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Computer-Aided Design of Box Girders Using a Simple Non-Linear Technique

Projet de poutres-caissons par l'emploi d'une simple technique non-lineaire

Entwurf von Kastenträgern mit einem einfachen nicht-linearen Verfahren
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SUMMARY
The paper describes the application of a geometrical, non-linear, finite strip method to the computer-
aided design of box girders. It includes two examples of application of the method. A square isotropic
plate is analysed, showing excellent correlation with a finite element Solution. Then, using this method,
the Danube bridge failure of 1969 is re-examined, confirming the mode of failure established by
previous authors, but resulting in different numerical values.

RESUME
Cette etude decrit l'application d'une mäthode non-lineaire göometrique de bände finie au projet par
ordinateur de poutres-caissons. Elle comprend deux exemples d'application de la me'thode. Une plaque
carree isotrope est analysee et montre une correlation excellente avec une Solution par elements finis.
L'analyse de la rupture, en 1969, du pont sur la Danube confirme le mode de rupture etabli anteYieure-
ment par d'autres auteurs, mais aboutit ä des valeurs nume>iques differentes.

ZUSAMMENFASSUNG
Diese Arbeit präsentiert die Anwendung einer geometrisch nicht-linearen Methode der finiten Streifen
für die rechnerunterstützte Projektierung von Kastenträgern. Sie beinhaltet zwei Anwendungsbeispiele
der Methode. Eine Rechteckplatte wird analysiert. Eine vollkommene Korrelation mit der Lösung der
Methode der finiten Elemente zeigt sich. Danach wird mit Hilfe dieses Verfahrens der 1969 erfolgte
Einsturz der Donaubrücke nochmals analysiert. Die von früheren Autoren angegebenen Bruchursachen
werden bestätigt. Es ergeben sich jedoch verschiedene numerische Werte.
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1. INTRODUCTION

The finite strip method has been applied widely since the early seventies and
has been shown to be an efficient tool for the analysis of box girders. The
first versions of the method were based on a linear displacement formulation of
the finite element procedure using a combination of polynomial and harmonic
functions for the Solution of simply supported folded plate structures [1]; this
was later extended to multi-span structures [6].
The development of a geometrical non-linear finite strip technique has been the
subject of research in recent years [3, 4, 8]. However, solutions have been
based primarily on special displacement functions and this results in a
restricted characterisation of geometrical non-linearity.
The idea of closely following the finite element procedure was put forward by
the authors in a previous publication [5]. Since then this technique has been
further tested and applied with the development of Fortran programs for
different mini- and micro-computers.
This paper is concerned primarily with the presentation of two representative
applications of the method. However, a short summary of the technique is given
in the Appendix.

The examples in this paper demonstrate the analysis of steel structures with
longitudinal stiffeners, simply supported at two opposite ends (Fig. 1). For
simple supports, the following conditions are assumed: the vertical displacement
(w) of the plate is perpendicular to its plane, the transverse rotation (9) and
the transverse displacement (u) are zero, while the longitudinal displacement
(v) is non-zero.
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The aim of the analysis is primarily to investigate the greatest lateral
displacement and the corresponding stress distributions of the plate under
increasing load in the longitudinal plane.
The examples in this paper were solved by applying only one harmonic; however
the effect of more than one harmonic can also be found. In both examples an
initial central displacement was assumed by applying a vertical concentrated
load PQ at the mid-point of the plate.
The results were obtained by running the Fortran program FISNAB which has been
implemented on Leeds University's PRIME 750 and VIDEOTON's VT 600 Computers.



A.R. CUSENS - P. LENGYEL 439

2. ANALYSIS OF A SIMPLY SUPPORTED RECTANGULAR PLATE

Figure 2 shows the case of a rectangular plate simply supported at four edges.
The support conditions of the horizontally loaded edges have already been
described. The unloaded edge conditions were obtained by prescribing the
vertical displacement of the plate in these nodal lines as zero, while the other
three displacements - 8, u and v - were not prescribed.

This is a problem for which several solutions are available in the literature,
thus providing useful comparisons. The square plate analysed by Yamaki [12] and
Wood [11] is used here. Its dimensions are 400 x 400 in by 1.5 in thick (10 m x
10 m x 38 mm) and the initial central displacement is 0.15 in (3.8 mm). Figure
2 shows the relation between this ratio of the central displacement and plate
thickness and the quantity P characteristic of the compressive loading. This
quantity is approximated by Wood [11] and Yamaki [12] as:

2
4p a

p y
2

Et
where p is the average compressive stress in direction y. The dashed line
shows the analytical result of Yamaki, triangles denote the result of the finite
element analysis of Wood, who investigated one quarter of the plate using 32

triangulär elements. The results from the FISNAB program are shown by circles
and are based upon the application of four finite Strips and one harmonic.
Advantage was taken of the symmetrical nature of the problem and one half of the
plate only was analysed.

3. ANALYSIS OF THE FAILURE OF THE VIENNA DANUBE BRIDGE

3.1 In the evening of 6th November 1969 the Vienna Danube bridge, while under
construction, failed at three sections. The bridge had two intermediate
supports forming spans of 82, 210 and 120 metres. The structure of the
bridge was formed of two torsionally stiff box girders of 7.6 m width and
5.2-7.5 m height, at 15.6 m spacing. The box girders supported a 32 m wide
orthotropic plate deck (Fig. 3).
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The collapse of the bridge launched a fierce technical debate especially
because the dimensioning and construction were carried out following the
current Austrian specifications.
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Prof. P. Cicin of Vienna, Prof. K. Sattler of Graz and Prof. P. Roik of
Berlin, published different explanations in the Journal "Tiefbau" in 1970
[2, 9, 10]. Further research on this problem at the University of Liege was

later published by Maquoi and Massonnet [7]. Based primarily on this paper
the change of displacement of the lower flange mid-point with increasing
longitudinal horizontal loading was analysed together with the stress
distribution in the cross-section corresponding to each of the loading
values. These results are presented in the following sections.

3.2 According to a nearby observatory, the fracture oecurred at three cross-
sections, at five second intervals, at 8.44 p.m. The middle closing member
had been put in at 8 a.m. when the observatory temperature was 4.2°C. The

temperature had risen by 2.2°C by 2 p.m., and then decreased by 4.9°C. It
is reasonable to assume that at the bridge site a somewhat greater increase
of 8-10°C oecurred with a later decrease of 12-15°C.

The most important factor in considering the cause of the failure is the
greater increase of loading of the bridges compared with the expected
load because of:
a) the significant change of ambient temperature;
b) the unexpectedly non-uniform distributed dead load.

It is apparent that initially the entire lower flange of the box girder
failed and the füll collapse of the cross section followed afterwards.

3.3 Based on these considerations, Maquoi and Massonnet have analysed the
yielding of the lower flange.

The most important aim of the analytical method devised was to take into
consideration the essential deviation of the stress distribution from a
uniform one in the lower flange. This deviation is caused by three factors:
a) The shear lag effect, i.e. consideration of the deformations due to the

shearing forces;
b) The curvature of the entire flange, increasing under the compressive

forces;
c) Curvature of the plate between individual longitudinal stiffeners.
The combination of these factors results in the theoretical distribution of
the longitudinal stresses of the stiffened plate shown as curve II of
Fig. 4. If the effect of c) is omitted, then curve I is obtained, while
line A denotes an approximately uniform distribution.
Maquoi and Massonnet took the factors a) and b) into consideration by
transforming the lower flange into an orthotropic plate and investigating
this with one harmonic according to non-linear analysis. In this way a

nonuniform longitudinal stress distribution was obtained. Since this method
could not follow exactly the effect c), the authors investigated a segment
of plate between two longitudinal stiffeners, which had an initial deformation.

They took into consideration the approximate effect of this curvature by the
introduction of an effective plate width. The approximate nature of this
investigation was caused by the combination of a final common reducing
factor from individual factors from two separate analyses expressed simply
as a multiple of the two. Then the work concentrated on the presentation of
the two latter multiplying factors. This was done within plate theory by
the assumption of the displacement function:

_ x yw cos — cos *-
a b



A.R. CUSENS - P. LENGYEL 441

The critical load was:

ocrit 217 N/W

Maquoi and Massonnet State in their analysis of the state of collapse that
the external, longitudinal stress consisted of:

ödead load "* N/mm2 (MPa)

Change in temp.
26 N/mm

forming a total applied stress of:

atotal 220 N/mm

while the yielding limit was:

Gyield 285 N/mm

As Maquoi and Massonnet obtained:

«L 0.811 ; a2 0.848

r^i
— A

Fig. 4

for the two multiplying factors, they derived the value:

o, ¦ 0.811 x 0.848 x 285 196 N/mm2
Limit

i.e., if the stress, assumed to be uniform along the cross-section, reached
this value, then at the marginal point of the stress distribution denoted by
curve II in Fig. 4, the cross-section yields.
This investigation contains a number of approximations since the simplified
analysis is not able to follow exactly the geometrical form of the cross-
section.

3.4 Based on the previous analysis it was an interesting task to plot the entire
stress distribution of the cross-section as a function of the longitudinal
loading using the FISNAB program. {.

ir
\NVA

h W> [V W> 'Th h

Fig. 5 dimensions in mm
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The lower flange was modelled as shown in Fig. 5 making use of the
symmetrical geometry of the section. The two extreme points of the cross-
section were assumed to have no vertical displacement because of the
supporting effect of the webs. The lower flange was considered to be a part
of a box girder segment bounded by two stiff diaphragms, and having no
intermediate transverse stiffeners. At the two bounding stiffening
diaphragms the flange was assumed to be simply supported. A vertical load
applied at the centre point of the plate approximated the initial curvature
of the lower flange. The geometrical data of the structure are given in
Fig. 5.

By increasing the longitudinal horizontal loading formed by concentrated,
longitudinal loads along the nodal lines indicated as denoted in Fig. 5, two
graphs have been plotted.
The first, Fig. 6, shows the values of longitudinal stress at the centre of
the box girder segment plotted against the applied stress due to the
longitudinal loads. The two curves show:

a) Maximum stress at the central cross-section of flange;
b) Minimum stress in the central cross-section of the flange, i.e., at the

central point of the flange.
These values correspond to the maximum values of displacement.
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Fig. 6

A horizontal line at the yield value 285 N/mm2 is drawn in Fig. 6. The
point at which the curve of maximum stress crosses this line is the limiting
loading stress corresponding to yielding. This value is 169 N/mm2. The
critical load would correspond to a mid-point stress of 224 N/mm2.

Figure 7 shows the distribution of longitudinal stress over the entire
cross-section. This figure shows that upon increase of the applied loading
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stress, the longitudinal stress increases more rapidly at the line of the
cross-section under the webs as compared with the stress increase at the
centre line. This means that the curvature of curve I in Fig. 4 is even
more pronounced, while the shear lag effect between longitudinal stiffeners
(curve II) can also be seen in Fig. 7, particularly at the centre-line.
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To summarise, it can be concluded that if the lower flange of the Vienna
Danube bridge is analysed by a direct study of the real stress distribution,
then:

a) the permissible loading stresses given by Sattler [10] are actually
50 N/mm above the yield limit;

b) the limit stress is 169 N/mm i.e. smaller than the 196 N/mm obtained
by Maquoi and Massonnet[7];

c) the collapse was initiated by yield at the web/flange junction of the
lower flange.
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6. APPENDIX - THE GEOMETRICAL NON-LINEAR FINITE STRIP METHOD

Consider the finite strip denoted by I having the length of b and the width of a
of Fig. A1.

Two nodal lines belong to the strip denoted by i and j. The method assumes four
displacement components characterised by the following terms:

r 2 3
w(x,y) -.(a + a x + a x + a x sin k ym=l 1 _ j 4 m

r 2

6(x,y)= £.(_,, + 2a0+ 3a,x) sin k ym=1 _ z> ii m

u(x,y) £.(a.,- + a,x) sin k ym=l 3 b m

r
v(x,y) -,(a- + a.x) cos k ym=i / ö m

where k —
tn a

The displacement parameters belonging to the strip I form the vector e_ where:

I r I r T
e t e [u. v. 6. u. v. w. 0. ]
— m_1 —m m=1 im im im jia jm jm jm

These enable us to describe the displacement of nodal lines i and j, utilising
the above approximations, by:

n n

w.= E.w. sink y, w.= _,w. sinkl m-l im m j m=1 jm m

The strain vector of strip I, and harmonic m, contains a linear and non-linear
component and takes the form of: iv v

b

II I
—m —om —Nm

The corresponding strain-matrix components are:

B1 B1 B*
=m =om =Nm

where

de1 B1 de1
—m =m —m

x, u

l. w

Fig. A1

Following the non-linear finite element Solution of [11], the summation of
internal and external forces for the total structure and harmonic m results in:
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Nrab--- nTf __. Z. f f (B o dxdy - TZ. rl 0
—tn 1=1 n=1 o o =n —m 1 1 —m

Here the vector 0 contains the stress components, the vector r the loading
components for harmonic m and strip I.
Making use of the connection of:

I -I „il I_ n TJ ' aC, D B' e

where D denotes the elasticity matrix, j' the strain matrix for non-
differential quantities, the following expression is obtained:

Nrab N

f T_. Z. f f (BL) D B'1 e1 dxdy - TE. r1
—m 1=1 n=1 o o n mm 1=1 -m

where again:

_,I „,I _.I I I I.B' B' + B' (e., e., e
m om Nm — 1 —2 ' —r

The State of equilibrium of the analysed structure is characterised by the
vector series of displacement amplitudes, e. e2> — e_ for the whole structure
resulting in a zero vector for:

r
f Z, f— m=1 —m

The Newton-Raphson method is applied, represented here by:

df _ „I
I " =Tm

where:

and

with

and

de

Ki =KX +K^ .K1
=Tm =om =Nm =om

I I rabITIIK + H± Z, f f (B1)1 D B dxdy=om =Nm n=1 o o =n =m

-I rabIII ITIK
L Z. f f d(B„ [e7, e-, e ]) o dxdy=om n=1 o o Nm —1 —2' —r —m '

K
Z

- K1 • de1
=om =o*m —m

The last equations define an iterative Solution for the determination of vectors
e (m 1,2, r, I 1,2, N) resulting in equilibrium based on a
nonlinear relationship between strains and displacements.
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