the sectional forces

printing of the influence coefficients of displacement and rotation
if necessary

S

Fig. 2. Block Diagram.
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ment and rotation of each panel point and the sectional forces of each member.
According to this programme, not only Nielsen System bridges, but also
ordinary tied arch, Langer girder and Lohse girder bridges with vertical
hangers can be calculated.

Part ITI. Example of Calculation

The Langer girder bridge with nine panels shown in Fig. 3, will be cal-
culated. The assumed values for A and I are as follows:

for member 01, A =137 ecm?, for member 13, 35,57,79, 4 =123 ¢cm?2, for member

In addition to above data, the necessary input data described in Part II
are (5)=33, (6)=19, (7)=9 and (8)=1.
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Fig. 4. Influence Lines of Sectional Force of Example 1.
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The machine time was 50 min. for calculating the influence coefficients of
the bending moment, normal and shearing forces of all members for each
panel point load, including printing time. The element of stiffness matrix
was 45X 45.

The influence coefficients of the sectional forces of several members 24, 12, 10
and 46 due to unit vertical load are shown in Fig. 4. In Fig. 4, the full line
shows the influence line for the system having inclined hangers and the broken
line gives the influence line for the system having vertical hangers at even
point numbers in Fig. 3 instead of inclined hangers. As may be understood
from Fig. 4, the bending moment decreases remarkably in the case of inclined
hangers, compared with the case of vertical hangers, whereas the normal and
shearing forces do not vary significantly.

The total weight of steel was 86.4 tons for a bridge of span = 58.995 m,
effective width = 6.0 m and carrying Class I Design Load in accordance with
the Japanese Standard Specification for Steel Highway Bridges (provisional,
June 12, 1962). This shows a steel saving of about 109, compared with an
ordinary Langer girder bridge with vertical hangers.

Part IV. Model Test

As an experimental verification of the theoretical analysis, a model test
was performed for the tied arch shown in Fig. 5. The model material was

3
3
<
</

0 ’
ol TR A I A 8 =
| 5x28.2 = 4l cm N

® point where sirain measured

Fig. 5. Model Tied Arch.

polymethylmethacrylate. The sectional area and moment of inertia of the
upper chord, and the sectional area of the ties and inclined hangers are 3.0 cm?,
5.0625 cm?, 1.0 cm?, and 0.2 cm?, respectively. The compressive force which
acts in the inclined hangers due to the truss action can be eliminated by the
tensile force due to the dead load. In this test, preloads were applied to all
panel points of the lower chord, and then a concentrated load was applied.
The result is shown in Fig. 6. In Fig. 6, the full line shows the theoretical
values, the chain line the mean of several observed values, and the broken
line the theoretical values for an ordinary tied arch bridge with vertical hangers.
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Fig. 6. Result of Model Test (point load P=3.5kg).

Conclusion

The analytical solution of Nielsen System bridges by the displacement
method and especially the formulation of the stiffness matrix have been
described. It was programmed for the NEAC 2203 computer for the purpose
of automatic calculation. According to this programme, not only Nielsen
System bridges, but also any pin- and rigid-jointed plane frame which is
simply supported can be analysed. This paper shows only one example, but,
as can be understood from Parts III and IV, this system is advantageous as
compared with a similar system with vertical hangers. Finally, a model test
showed that the solution proposed by the authors is useful.

Taking advantage of the programme, the authors are now studying three
types of Nielsen System bridge and the general characteristics will be published
in the near future.

Summary

This paper describes a theoretical analysis which is applicable to all types
of Nielsen System bridge with arbitrarily inclined hangers and its programming
for calculation by computer. It consists of 4 parts:
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Part 1: Theoretical analysis by the displacement method.

Part 2: Programming for the NEAC 2203 computer.

Part 3: Calculation for a Langer girder bridge with inclined hangers.
Part 4: Model test.

This method of analysis can be applied not only to Nielsen System bridges,
but also to similar bridges with vertical hangers such as tied arch, Langer
girder and Lohse girder bridges.

Résumé

Les auteurs présentent une méthode de calcul de tout pont de type Nielsen
avec suspentes d’inclinaison arbitraire et exposent1’établissement du programme
de la calculatrice. On trouvera quatre parties principales:

1. Calcul par la méthode des déformations.

2. Etablissement du programme de la calculatrice NEAC 2203.
3. Calcul d’un pont bow-string a suspentes inclinées.

4. Essais sur modele.

Outre les poutres Nielsen, cette méthode de calcul est applicable & d’autres
ponts similaires & suspentes verticales tels que 1’arc a tirant, les ponts a poutres
bow-string du type Langer ou de Lohse.

Zusammenfassung

Die Autoren beschreiben eine theoretische Untersuchungsmethode, welche
sich auf alle Arten von Nielsen-Tragern mit beliebig geneigten Hangestangen
anwenden laf3t. Ferner wird die Programmierung fiir die elektronische Berech-
nung erldutert. Die Arbeit besteht aus vier Teilen:

1. Teil: Theoretische Untersuchung mit Hilfe der Deformationsmethode.

2. Teil: Programmierung fiir den NEAC 2203-Rechner.

3. Teil: Berechnung fiir einen Langerschen Briickentriger mit geneigten
Héangestangen.

4. Teil: Modelluntersuchung.

Diese Berechnungsmethode kann nicht nur auf Nielsen-Triager, sondern
auch auf dhnliche Briickentriger mit vertikalen Hangestangen, z. B. Bogen
mit Zugband, Langer- und Lohse-Briickentriger angewendet werden.
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