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Retrofit System to Enhance Earthquake Resistance

Siegfried F. STIEMER
Assoc. Prof. Univ.

of British Columbia
Vancouver, BC, Canada

Experimental and analytical investigations of a retrofit-system to
enhance the earthquake resistance in existing buildings and structures
have been conducted in the University of British Columbia, Department
of Civil Engineering, Earthquake Simulator Laboratory. The system
consists of a combination of well known base—isolation techniques, a
new base storey design, and newly developed miltidirectional energy
absorber made of mild steel. The research results indicated the use~
fulness of this system and proved, that it can be implemented in exist-
ing buildings without reduction of the structural integrity of the
building and without major modifications of the original design.

The key idea of the system 1is to separate the bullding from the exist-
ing ground motion by roller bearings or sliding pads and restricting it
from excessive displacements by solid state steel energy absorbers.
Extensive experimental tests have been conducted to prove the prin-
ciples, to correlate analytical programmes, and to devise an engineer-
ing approach to the design of the system as a whole and the energy
absorbers in particular. A transparent design procedure is now avail-
able, which enables the engineer to design this retrofit-system for
different earthquake regions and for different structures.

One of the focal points of the research project was to show, how a
retrofit base-isolation system could be implemented in steel buildings
without additional blind-storeys or double foundations as used 1in
recent proposals by others. This results in considerable cost savings,
which make the new approach very attractive for a broad spectrum of
buildings for which until now an wupdate in respect to earthquake
resistance was believed to be too expensive.

High importance was placed on the investigations and development of
reliable, inexpensive, and replaceable energy absorbers. They have to
restrain the building against wind loads and, in case being subjected
to major earthquake loadings, have to prevent the building from exces-
sive displacements. These devices are designed to deform elastically
under minor loads (such as wind) or displacements (such as thermal
expansion) and to deform plastically when severe loads (such as earth-
quakes) are imposed on the building or bridge. The energy absorbers
allow displacements in all directions, however work most efficiently
for displacements in the horizontal plane. They consist of curved
plates of hot-rolled mild steel plates. An engineering method was
introduced by the author for the practical design of the steel energy
absorbers and for predetermining the number of cycles to failure.

In the experimental studies steel roller bearings were used because
they had a very low friction coefficient without becoming unstable for
large displacements. However, the design approach is valid for other
low friction sliding devices, too, e.g. for neoprene bearings often
used in bridge applications.

A wide range of applications can be foreseen for the solid state steel
energy absorbers, particularly in the area where currently viscous or
friction dampers are used (bridges, nuclear power plants), which can
add considerable costs, constant maintenance, and can cause problems of
implementation because of bulkiness.
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Application of Diagonal Reinforcement to Reinforced Concrete and Masonry Short Columns

Minoru WAKABAYASHI Koichi MINAMI Takeshi NAKAMURA
Professor Lecturer Assoc. Prof.

Kyoto University Osaka Inst. of Technol. Kyoto Univ.

Uji-city, Japan Osaka, Japan Uji, Japan

The paper describes the use of diagonal reinforcement in concrete members
to prevent brittle shear failure and to ensure ductile behavior in earthquake
resistant structures. The use of diagonal reinforcement was proposed by
T. Paulay to provide ductility in coupling beams and has been used in practi-
cal buildings. However, past earthquakes have revealed that brittle shear
failure takes place more frequently in short columns than in beams, and can
lead to overall structural failure. The authors have used the diagonally
reinforcing system in short reinforced concrete columns and in wall-columns
of reinforced concrete-grouted masonry, and have developed design formulas
to predict the maximum load carrying capacity and ductility.

Figure 1 shows the hysteresis loops obtained from the preliminary tests
of diagonally reinforced short columns. It can be clearly seen that the
behavior of the diagonally reinforced column is far better than that of an
ordinary reinforced concrete column, with respect not only to maximum load
capacity but also to deformability without load degradation, shape of hys-
teresis loops, and energy dissipation. The superiority of the diagonal rein-
forcement has been confirmed by a series of experiments using full scale
specimens, as indicated in Figs. 2 - 4. The physical model used to predict
the ultimate load carrying capacity consists of two basic resisting mecha-
nisms, a beam mechanism and an arch mechanism. This is shown in Fig. 5. Ulti-
mate load capacity is obtained by the summation of the load capacities of
the basic mechanisms according to the generalized addition theorem. Correla-
tion between the experimental and predicted load capacities can be seen in
Fig. 6. The proposed diagonal arrangement of main reinforcement for rein-
forced concrete column has been used in apartment buildings designed by the
National Housing Cooperation of Japan, as shown in Figs. 7 and 8. In addition
to its use in ordinary short columns, the diagonal system is very effective
in the case of columns which are shortened in their clear height by wing
wall, as in the school buildings shown in Fig. 9. The system is also applica-
ble to concrete-grouted brick masonry wall. Ductile behavior can be antici-
pated even in brick masonry structures, as shown in Fig. 10.

The following conclusion can be drawn from the experimental and theoreti-
cal work:

(1) The diagonal reinforcement system is very effective in increasing the
shear capacity and in improving the earthquake-resistant characteristics,
such as ductility and energy dissipation, of reinforced concrete columns
and masonry wall-columns.

(2) The maximum shear capacity, ductility and energy dissipation can be
controlled by the amount of diagonal reinforcement.

(3) At least sixty percent of the main reinforcement should be arranged
diagonally in columns to guarantee ductile performance during earthquakes.

(4) The maximum load carrying capacity of diagonally reinforced members
can be predicted with reasonable accuracy by the proposed analytical
method.
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Inelastic Aseismic Design of Reinforced Concrete Bridges

Yoshikazu YAMADA Hirokazu IEMURA
Professor Assoc. Prof.

Kyoto University Kyoto University
Kyoto, Japan Kyoto, Japan

As stated in the introductory report by Professor Tassios, it is an essential
approach for earthquake resistant design of most structures to produce a structure
capable of responding to moderate shaking (more than a few times expected
intensity of excitation in its life time) without damage, and capable of resisting
to unlikely event of very strong shaking without seriously endangering the
occupants. In the first case, it is satisfactory to adopt the "allowable stress"
design method for the specified intensity of earthquake motion. However, in the
second case, it 1is neccesary to propose reasonable design methods based on
earthquake response properties of structures beyond yielding limit approaching to
failure.

INELASTIC DESIGN CODES

In the first part of this study, present two inelastic earthquake resistant
design codes of reinforced concrete (RC) bridges by Japan Road Association are
explained and some problems in application are pointed out. One inelastic design
is a static method by which it should be checked whether sectional forces due to
30% increased earthquake loads (130% of the intensity for elastic design) are less
than ultimate strength of those forces. The other is a dynamic method with use of
equivalent linearization technique. By this method, it should be checked whether
ductility factor response due to 30% increased earthquake dynamic loads is less
than the allowable ductility factor which is defined as one third of the ultimate
ductility of members. In appliction of these two inelastic design methods to RC
bridge structures (especially bridge structures), it was found that the second
ductility requirement is generally hard to be satisfied even though several
problems relating to values of equivalent damping factor and spectral intensity
for dynamic response analysis and definition of the allowable ductility factor
have been pointed out. Research efforts are needed to answer these problems.

HYBRID EXPERIMENTS OF EARTHQUAKE RESPONSE

In the second part of this study, results of the newly developed online
hybric experiment related to above mentioned problems are described. In the
experiment, earthquake response is calculated by a digital computer adopting the
real hysteretic restoring force of a RC bending structural element directly
measured from a loading actuator. Therefore, accurate estimation of not only
earthquake response but also deterioration process of structural properties has
become possible. Effects of reinforcement ratio, axial stress, kinds and amount of
tie-hoops and strength of concrete to inelastic earthquake response are examined.
Process of partitioning of earthquake input energy to kinetic, potential and
absorbed energy by hysteresis loops 1is also investigated as a measure for
deterioration of structural properties. From the experiments, it is found that the
ductility requirement by the present code is so conservative that new design codes
based on earthquake input energy shall be developed.
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Cable Damper of Meiko-Nishi Cable-Stayed Bridge

Yutaka IHOKA Michio TAKAHASHI Nobukazu KAJITA
Nihon Doro Kodan Nihon Doro Kodan Shin-Nippon-Giken Eng.
Nagoya, Japan Hiroshima, Japan Tokyo, Japan

|

1. GENERAL

Meiko-Nishi Bridge, which is under construction in Nagoya Harbor, Japan, is
a steel cable-stayed bridge with three spans of (175+405+175m) . The box-girder
type with an orthotropic deck is a trapezoidal 3-cell box-sections with the
depth of 2.8 m. Pylons are A-frame fixed to piers. The longitudinal cable
configuration is the fan type of twelve stay cables., This bridge was closed on
July 16, 1984, and will be completed on April, 1985.

2. EARTHQUAKE RESISTANCE DESIGN

The construction site which is located in the strong seismic zone is in
rather poor geotechnical condition. In the earthquake resistance design, follow-
ing earthquakes are considered, The one is expected to occur 2~3 times for
100 years with M=8.0 for the epicentral distance of 100 km, and the other is
expected to occur 4~5 times with M=T7.0 for the epicentral distance of 50 km,
in which M is the magnitude. Therefore, the design of pylons and substructures
needs special considerations to the longitudinal earthquake force. The degree of
horizontal connection between pylon and girder is one of the most important
influence factors against the earthquake response, because of the large mass of
the stiffened girders. Meiko-Nishi Bridge has been installed horizontal cables,
called cable dampers, in the connection of pylon and girder to reduce the hori-
zontal forces to the pylon from the stiffened girders. The earthquake force
will be reduced, because the cable dampers give lower natural frequency and
larger system damping to the structure.

3. DIMENSION OF CABLE DAMPER

Material 2 bandles of 61 galvanized 7-wire strands
Length (L) 43.2m

Area  (A) 62.6 cm X 2 = 125.2 cn’

Modulus of Elasticity (E) 1.9 x107t/m?

EA/L 5.5 x10°t/m

Prestretching Center Span ——— 440 t

Side Span — 415t
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Natural Frequencies-and Mode Shapes of the Bridge over the Kocher-Valley

Eberhard LUZ Klaus KERKHOF
Prof. Dr.-Ing. Dipl.-Ing.

Univ. Stuttgart Univ. Stuttgart
Stuttgart, FR Germany Stuttgart, FR Germany

The measuring method used to detect natural frequencies and modes is based on the
excitation of the considered building by traffic, wind and natural microtremors.
Any motion of- a building can be considered as a sum of a large number of natural
modes, vibrating with distinct amplitudes and at different frequencies, the natu-
ral frequencies. It is possible to detect these frequencies and modes by recor-
ding time-history-signals of the points of interest in thé building for a suffi-
cient period of time. These signals have to be processed by a spectrum analyzer,
which computes transfer functions and spectral densities of the signals in the
frequency domain and makes it possible to determine natural frequencies and to
calculate corresponding mode shapes.

The advantage of this method is that no artificial excitation is necessary, so

that measurements can be performed on completed buildings in full use without any
damage and without having to interrupt work, as well as on structures in any stage
of completion. It is of utmost importance to be able to check calculations of the
vibration behaviour in order to ensure the earthquake resistance of the structure.

The mechanical model for the calculation of vibration characteristics concentrates
masses and moments of inertia at the tops of the 8 pillars. Considering the dif-
ferent bearings, there remain 31 degrees of freedom for the whole system. The mass
matrix was gained by a proper estimation of the contributing parts of pillars and
girder. The stiffness matrix for the chosen degrees of freedom was calculated ac-
curately by methods common in building statics. Three versions were calculated:
Version 1 considered only the mass of the girder, version 2 in addition the pillar
masses and the moments of inertia, version 3 contained the influence of axial for-
ces in the pillars.

The measuring method presented here was found reliable not ¢nly in the presented
example of a large bridge which is a qomparatively rigid structure with very low
natural frequencies, but also in several highrise buildings and in the very rigid
structure of a nuclear power plant. This is of main interest for the earthquake
resistance of buildings. Another application of this method could be to monitor
prestressed concrete bridges. An eventual loss of stiffness would influence the
natural frequencies as well as the mode shapes of the structure; see the inser-
ted beam example. This loss of stiffness can be detected by using periodical mea-
surements with the presented method which allows the determination of the natural
frequencies with great accuracy.

The authors wish to express their appreciation to the Autobahnamt Baden-Wiirttem-
berg, Stuttgart, for providing assistance with measurements and calculations, as
wekl as to: Mr. A. Barske, Mr. K. H. Beyer, Mr. S. K. Chen, Mrs. C. Gurr-Beyer,
Mr. L. Roth and Mr. W. Stdécklin, who assisted with the measurements. Many thanks
to Hewlett-Packard, Richmond B.C., for lending us a HP 5423A Modal Analyzer.

1. Luz, E., Gurr, S.,"Measurements and Calculations of Natural Frequencies and
Coupled Bending-Torsion Modes of Highrise Buildings', Proc. 7th World Confe-
rence on Earthquake Engineering, Istanbul 1980, Vol. 7, P. 437-440.

2. Luz, E., Gurr-Beyer, C., Stécklin, W.,"Experimental Investigations of Natural
Frequencies and Modes of the HDR Nuclear Power Plant by Means of Microtremor
Excitation", Proc. 8th World Conference on Earthquake Engineering, San Fran-
cisco 1984, Vol. VI, P. 977-984.
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