Poster session 7: Steel structures

Objekttyp: **Group**

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band (Jahr): 12 (1984)

PDF erstellt am: 26.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

POSTER SESSION 7

Steel Structures Structres métalliques Stahltragwerke

Coordinator:

R.S. Stilwell, Canada

VII - POSTERS

Akira TAKAYAMA, Hiroaki TSURUTA Mitsuru GOTO, Eiji KATAYAMA Honshu-Shikoku Bridge Authority

Runnability of Train on Transit Girder System.

For development of transit girder system, runnability of train had been studyed as mentioned

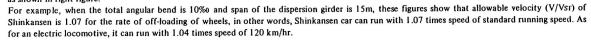
Runnability of trains at the transit girder system can be separately checked for sections of the expansion joint and the dispersion system for angular bend.

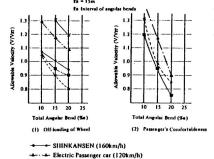
At the expansion joint, the structure is designed so that rail tracks may continue to secure a proper gauge line and wheelset load can be structurely supported.

Rail of the inserted girder type expansion joint is cut out partially to keep space for expansion, and the guardrails are arranged to prevent derailment.

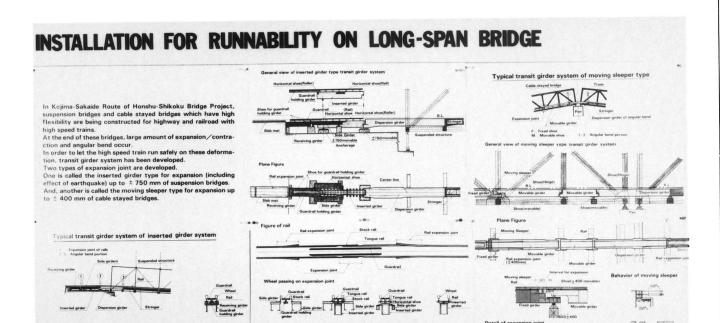
For the runnability on the expansion joint, running tests by actual cars were conducted in 1974 to certify safety of trains with speed up to 180 km/hr.

The runnability on the angular bend section is extreamely influenced by a vertical and horizontal angular bend. The safety against derailment when a train run on the transit girder with vertical, horizontal angular bend or composite angular bend of the both and passenger's comfortableness for vertical and horizontal vibration had to be investigated.


The investigations for derailment and comfortableness were carried out for criteria of the rate of off-loading of wheels and the lateral pressure and magnitude of the vibration, respectively, and they were numerically analyzed or simulated for various types of cars.


And, important items among them were confirmed by running tests of actual cars and model cars, and results of the running tests and the calculation were compared. As the result of these investigations, relation between the running speed and the limit of angular bend is established as shown in right figure.

to standard running speed

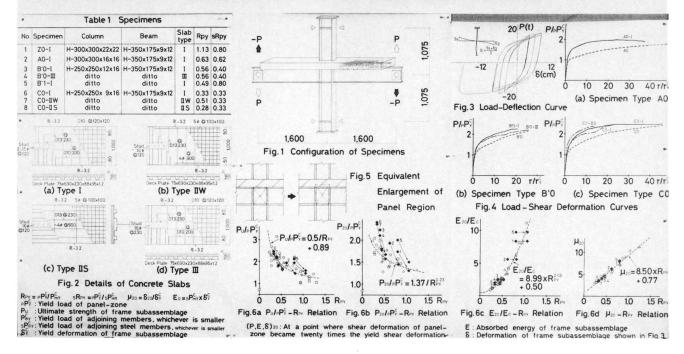

Fig.

Allowable speed of various types of cars

- -x --- X- Electric locomotive (120km/h)
- X X Two-axle freight car (75km/h)
- Allowable velocity V/Vst alove is defined as the ratio of investigated result

Beam to-Column-Connections with Composite Beams

Hiroshi OSANO	Masami NAKAO	Sanzo UNNO	Takeo NAKA
Res. Assoc.	Prof. Dr.	Prof. Dr.	Prof. emeritus
Tokyo Denki Univ	Tokyo Denki Univ.	Tokyo Denki Univ.	Univ. of Tokyo
Tokyo, Japan	Tokyo, Japan	Tokyo, Japan	Tokyo, Japan


This research deals with the contribution of reinforced concrete slab of composite beams on the strength and the deformation capacity of steel beam-to-column connections subjected to seismic loading.

Dimension and configuration of specimens are shown in figure 1 and table 1. Relative yield strength of panel-zone to that of adjoining members is expressed marks "Rpy" and "sRpy" in table 1. Those are considered to be the key parameter on the evaluations of strength, deformation capacity and energy absorption of beam-to-column connections.

Figures 4a-4c are the summary of representative relations between load and shear deformation of panel-zone. Vertical axis represents the ratio of load to calculated yield strength of beam-to-column connection composed of bare steel beams and column, while horizontal axis represents the ratio of shear deformation of panel-zone to calculated yield shear deformation. Dotted lines in figures 4a-4c show the test results of beam-to-column connections of the same configuration without concrete slab. The reinforcing effect of steel beam-to-column connections by the reinforced concrete slabs of composite beam is illustrated.

A model to take the effect of concrete slab into consideration is proposed in figure 5. In this model, the strength of panel-zone is considered to increase by the enlargement of nominal volume of panel-zone as shown in the figure 5. Relation between "sRpy" (relative yield strength of panel-zone to that of adjoining steel members) and strength, deformation capacity and energy absorption are shown in figures 6a-6d with the other test results of beam-to-column connections composed of bare steel beams and column. The empirical formulas in figures 6a-6d are obtained by regression analyses on the test results of beam-to-column connections composed of bare steel beams and column. Shiftings to the estimated results of yield strength of enlarged panel-zone are indicated by arrows. The seismic behavior of steel beam-to-column connections with composite beams can be evaluated by making use of the model in figure 5 and empirical formulas in figures 6a-6d.

BEAM-TO-COLUMN CONNECTIONS WITH COMPOSITE BEAMS

Optimum Design of Double-Layer Space Grids

Henning AGERSKOV

Assoc. Prof. of Struct. Eng. Technical University of Denmark Lyngby, Denmark

In recent years extensive and increasing use has been made of space trusses, especially in the form of double-layer space grids. These types of structures have in many cases been able to compete with more traditional constructions. The main areas of application have been sports halls, swimming pools, exhibition buildings, churches, shopping centres, hangars, factory buildings, etc., where the space grid is used as roof construction.

In the design, almost unlimited possibilities exist in practice for the choice of geometry of space trusses. This forms the background for a research project, in which the optimum design of double-layer space trusses has been investigated. As a first part of the investigation, a study covering what has, until recently, been obtained as regards optimization of double-layer space grids was carried out. With the results of this investigation as a starting point, various geometrical designs were studied in detail to determine the optimum design. Both square and rectangular grids have been investigated, under the assumption of either simple supports along the entire edge or column supports at the corners.

In determination of the optimum design, an ordinary mathematical optimization based on a minimum of material consumption, was found to be of little practical interest. The present investigation is based on assumptions concerning nodes, members, supports, loading, etc., which make the results realistic to a practical design. To determine the optimum de-

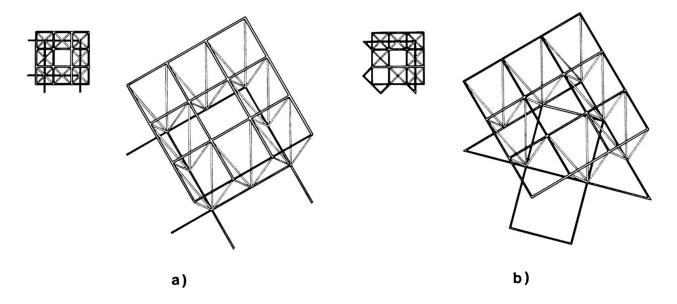
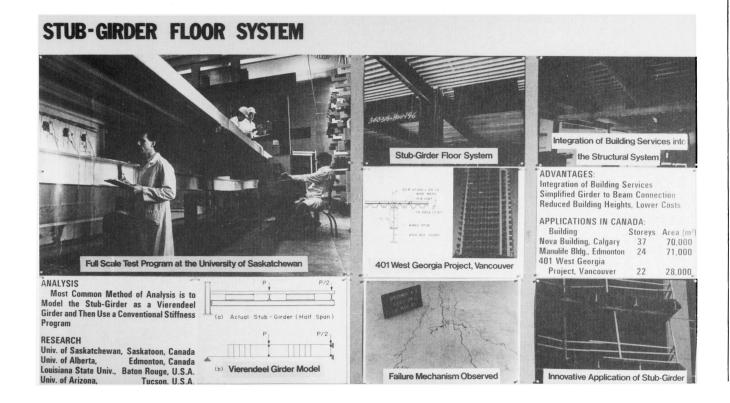


Fig. 1. Space grid systems, which will in general result in good overall economy.

sign, both the material consumption, the number of nodes, and the number of members in the structure have to be considered, while an optimum design based only on a minimum of material will rarely, if ever, be an economical optimum for a double-layer space grid.

On the basis of the results obtained in the investigation, guidelines for the structural engineer to obtain an optimum design, have been worked out. Guidelines are given for choice of overall geometry of simply supported and corner-supported square and rectangular space grids.

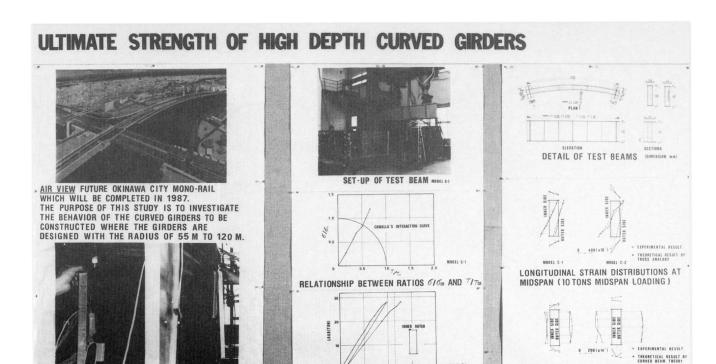

RECOMMENDATIONS

The following general recommendations concerning optimum design of double-layer space grids can be made:

- The member density must be small. In addition to giving a small material consumption, this leads to a grid with relatively few nodal points and thus least possible production costs for nodes, erection expenses, etc.
- The system should be chosen so that the space grid is built of relatively long tension members and relatively short compression members.
- 3. For rectangular, relatively long space grids, optimum design is obtained with systems where the load is mainly carried across the short span. Systems where the members in both top and bottom layer grids are parallel to the edges will generally result in the least material consumption.
- 4. If both the material consumption and the number of nodes and number of members are considered, the space grid systems shown in Fig. 1 a and b will, generally speaking, result in good overall economy. This could be concluded from investigations on both square and rectangular double-layer space grids, simply supported along the entire edge or column-supported at the corners.

REFERENCES

- 1. Agerskov, H., and Gudjonsson, H., "Optimal udformning af rumgitterkonstruktioner", Proceedings of the Scandinavian Conference on Steel Research, Copenhagen, Denmark, Aug., 1979, pp. VI. 5.1-13.
- Agerskov, H., "Optimum Design of Double-Layer Space Trusses", Report, Dept. of Civil-Structural Engineering, Portland State University, Portland, Or., U.S.A., 1981.
- Agerskov, H., and Bjørnbak-Hansen, J., "Optimum Design of Corner-Supported Double-Layer Space Trusses", Report No. R 177, Dept. of Structural Engineering, Technical University of Denmark, Lyngby, Denmark, 1983.
- 4. Agerskov, H., "Optimum Design of Double-Layer Space Grids", Dept. of Structural Engineering, Technical University of Denmark, Lyngby, Denmark, Sept., 1984, 21 pp.



VII - POSTERS

CAL BUCKLING OF INNER WEB PLATE & DEFORMATION AT OUTER SIDE MODEL C-1

SHEAR STRAIN DISTRIBUTION AT 500 mm

FROM SUPPORT (10 TONS MIDSPAN LOADING)

LOAD-LONGITUDINAL STRAIN RELATIONSHIP

Leere Seite Blank page Page vide