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Dynamic Wind Forces on Long Span Bridges

Effets dynamiques du vent sur les ponts de grande portée

Dynamische Windlasten auf weitgespannte Brucken
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SUMMARY

This paper describes a method for defining static wind loads acting on a long span bridge equivalent to
the important dynamic motions due to gust buffeting and wake excitation, as well as the influence of
the aeroelastic stability characteristics of the deck. The new approach makes use of the results of wind
tunnel experiments in a turbulent airstream on dynamically mounted section models and uses theory
to adjust these results to the conditions of full scale.

RESUME ‘

Une méthode est proposée pour déterminer les charges statiques du vent sur un pont de grande portée,
équivalentes aux effets dynamiques et aux mouvements dus a des coups de vent, et tenant compte des
caractéristiques aéroélastiques du tablier. Cette nouvelle méthode tient compte des résultats d'essais en
soufflerie, avec des turbulences, sur des modeles soumis 3 des charges dynamiques et fait appel a la
théorie pour ajuster les résultats aux conditions réelles.

ZUSAMMENFASSUNG .

Dieser Beitrag beschreibt eine Methode zur Bestimmung von statischen Ersatzlasten auf weitgespannte
Bricken, aequivalent den dynamischen Beanspruchungen durch Windstosse und durch Anregung durch
Luftturbulenzen. Ferner beschreibt er den Einfluss der Charakteristik der aero-elastischen Stabilitat
des Briickendecks. Die neue Naherung resultiert aus Experimenten im Windtunnel mit turbulenten
Luftstromen an dynamisch gelagerten Querschnittsmodellen, unter Anwendung einer Theorie zur An-
gleichung dieser Resultate an die Verhaltnisse der Gesamtstruktur.
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1. INTRODUCTION

The conventional treatment of wind loading on long span bridges has tended to
consider the static design wind loading used in normal strength design, and the
aerodynamic stability as two separate and distinct aspects. The procedure deseribed in
this paper takes a more unified approach. It depends on the measurement of the
dynamic response of section models to grid turbulence rather than smooth flow. The
response is corrected for discrepancies in the intensity and spectrum of turbulence, the
damping, and the joint acceptance function for the mode shape. A small correction is
also added for the deficiency in low frequency excitation from grid turbulence. The
design loads are found from the estimates of dynamie motion in the lowest symmetric
and asymmetric modes a well as the mean load. This approach is an outgrowth of
earlier studies in turbulent flow on the Murray MacKay Bridge (1), the Bronx-
Whitestone Bridge (2), and Sunshine Skyway Bridge (3).

2. THE DESCRIPTION OF DESIGN LOADS

The persistent movements of any long span bridge (4,5) in strong wind are
organized through its various mode shapes - horizontal, vertical and torsional. They
cover a range of frequencies but take place mostly at or near the natural frequencies of
the individual modes and have a random character due to the continual shifts in phase
and amplitude.

To summarize the variety of load actions which the dynamic movements will
produce in a severe wind storm, a wind load description for design has been proposed as
in Fig. 1.
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Fig. 1 Distributed Wind Load Components

In this X, Z and © denote the horizmt%} (down%ind), vertical (upward) and torsional
(nose-up) components; (see Fig. 2); W, W, and W, are the mean, symmetric and
antisymmetric load components per unit length of deek; @ (n), a, (n)anda, (M) are
the mean and modal load distribution funetions; Y, and Y. are statistical load
combination factors and take on values £ 1.0 if only one modal term is included; ~ 0.8
for two terms; * 0.7 for three terms and * 0.6 for four or more terms.
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The description of the mean
time average wind load compon- "
ents produced by the mean wind oW
is straightforward. They are — o 7
defined through the force coef- /
ficients Cy (a), Cz (a) and Ce (a)
which may be measured for a'range ' 8 , H
of angles of attack a, the deck
width B, and the mean reference " -
velocity pressure at deck height e g =il
H,qy =1 p Uy?. The three mean
forces per unit length are then: Fig. 2 Notation

Wr = au B Cx (0 Wz = quB Cz (0% W, = ay B® C, (© (2)

Two points should be made. First the coefficients in turbulent flow may differ
from those in smooth flow. Second, normally only horizontal mean winds need to be
considered. Only in steep mountainous valleys is there likely to be any appreciable
inclination to the mean flow.
3. EVALUATION OF THE MODAL LOAD COMPONENTS ‘Wl AND W 5

Although the response of a suspension bridge deck has been represented by
coupled vertical and torsional equations of motion (6,7), in fact the aerodynamic
coupling terms are usually negligible, and the aerodynamic stiffness terms are usually
small in comparison to the stiffness of the bridge itself. This leaves the aerodynamic
damping as the most significant aerodynamic force induced by motion. If this is
negative and numerically greater than the structural damping, large motion will result.
The response of each uncoupled mode of vibration to the turbulent wind can be studied
separately and superimposed at the end; usually, only the lowest modes are significant.

We can represent the peak modal load amplitude by the following: -

w=g -/or?'wb + dzwr (3)
where g is a statistical peak factor, 02w is the mean square background excitation
acting quasi-statiecally, and ¢ ZW,. is the mean square excitation at or near the
resonant frequency.
The two components of the excitation can
be identified in the typical power spect-
rum shown in Fig. 3. The background ex-
citation covers a broad frequency band
below the natural frequency; the resonant
excitation is concentrated in a peak at
the natural frequency, the height of which
is controlled by the damping. The two .y
components can be estimated from the fol- e
lowing expressions: Fig. 3 Spectrum of Modal Load Amplitude

2 @ *
= » * 2
° wbx,z,e 'ro f SFx,Z,Q (f) - I Jx!zve (f") l « d(ln f*) (4a)
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In the apove the subseripts x, z, 6 imply the equations are written for each variablg in
turn; f~ and fo are the reduced frequencies fB/UY and fo B/Uy; g and ¢, (f )
are the structural damping and aerodynamic damping at frequency f*; f* S, , o (f*) is
the power spectral density of the externally induced X,z,0 components on a @rdss-
section of the bridge deck at the reduced frequency f; | Jx,z g (f)|? is the "joint
acceptance function”, relating the generalized modal force component with the mode
shape and the force components at frequency f at cross-sections of the bridge and
involves the spanwise correlation of the forces.

The external forces on a bridge cross-section arise from either the direct action
of turbulence in the wind or through the action of flow fluctuations in the wake. The
latter are commonly deseribed as vortex shedding. We can write:

FYSE¢™) = (F* SE(F Dy + (" SFE D ke (5)

The turbulent term can be written

2
(F* SF( Dy = @B * (Coxz 1AGD|) « " Suyw, 7 (®)
where i Su,v,w (f ) = the power spectra of the turbulent velocity
fluctuations U, v and w;

Alf *) = "aerodynamic admittance" which translates the
turbulent fluctuations into forces on a cross-section;
and

Cx,z,0 ® a reference aerodynamic coefficient.

The contributions of the turbulence to the expressions for o?w, and o?w. can
be written as follows. To simplify the notation we will consider the lift (z) force and
only include the vertical (w) component of turbulence, which normally will dominate.

o © s (")
' W
(0’wy) = @gBCH® ° [ ——— |4 ¢ |73 D] dinf* (@)
z UH © o w
* *
o £ s, () . . (1/4)
(o*w,) = @yBCH* )* -5 TNaz (D2 " Y| —— ®
z Un o w (g *+ gy (f )

The coefficient C'; denotes (3 C/3 ). Similar expressions for the torsion can
be written with 6 replacing z and introducing an additional factor B . For the drag
direction 2 Cy replaces C'; and U replaces w.

If the left hand terms are normalized by the (@, B C'z)2 term the response is a
function primarily of the reduced frequency f and the intensity of turbulence
(ow/Up), two homologous quantities which link the full-scale bridge behaviour with any
dynamically scaled model. Otherwise the turbulence controlled response is bound up in
the functional form of the turbulence speetrum, Sy, the aerodynamic admittance, Az,

the joint acceptance funection, Jz, and the aerodynamic damping Lo
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The aerodynamic admittance reflects the efficiency of the bridge deck as a lift
generator, as well as the correlation of the flow in the vicinity of the deck. The
theoretical and observed form of this funetion is shown in Fig. 8. The joint acceptance
function can be written

L L
|J(f*)|2 = Io foRFl F, (nl,nz;f*) ¥ (M)u (n,)dn, dn, (9)

where u (n) = mode shape with unit mean square amplitude; and

. L |ni1 — nz2|
RF1F2 Mi,n2;f) =exp(-cf* — ) (10)
B L

in which ¢ is a constant which defines the effective width of the correlation. A
similar expression can be written for the spanwise cross-correlation of the velocity
component in which case ¢ ~ 8 is representative. It is reasonable to assume the same
value holds for the forces F and F , on the basis of the "strip assumption™.

Equations (7) and (8) apply to both the full scale bridge and a model in a turbulent
wind tunnel flow. Ideally the latter should be an exact scaling of the former. This
ideal, however, is difficult to satisfy in the wind tunnel and some compromises may
have to be made. There are significant advantages to using an elongated section model
in a turbulent flow generated behind a coarse grid. Although the turbulence scale and
intensity cannot be made to exactly correspond to full scale, the values can be made
sufficiently close.

To adapt the results of the dynamic section model testing to full scale,
corrections need to be applied as 2follows: (a) Corrections of the low frequency quasi-
statie, "background", response, g Wi largely omitted from the section model due to
the deficit in the vertical velocity sﬁectrum generated by the grid. This can be
estimated with reasonable accuracy from equation (7) using either theoretical or
experimentgl data as outlined below. (b) Correction of the terms in the resonant
response g for the discrepancies in the turbulent intensity, vertical velocity
spectrum, joinf acceptance function and damping. No correction is needed in the
aerodynamic admittance. The following formula encompasses these corrections:

2 2
(o w')full scale (0 w')model %a,, ¢Sw 47 ¢g (11)

where the terms Oy 95, O and ¢ reflect corrections to the terms in the

response due to the discrepancies between the section model and the full scale. These
correction factors are found from the ratios of the quantities involved for model and
full-scale. Through the appropriate selection of turbulence characteristics in the
section model test and model length these corrections are relatively small. This last
fact should lead to satisfactory reliability.

4, EXPERIMENTAL DETERMINATION OF DESIGN LOAD COMPONENTS

The wind tunnel testing of the section models of the two Sunshine Skyway Bridge
alternates provided an opportunity to apply the proposed method. The proposed
structure, over Tampa Bay in Tampa Florida is a cable-stayed design with a 366m main
span. The concrete alternate used a precast, segmental box girder 29.03m wide and
4.27m deep. Two single strut pylons carry a system of radiating stays located on the
longitudinal axis of the bridge (Fig. 4).
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The model of the 1 in 80
.- scale bridge section shown in
O Fig. 5 is 7 ft. (* 2m) in length

Fl corresponding to a 170 m

o e B section of the full scale
\ ' : structure. The model was
- ; JL*' : tested with spring mounting

' ] giving the correct frequency

i i : ratio in lift and torque and
W , i P 0.5% damping. Measurements
S of mean and peak dynamic
motion are plotted in Fig. 6,
and show marked differences
Fig. 4 Sunshine Skyway Bridge between smooth and turbulent
flow. With smooth flow there
is evidence of some coupling
between static lift and torque
(i.e. twisting of deck due to
torque modifies lift).
Although not essential to the
method aerodynamie damping
and admittance functions were
also measured in the
experiments.

DECK CROSS SECTION PYLON

The large mesh size and
bar spacing of the turbulence
grid was selected to give a
close representation of the
natural wind. The measured
vertical turbulence intensity
behind this grid is found to be
0.05 compared to the expected
full scale value of 0.06 over
open water. The grid
turbulence spectrum and the

Fig. 5 Section Model in Wind Tunnel target full scale spectrum are
drawn together in Fig. 10 on a
double logarithmic scale. Both have similar form, although the full scale has slightly
more energy than does the grid turbulence at lower frequency.

S. DETERMINATION OF DESIGN WIND LOADS

Following equation 8 the wind load from the background turbulence excitation is
found through the integration with reduced frequency of the product of the vertical
wind spectrum (Fig. 7), Aerodynamic Admittance Function (Fig. 8) (assuming the Sears
function), and the Joint Acceptance Function for the particular mode (Fig. 9). The
form of these functions is such that the bulk of the energy is in the range of reduced
frequency f between 0.01 and 0.1 and any uncertainty of the functional values at
these low frequencies generally introduce little error. Added to this is the resonant
component following equation 8. The resonant modal response, measured in terms of
deflection has been converted to an equivalent static load through the modal stiffness:

= 2 . - 2
R R AT (12)



‘ A.G. DAVENPORT — J.P.C. KING

711

TURBULENT SMOOTH
24'0' [y:05 %
w3
2 = 30
S o
o
&0 > 20
: E
-
w
l_" ;l 104
- 3 PEAK MEAN
2
o
Y 004

00 20 40 60 80 00 20 40 80

REDUCED VELOCITY Vv/f; B

TORQUE RESPONSE

TURBULENT SMOOTH
10004
=
= 800+ .
a {3 1.0 %
600+
s OPEAK
o
>
+ 4001 .
z
w
3
2200_ MEAN
3 <
w
0+ -
00 05 10 15 20 00 05 10 15 20

Fig. 6 Section Model Response (Uncorrected)

ol ATMOSPHERIC
o TURBULENCE —

(Ca/Uu) ' 6%
CORRECTION

FACTOR
122 - Pse 10

VERTICAL VELOCITY SPECTRUM

GRID
_~ TURBULENCE
[CplUn) * 4.9%

3 L L L

oo CINT: ) 0

'™

Fig. 7 Vertical Velocity Spectrum

e T T T T

JOINT ACCEPTANCE FUNCTION

s {eelf

c+8 , 8496

= Y
L

SECTION _—+

MODEL
L * 560"

Brasal o— SYMMETRIC MODE
ANTISYMMETRIC
oo, MODE \
[} o
o 1 1 1
gwl Qo1 o1 o+, 18 1] 10

Fig. 9 Joint Acceptance Function

REOUCED VELOCITY V/; B

S
T

iy flaces)?

o
T

01

=~ SEARS FUNCTION
~o et €y o

AERQODYNAMIC ADMITTANCE
LIFT WITH BARRIERS

a0

001 ol .. 18 10 10
U

Fig. 8 Aerodynamic Admittance

(g%

~
o

TOTAL DAMPING ((,
5

05

)
o

0.2}

DAMPING CORRECTION ¢

Fig. 10 Damping Functions

The correction terms are determined from the ratios of the quantities involved
for full seale and model. That for the turbulence intensity, ¢,,, is a constant equal to
(.06/.05)" = 1.44 i.e. the ratio of target full scale to model values. Similarly, the

correction factor for the vertical velocity spectrum ¢
acceptance function, ¢ 5, in Fig. 9, and the damping, ¢

is shown in Fig. 7, the joint
Yin Fig. 10. The addition of the

background and resonant components as in equation (35;; result in the loading shown in
Figs. 11a and b. The final wind speed scaling will depend upon the final design fre-
quencies of the structure. Thus the example wind loads have been determined for a
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nominal wind speed at
deck height based on the o e (b oo M
estimates of verticaland - %
torsional frequencies noted
in the figures.

BACKGROUND PLUS

Verifiecation of this N -
procedure, using 1:350 ° o )/ :
scale aeroelastic models _ 0 Y u oscr v 00 o L 02g 020,
of both the steel and A R g .
concrete bridges tested A G s el
in a turbulent boundary o T e enm

layer were excellent (3). L !

1, 10| ONCE - 1N~ 100 yeors : OB wps/ 1t

6. CONCLUSIONS

MEAW WIND SPEED AT DECK WEAN &IND SPEED AT DECK

A method has been
presented whereby wind
tunnel section model test Fig. 11 Wind Load Components on Completed Bridge
results can be incorporated
directly into a load format
suitable for the definition of the design wind loads of long span structures. The
procedure has been verified experimentally with the satisfactory prediction of the
response of two full bridge aeroelastic models to boundary layer shear flow.
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