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THE ANALYSIS OF VIERENDEEL TRUSSES BY
SUCCESSIVE APPROXIMATIONS Y

LE CALCUL PAR ITERATION DES POUTRES VIERENDEEL

DIE BERECHNUNG VON VIERENDEEL-TRAGERN
DURCH ITERATION

L. C. MAUGH, Assistant Professor of Civil Engineering, University of Michigan
Ann Arbor, Michigan.

Introduction.

The term, Vierendeel truss or system, has been widely used to designate
the rigid frame type of structure that is illustrated by the accompanying dia-
grams (Figs. 1—4). Since the diagonal members are omitted in these struc-
tures, their function must be taken over by the remaining members which are
thereby subjected to flexural and shearing stresses in addition to the ordinary-
truss action. The two Vierendeel trusses that are shown in Figs. 1 and 2 are
suitable for bridges, whereas Figs. 3 and 4 illustrate types of rigid frame
systems that are used in viaduct and building construction. Before proceeding
with an explanation ef the analysis of these structures, however, it seems
desirable to give at least a brief account of their history and development,
and of various methods of solution, particularly the various methods of suc-
cessive approximations that are gradually displacing the so-called exact me-
thods of analysis.

History andDevelopment: More than a century ago many static-
ally indeterminate framed structures were used in the construction of bridges
and buildings. A study of some of the bridges that were built before the de-
velopment of the modern methods of rational analysis reveals a firm belief
in the inherent strength of multiple system and rigid frame structures. The
fact that several of these bridges are still in good condition apparently justi-
fies the confidence of the builders. After the application of mathematical
analysis to the design of structures, however, there developed a feeling of
distrust and suspicion toward those structures that could not be rigorously
analyzed and, as practical methods of analysis were limited in scope, most
bridges were therefore built of a type that could be readily solved by the
equations of static equilibrium. The type of structure most commonly used
for bridges was the pin-connected or riveted articulated truss. The develop-
ment of steel as a structural material also increased the use of this type of
structure and so, at the present time, we find that a large number of the
existing bridges belong to this class.

1) The major part of this paper is taken from a thesis submitted by the writer to
the University of Michigan in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Engineering Mechanics.
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However, with a gradual improvement in the methods of analyzing in-
determinate structures and with the increased use of reinforced concrete, the
rigid frame structure has again come into favor with many engineers, wherever
conditions warrant their use. Since 1897, Professor Vierendeel and other
Belgium engineers have successfully designed and constructed many bridges
of the type shown in Figs. 1 and 2 for which they claim economy, strength,
and dynamic rigidity 2). In an article on rigid frame structures, Engesser 3)
points out that several bridges were built in Europe prior to 1800 that pos-
sessed many of the characteristics of the Vierendeel truss. However, several

Fig. 3. [ \X Fig. 4.
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Types of Vierendeel Systems.

of these structures, such as the Coalbrookdale bridge in England, were de-
signed as voussoir arches and did not depend on the rigidity of the auxiliary
bracing. Probably a better example of an early rigid frame bridge is the
Wear river bridge ¢) at Sunderland, England, which was designed by T. E.
Harrison in 1879. This structure consisted of wrought iron girders 310 ft.
long and 42 ft. deep at the center, with large openings in the web that formed
panels 20 ft. in length. Also, in 1877, Thaddeus Hyatt5) took out a patent
in England on reinforced concrete bridges with large openings to reduce the
weight of the structure. But, regardless of these earlier examples of similar

2) The Vierendeel Truss by Dana Young, Eng. News-Record, Aug. 31, 1931.

3) Uber Rahmentriger und ihre Beziehungen zu den Fachwerktrigern. Zeitschrift
fiir Architektur und Ingenieurwesen (1913).

1) History of Bridge Engineering by Tvrrell, P. 183.

) Fachwerktriger aus Eisenbeton von S. Zipker, Eisen und Beton, 1906.
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types of structures, it has been customary to refer to rigid frame trusses
without diagonals as Vierendeel trusses.

Some Early Methods of Analysis: The rational analysis of
the Vierendeel truss was first presented in a comprehensive form by Professor
Vierendeel in various publications during the years 1897 to 1903¢). In the
original presentation the equations were derived by considering the defor-
mation in the members due to both bending and direct stress, but the compli-
cated form of the equations made their application to actual structures very
difficult. A simplified form of the equations was then recommended by Pro-
fessor Vierendeel as being sufficiently correct for practical use. This simpli-
fication was obtained by considering only the deformation due to the bending
moments and by assuming that all members have the same cross-sectional area
and moment of inertia. These assumptions were used in writing an equation
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Fig. 5.
Méthode de calcul Vierendeel.
Untersuchungsmethode von Vierendeel.
Vierendeel’s Method of Analysis.

for the displacement of the point of inflexion K of any vertical » - 1 (Fig. 5)
with respect to A4, the inflexion point of the first vertical, for both upper and -
lower portions of the structure. By equating the value of the displacement
of any point K for the upper portion equal to that of the lower, one equation
can be obtained for each vertical of the form:

I, = CIl, + C, 21 IT — C,M,*" in which
11,., — Horizontal component in vertical » + 1
IT, = Horizontal component in vertical r.

C, C,, C, are coefficients that are determined from the dimensions of the
structure.

M, 1 — bending moment at section m — m at the center of the panel.

Since one of the above equations can be written for each vertical in terms
of the horizontal component II; of the first vertical and since 2II must be
equal to zero, the value of the horizontal component for each vertical can be
obtained. .

Although this solution is not particularly difficult, it evidently did not
satisfy all the requirements as it has not been very generally used outside of

N 6) See “Theorie générale des poutres Vierendeel” in Mémoires de la Société des
Ingenieurs Civils de France, 1900, also ,,Cours de Stabilité des constructions‘‘, Vol. 4 by
A. Vierendeel.
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Belgium and France. Some of the objections that have been expressed are:
Uncertainty of the effect of the various assumptions used in the derivations;
the use of numbers with many digits in the equations to obtain an answer
with relatively few; and also, its failure to meet the requirements for variable
conditions in the arrangement of the structure.

Consequently, in both Europe and America, other methods of solution
have been proposed and used. For instance, the Kinzua viaduct?) built by
the Erie Railroad in 1900, was designed by C. R. Grimm by the method of
least work. By careful arrangement of the equations, the work was conside-
rably reduced and numerical errors eliminated. However, the amount of work
involved is many times greater than for the solution of the same structure that
is given later.

In 1904 Professor L. F. Nicolai #) in St. Petersburg, Russia, proposed a
solution for Vierendeel trusses that is based on the assumption that the
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Méthode de calcul d’apreés Nicolai.
Untersuchungsmethode von Nicolai.
Nicolai’s Method of Analysis.

rectangular panel composed of the upper and lower chords and the two
verticals is the fundamental unit and that its relation to the remainder of the
structure can be ignored. The analysis is then made by first assuming that
diagonals are acting in the panels and that the joints are pin-connected as
shown in Fig. 6 a. Then at each joint an equal external force is applied that
will neutralize the stress in the diagonal (Fig. 6 b). The moments in each
panel due to the external forces that are required to balance the stress in the
diagonal are taken as the bending moments in the original structure (Fig. 6 c).

This method, used by Professor Nicolai, was greatly extended and made

more practicable by Professor K. Calisev?) in 1921 when he added to the
primary moments in each panel, as obtained above, a correction in the form
of a rapidly converging series which takes into consideration the restraining
influence of the remaining portion of the structure. Additional corrections
were also made for the change in length of the chords and for application of
the load directly on the chord members. As several basic principles of this
method will be utilized in the analytical solution that is described in the
following chapters, a detailed description will not now be given.

7) “The Kinzua Viaduct of the Erie R. R. Company‘‘, by C. R. Grimm. Trans. of
A.S.C.E. 1901, Vol. 46.
: 8) Journal of the Ministry of Ways of Communication, St. Petersburg, Russia.

9) Dissertation presented by K. Caliev at the Polytechnical Institute at Zagrebu,
Yugoslavia for the Doctorate degree. Also, see Bauingenieur 1922, P. 244,
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Several methods of solution for Vierendeel trusses have been published
in Germany during the last thirty years. Such noted engineers as Engesser
and Ostenfeld have contributed some very interesting and original solutions
to this subject. In 1913 Engesser %) presented an approximate method that
was based on a primary solution of a hypothetical structure with rigid verti-
cals, to which a correction for the change in length of the chords and for the
bending of the verticals was added. The results that have been obtained by
this method do not seem to be sufficiently accurate to compensate for the
time that is required to make the calculations.

Professor Ostenfeld of Denmark *) has also presented an original me-
thod of solution which the engineer can sometimes use to advantage even
though it is rather involved. This method depends upon the proper selection
of the position of the unknown forces acting on the various members so that
the fundamental equations may be simplified. In this respect the theory is
somewhat analogous to the elastic center method of arch analysis.

Some Recent Methods of Successive Approximations:
The so-called exact methods of analysis that have been so generally deve-
loped and used in academic work have always required the solution of several
simultaneous equations. The number of such equations must, of course, be
equal to the number of unknown quantities that are necessary to completely
determine both the internal and external force systems. In the Vierendeel
truss there are three redundant quantities in each panel so that 3 » equations
are required in addition to the equations of equilibrium, where 72 is the
number of panels. Thus, for a six panel truss with vertical loads, it would
be necessary to solve twenty simultaneous equations. This number can be
materially reduced if the structure is symmetrical about some axis, but even
so, the solution by these methods is very laborious. Consequently, the ten-
dency in practice has been to reduce the number of equations by making
various assumptions in regard to the position of the points of inflexion or
the degree of restraint at the ends of the members. For instance, in the
approximate methods for determining the wind stresses in tall buildings,
sufficient assumptions are made to eliminate the use of simultanesus equations
entirely.

At the present time, however, most engineers regard such indiscriminate
use of assumptions with justifiable suspicion and are favoring the use of
more accurate methods of solution that are based on the principle of suc-
cessive approximations. These latter methods have one common characteristic
in that certain strain conditions are assumed which give results that, at first,
will not satisfy the conditions of equilibrium but, by successive trials, the
computed values can be made to approach nearer and nearer to the true ones.
The final values must, of course, satisfy both strain and equilibrium require-
ments. A brief description of several of these methods will be presented.

One of the first engineers to apply the method of successive approxi-
mation to the analysis of indeterminate structures was Mr. J. A. L. Waddell *2)
who, in 1916, used it to determine the secondary stresses in bridge trusses.
In his description of this method Mr. Waddell states that the solution is not

10y 'Die Berechnung der Rahmentriger mit besonderer Riicksicht auf die Anwen-
dung®, by F. Engesser. Zeitschrift fiir Bauwesen, 1913.

1) | Beitrag zur Berechnung von Vierendeeltrigern®, in Beton und Eisen, 1910.
Eisenbau, 1912.

12) See “Bridge Engineering‘‘, Vol. 1, by J. A. L. Waddell.

Abhandlungen III. 22
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original with him, but the writer does not know of any prior use. In this
solution the moment at the end of any member MN is expressed in the usual

4E1 .
form M,,, = — (tmn — % Tum) where z,, and t,, are the deflection angles

of the tangents at the ends of the member. However, instead of obtaining
the values of = by the usual algebraic methods, they are determined by suc-
cessive approximations. The change of slope of any member, v, is found from
a displacement diagram of the truss, such as a Williot diagram. Therefore,
only the joint rotation @ must be determined since v = @ — . For the first
approximation, @ is taken as the average of the v’; of the two chord members
meeting at the joint. When the end moments have been computed for these
trial values of 7, it will ordinarily be found that the sum of the moments at
the various joints will not equal zero so that some correction is necessary.
This correction is then made for any joint by assuming that it is the only one
that rotates, or that no other value of = changes, which gives

IM at joint

At =

42; at joint

The effect of this correction on the various moments can be carried over to
other joints before they are corrected, which procedure makes the convergence
very rapid, particularly when the joints with the greatest unbalance are con-
sidered first. The final results can be carried to almost any degree of accuracy,
but in general two cycles of corrections will be sufficient. Many variations
of this method can and have been used but they ordinarily differ only in the
arrangement of the numerical calculations.

The above method for the determination of secondary stresses in bridge

trusses was also used by Professor K. Calisev ') who modified the equations
to take into account the decrease in the effective length of the member due

to the greatly increased area at the joints. In 1923, Professor Calisev applied
a similar methodt) of successive approximations to the solution of rigid
frame structures. In this method the solution was divided into two parts;
first, all translation of the joints was neglected so that only rotation was
involved, and second, the effect of translation was then considered so as to
satisfy the necessary strain and equilibrium conditions. When only rotation
of the joints are considered, the end moments can be expressed by equations
of the form M,, = 2K (260, -+ ©,) + M;,, in which &’ represent the joint
rotation, K = E [/l and M,;,, is the end moment produced by the transverse
loads for a fully restrained condition, or what is commonly called the fixed-
end moment. As in the above method for secondary stresses, the proper value
for the various @’ can be determined by successive approximations. If all
joints are held motionless except one, then the rotation of that joint will be
o_ =M
42K
can be considered before those joints are corrected so that, by careful ar-

- The effect of this correction on the end moments at other joints

: 13y “‘Secondary Stresses in Trusses’’, by K. Calidev, Eng. Journal of the Soc. of
Eng. and Arch. of Yugoslavia (1922).

14) Analysis of highly statically indeterminate systems by the method of successive

approximations by K. Caliéev, Eng. Journal of the Soc. of Eng. and Arch. of Yugoslavia
(1923).
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rangement, the convergence can be made very rapid. If the members are
hinged at one end then 3/4 K should be used instead of the full value.

The second part of the problem which involves the correction for the
translation of the joints can be made in a manner similar to the solution

Fig. 7a.
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described above for secondary stresses except that now both y and @ are
unknown. However, for frames of one story, any value of v can be assumed
and the moments thus computed will be in the same proportion to the true
moments as the computed shear is to the true shear. If the structure has more
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than one story, this proportionality does not hold and consequently the so-

lution becomes much more involved. As Professor Calisev has presented this
method in detail in another paper of this publication it will not be necessary
to describe the numerical operations here.

Another application of the method of successive approximations to the
analysis of rigid frame structures has recently been presented by Professor
Hardy Cross *¢). This method, which is usually called the moment distribution

method, is similar in principle to the solution used by Professor Calisev, but
in application it is different in that no direct use is made of the angles @
and y. The problem is also considered in two steps, that is, first with only
rotation of the joints and second, a correction for whatever translation may
take place. The first step starts with the usual assumption that the ends of
all members are fixed for which condition the end moments in each member
due to the transverse loads can be computed. These moments are designated
“fixed end moments’”. As the algebraic sum of these fixed end moments
around a joint will not equal zero, a correction must be applied to each end
moment so that the joint is in equilibrium. This operation is called balancing
the joint. If the members have a constant moment of inertia and if all joints
except joint A are kept motionless, then the correction for any member AB

at the joint A will be AM,, = K‘}z (2 Fixed end moments) and the correction

at the other end will be AM,, = 41214—”9- The ratio [gZis called the distribution

factor and the value 1, the carry-over factor. If the member is hinged at the
end then 3/4 K should be used instead of K and the carry-over factor is zero.
The application of this method will be illustrated by analyzing the Vierendeel
truss shown in Fig. 7a and 7b which is subjected to a uniform load of
1000 1bs./ft. applied on the top chord. If the structure is first considered
supported at each panel point so that no translation of the joints is permitted,
as in Fig. 7 a, then the end moments can be computed by the moment distri-
bution method in the following manner. The fixed end moments for the top
chord members will be w/2/12 or 12.0 ft. kips and zero for the lower chord
members. The moments are considered positive when acting on the members
in a clockwise direction. At the end of each member the distribution factor

Z‘KIS recorded. At joint b, the unbalanced moment is — 12 so that a cor-

rection of - 6.0 must be given to each member and the amount carried to
joints @ and ¢ will be (3) (- 6.0) = -}~ 3.0. This value +- 3.0 now constitutes
the unbalanced moment at these joints, so that the corrections at joint ¢ will
be (- 3.0) x (distribution factor). One half of this correction is carried over
to joints b, d, and e and the procedure continued for all joints. Each time a
joint is balanced a horizontal line is drawn under the figures. When the
correction is small, the column of figures can be added and the final moment
obtained. The value of the reactions that are necessary to prevent translation
of the joints can be computed from the shear in the members.

The second step in the solution will be the calculation of the moments
due to forces equal and opposite to the joint reactions, as shown in Fig. 7b. -

15) ““Analysis of Continuous Frames by Distributing leed end Moments‘‘, by Hardy
Cross. Trans. of Am. Soc. Civ. Eng., Vol. 96, 1932.
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The procedure used will be that recommended by Mr. L. E. Grinter ). In
this solution the fixed end moments in the chord members due to a vertical

displacement A4 will be equal to M; = 6 EK _;, so we must first assume some

value for ill This value is first taken equal to ég for each member, so that

the fixed end moment is — 10 K. There is, of course, no fixed end moment
in the verticals. Each joint is balanced in the same manner as before except
that the symmetry of the structure is used to reduce the amount of work.
This was done by considering the verticals as hinged at their mid points,

which would reduce their length by one half and double the value of K == ‘;

In other words, if the rigidity factor of the verticals is taken as (3/4) (2 K),
then the lower half of the structure need not be used. The numerical work
was started at joint e and carried through three cycles. After the end mo-
ments were obtained, the ratio of the actual panel moments to the computed
moments was recorded. These ratios are 11.28, 12.33 and 2.12 which in-
dicates that the original choice of fixed end moments for the third panel was
not very accurate. Corrective moments of — 3.0 and - 8.4 were then placed
in the first and third panels respectively and distributed as before. When the
results of this distribution are added to the original moments, the ratios be-
come 9.72, 9.30 and 9.45 which are sufficiently uniform to insure accurate
results. The true moments are the sum of the values obtained from Fig. 7 a
and 7b. These are recorded in Fig. 7b and can be compared with the results
obtained by the slope deflection method which are placed below them in
parentheses.

From the above example it can readily be seen that the method can be
used for any type of rigid frame structure regardless of the variation in the
; factors. However, it is indirect, and frequently a considerable amount of
time must be spent in securing the correct end moments to be used in the
second step. Nevertheless, the general nature of the method makes it a
valuable tool for the analysis of the type of structures considered in this paper.

Use of the panel in successive approximations.

In the methods of successive approximations just described, the individual
member is taken as the fundamental structural unit; an assumption that gives
satisfactory results for those solutions that involve only rotation of the joints.
When, however, the joints are subjected to a considerable amount of trans-
lation, as in a Vierendeel truss, then the panel becomes a more important

unit, as was recognized in the methods used by Nicolai and Calisev.

The writer has changed the method of solution given by Prof. Calisev
so as to make it more direct and also to bring it more in accordance with
the ordinary use of methods of successive approximations, such as the mo-
ment distribution method. The primary difference consists in expressing the
fundamental equations directly in terms of the external force system as shown
in Figures 8 a and 8 b rather than in terms of the internal force system of an
articulated truss as shown in Figures 6 b and 6 c. Also, the writer has made

16) “Wind Stress Analysis Simplified”, by L. E. Grinter. Proc. A.S.C. E., Jan.
1933.
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no attempt to express the equations in terms of modified rigidity factors so
as to obtain the final result with one cycle of convergence, but prefers to use
the actual rigidity of the members with as many cycles of convergence as are
necessary. The use of this method in analyzing some common types of
Vierendeel systems will now be explained.

Notation.
Moment of Inertia

K = rigidity factor of top and bottom chords = — TLenglh
K, and K, = rigidity factors of verticals in panel.
r = ratio X

K,

. K

s = ratio -

K,
h length of short vertical of any panel.

1 e
h, = length of long vertical of any panel.

. hy—h
a = ratio 2—-1.

1
M,, and M,, = moments at ends of member ad.

M = bending moment in truss at beginning of panel.
V = total shear in panel.

L = panel length.
D=6-+7r-+4+s-+a(2a-+as -+ 2s -+ 0).

AM = correction to primary moment.

m’ and m” = moments in adjacent panels.

Hy., Vyey My, = normal and shearing force and moment at () end of member bc.
A = cross-sectional area of top and bottom chord.

@ and g = slope angles of chords.

A = linear displacement of joint.

E = modulus of elasticity.

Trusses with chords of equal rigidity:

Let us first consider the moments in any panel of the truss shown in
Fig. 8 a, such as abcd. This panel will first be considered as hinged to the
remainder of the structure and will therefore act as an independent frame.
The forces acting on such a panel are shown in Fig. 8b, in which A is the
bending moment in the truss at the section ab, V the external shear in the
panel and M -- VL is the moment at section dc. The internal moments at
the ends of the members for this force system will be designated the pri-
mary moments, and for trusses with chords of equal rigidity K, and
verticals of rigidity K, and K,, these primary moments can be computed from
the following equations:

aM — VL [3+Siaj2+§)]

Mog = Mp, = — 5 D _
M—VL[3+r+ Ea. 1
aM — r+a

b MV

in which D =6 +r-+s +a (2a 4+ as 4 2s 4 6)

K K _h—1n

PE e ST s e= S L = Panel Length.
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In the derivation of these equations only the deformation due to bending
moments was considered. Both the external moment M and the internal
moments are taken as positive when acting in a clockwise direction. By means
of Eq. 1 the primary moments can be determined for each panel and recorded
in a table or, preferably, on a sketch of the structure.

The restraining action of the adjacent panels will be considered next by
analyzing the effect of moments applied to the panel abcd as shown in
Figs. 9a and 9b. These diagrams show the moments 7’ and m” which exist
in the panels below and above the panel abcd and which represents the re-
straining action at the joints. The end moments in the panel abcd produced

A
Ny
Py 4
By o
N
£
J /
P
_5_#_,
\l"n [
v' (a) f
Fig. 8a und b.

Contraintes primaires dans un panneau.
Primidre Spannungen in einem Feld.
Primary action in a Panel.

by m’ and m” will be the required corrections and will be called the se-
condary moments. These secondary moments can be computed by the
following formulae, Eqs. 2 and 3.

AM[[d — AMb(:: ———§~(15_|_—a) ’n'
2 Eq. 2
zJ Md{l = AML‘[J — :.S_],,j—__)A ”Z'
{ Mg = A My = —— "
a aig — =~ be — D m
Eq. 3
A Mgy — A My — — ’;(lDiE) i

In these equations m’ and m” are given a positive sign when acting
clockwise on the panel. The corrections due to m’ and m” can be recorded
on a sketch of the structure for each panel. Egs. 1, 2 and 3 can be applied to
trusses of the type shown in Figs. 1 and 2 as well as those shown in Fig. 8.

Numerical example: The application of the above equations will be
illustrated by a numerical example. The bent shown in Fig. 10 was analyzed
by Mr. C. R. Grimm in his description of the Kinzua Viaduct so that a com-
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parison can be made with the results obtained by the method of least work.
The first step in the solution was to tabulate the values of M, V, 7, s, « and
D for each panel on a sketch of the structure (Fig. 10). The primary mo-
ments were then computed by means of Eq. 1 and recorded in row 1. By
using these primary moments in Eqs. 2 and 3, the first set of corrections were
obtained. These corrections were made by going -from top to bottom and
then back as shown by the arrows. This first set of corrections can then be
used to obtain additional corrections although in general these will be very
small. The sum of the primary and secondary moments gives the final result
as recorded in row 3. It will be noted that in this first solution the rigidity
of the bottom strut is taken equal to infinity which is equivalent to the fixed
end condition that Mr. Grimm assumed. The values of the moments that were
obtained by Mr. Grimm are given in row 4. The moments recorded in row 5
were computed by using the actual rigidity of the bottom strut and by as-
suming the base of the columns as hinged. Because of the unknown restraint
at the column base, the actual moments will be between these two results.

Effectof ChangeinlLengthof Chords: Inderiving equation 1
for the primary moments, the effect of the change in length of the various
members was neglected. This change in length occurs chiefly in the chord
members as they are subjected to the greatest axial forces. A method for
determining the primary moments in any panel, such as Fig. 8b, will now
be given in which the deformation due to both bending moments and change
in length of the chords is considered. The internal forces acting in the frame
must be of such magnitude as to make the total strain energy a minimum.
Thus, if an expression for the strain energy U in the frame is written in terms
of Hy., V4o, M., the forces at the end of the chord bc, an equation will be
obtained in which U = @ (H,., V., M,.). For a condition of minimum strain
energy, the requirement is that

oU oU ¢
Mo O TH T Ve O
which gives the following equations:
(a) BMy—cllet _y r 4= BM_VL Ly
: 2 2 2
Mpe Hyc 1ty Vel M
(b) C34~—E/3—»———F——6—7_ —F[6+2r+s(2—a)]—— .
q-
VL
6 [3+ s(2—0a)]
Hyc by Vel M VL
(© Moe (1 4 8) — F =& =~ —§~-_e~§41+sy—7§(2+3g
n which B=2+4+r+s = B—a(l+59)
3
E::B+r+sy+wa44y_as+:”K«p;ﬁ+550
6 K (sin @ + sin j3)

F=3(14s—a@2+3s)+ —

hi A

94354 K (Sm‘ ® Sm-ﬂ>_
/ cos coSs

P
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The terms r, s and « are the same as before, while @ and g are the slope
angles of the chords whose cross-sectional areas are A.
If the terms in the above equations that contain the cross-sectional area

A are omitted, then Eq. 4 will reduce to Eq. 1, which neglects the effect of
the direct stress.

The difference between the results of Eq. 1 and Eq. 4 can be shown
by a numerical example. Let r =1 s = 1.5,

2 . 1
o == 6 /Zl == 10 ft L — 12 ft COS (1) - —— SIN (D ey 7?,‘:
V5 V5
=0 A — 10 sq. in. K = 3.0 in.3,
2m’ - 2m”
. hy *H )
e 4 b af“r’" Az [;77”
J s 6\
c A
N 7 2 ¢
2m’ 2m’
h hz
Fig. 9.

Contraintes diies aux panneaux adjacents.
Spannungen von Seite der benachbarten Felder.
Restraining Action of adjacent Panels.

For the above data Eq. 1 gives

My, = 1300 M — 2.612V
M.y = .0010 M —1.820V

while Eq. 4, which includes the effect of the direct stress, gives:

My, = 1332 M — 2,580V
M., = .0886 M —1.841V

which shows that the effect of the direct stress is to decrease the moment
at the /2, end an amount .0026 M - .023V and to increase the moment at
the 4, end an amount — .0024 M — .021 V. It would therefore appear that
in inclined chord trusses of reasonable proportions, the moments due to the
change in length of the members can be neglected.

When the chord members are parallel, « = 0, and equation 4 then re-
duces to the expression:

M(lZQLK)__ VL G+
My, — h? A 2

¢ 241

6745+ LK
Eq. 5
_M(lzuq VL (3+ - 24LK>

Mo — N R*A 21 _ A

@b = 24LK

If the same numerical data that was used above, except that « = 0
instead of .6, is substituted in Eq. 5, the value of the moments become:
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My, = .0042 M — 3149V

My = —.0042 M — 2,851V
where as from Eq. 1, we obtain the values: 1
My, = — 3176V M, = —2824V
which gives the effect of the direct stress as:
AMy, = 0042 M - 027 V and AM,, = — .0042 M — .027 V
' K= 940.
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(Calcul du pont Kinzua d’apres la méthode des panneaux.
Berechnung der Kinzua-Briicke nach der Feldermethode.
Analysis of the Kinzua Viaduct by the Panel Method.

A comparison of these results with the values previously obtained for
a == .6 shows that the effect of the change in length of the chords is more
important in parallel chord trusses than with inclined chord trusses. From
equation 5, it can be seen that the change in length of the chords will have
a more important effect for small values of %, or for shallow trusses with
relatively long panels. This condition is seldom encountered in practice, but
if it is, the primary moments can be easily obtained by using Eq. 5 instead
of Eq. 1.
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Effect of Truss Proportions: The term truss proportions refers
here to the height of the verticals and length of panels but does not include
the relative rigidity of the various members. By means of equation 1, we
can see that the primary moments in any panel will be zero whenever
aM—VL=0. Since a = v/lizhl; this expression can be written, G Z -

1
tan O = fviwhere H = M This condition will evidently be satisfied when
1
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Fig. 11.
Lignes d’influence pour moments fléchissants dans des poutres de forme différente.

EinfluBlinien fiir Momente in Tridgern verschiedener Form.
Influence diagrams for Moments in various Trusses.

the axis of either chord coincides with the equilibrium polygon for any load
system since the slope of the equilibrium polygon is equal to II; If the applied

load is uniformly distributed over the span as is usually the case for the dead
load, the equilibrium polygon is a parabola and, therefore, a parabolic curve
for the top or bottom chords will be the most economical. The variation in
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the moments of the chords when the axis of the top chord is moved above or
below a parabola can be readily seen from the influence diagrams shown in
Fig. 11. For truss 4, in which the joints of the top chord lie on a parabola,
the positive and negative areas of the influence lines are equal, while for
trusses B and C, they are unequal.

A comparison of the total combined dead and live load moments for the
three trusses of Fig. 11 has been given in Table 1. These moments were
computed from the influence lines of Fig. 11 for a dead load of 1500 Ibs.
per linear foot of truss and a live load of the American H — 20 standard
highway loading plus 30 9o for impact. It can be seen that the maximum
moments for trusses B and C may be 50 to 60 o higher than the maximum
moments for truss A. With a reduced dead load and a larger concentrated

Table 1

Summary of moments for dead load of 1500 lbs. per foot
of truss and American standard #/—20 highway loading.

| Dead | Live Load Maximum
Moment | Truss . Load _ + 30% Impact ' Combined
| J—_ ] + | _ i -
| I
|
A 0 ‘ 1405 = 730 | 1405
My, B | —487 | 1250 978 = — 1465
C | +315 1540 . 532 | 41915
i
A 0 708 | 694 | -+ 708
Mo B 253 66.1 | 823 = —107.6
- C + 58 | 115 | 645 + 713
A 0 | 1225 | 041 | +1225
Mg B —17.6 113.8 101.6 | —119.2
- C 1458 | 1472 | 758 = +1930
| | |
A 0 87.5 93.6 & — 93.6
Ma | B —350 725 | 1153 | —150.3
e +683 | 1121 536 | 41804

live load, truss B might show a more favorable comparison, but truss C is
unsatisfactory for any practical use.

If all panel lengths in a truss are the same, and if other factors are kept
constant, then Eq. 1 shows that the moments are directly proportional to
the panel length. For example, if the panel lengths in Fig. 11 are changed from
20 ft. to 30 ft., the moments given should be multiplied by 3/2. However, if
the panel lengths are not equal then of course this proportion no longer holds.

An approximate solution for wind stresses in tall building frames.

The subject of wind stresses in building frames has received much
attention in current technical literature and has brought forth much contro-
versial discussion with respect to the use of those approximate solutions that
depend on certain arbitrary assumptions in regard to the position of the points
of contraflecture in beams and columns. Many engineers contend that a high
degree of mathematical accuracy for such analysis is hardly justified in view
of the inaccuracies that are involved in determining the maximum wind pres-
sure on any building and in the allocation of the load to the various parts of
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the building. They also point out that some analysis of the structure must
be made before the design can be completed, and that certain approximate
methods give sufficiently accurate results for this purpose. One of the

approximate methods that is commonly used involves the following steps %) :
a) Distribute the total shear in each story to the columns so that the

exterior columns have one-half the shear of the interior columns, or in some
proportion determined by empirical rules.

b) Select the position of the points of contraflexure at the mid-points
of the columns in all stories except the upper and lower ones where they are
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Fig. 12a—c.
Formules pour le calcul des contraintes diies au vent dans la construction des batiments
de grande hauteur d’aprés la méthode des panneaux.
Formeln zur Berechnung der Windspannungen in hohen Gebduden nach der Feldmethode
Formulae for the Calculation of Wind Stresses in Tall Buildings by the Panel Method.

taken at .65 of the height from the top for former and .6 of the height from

the bottom for the latter.
c¢) Select the position of the points of contraflexure in the exterior girders
at .55 of their length from the outer ends and at the mid-point of other girders

unless the conditions of symmetry or equilibrium require otherwise.
The above procedure will usually give satisfactory results for buildings

of regular proportions unless there is a sudden variation in the rigidity of

17) See ‘‘Structural Theory”’, by Sutherland and Bowman.
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the girders at consecutive floors. For the portion of a frame where such a
variation may occur, the panel method that has just been applied to the
Vierendeel truss can be used, since a building frame with lateral loads may
be considered as a series of vertical trusses. The application of this method
to any portion of a building frame in which the columns have approximately
the same rigidity can be made in the following manner:

1. Each story of the bent, except the lower, is assumed to consist of a
series of separate panels, such as abcd, Fig. 12a, each one of which must
resist a part of the total shear in the story. Each interior column will there-
fore form a chord of two different panels and the sum of the moments that
are computed for the separate panels will be taken as the primary moment
in the column. This moment must, of course, be corrected for the action of
the adjacent panels in the same manner that was used in the preceding
problems.

To determine the amount of the shear V that is taken by each panel,
the usual assumption that the top of each panel in the story moves horizontally
the same amount A4 (Fig. 12a) will be made. This movement A can be ex-
pressed for each panel by the equation,

kT [34+2r4 25+rs] 12E4
1= 12E [”“K(6+r+ g JVor e =CV
_34+2r42s+rs
where C = KG+Lrts

and K = the average rigidity factor of the two columns of the panel. In other
words, the value of CV must be constant for each panel in the story, which
gives the relation '

GV =C V= ... C,V,
Also, the sum of the shears V for the panels in the story must be equal to
the total shear in the story, or

V, 4+ V, -+ ...V, = @Q = total shear in story.

From these two conditions the shear in each panel can be computed.

2. Determine the moments in the columns by means of the following
steps:

a) Calculate the primary moments m’ and m” (Fig. 12 a) for the columns
in each panel by means of the equations

m’——<3+5\)Jﬂ and m" = ( e
= D /)2 m==\D ]2

b) Calculate the vertical correction 4 M (Fig. 12b) due to the action of
the panels above and below.

¢) Calculate the horizontal correction 4 M (Fig. 12¢) in the outer panel
due to the action of the first interior panel. The horizontal correction in the
other panels will ordinarily be small. If the columns are much more rigid
than the beams, the horizontal correction can usually be ignored.

3. Determine the moments in the beams by assuming the position of the
points of contraflexure as given above, or by distributing the sum of the
column moments at any joint to the connecting girders in proportion to their
rigidity.

The use of the above methods for calculating wind stresses in tall
building frames will be illustrated by analyzing a portion of a bent of the

:L“"_f) Vh
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Buhl Building in Detroit (Fig. 13). From the values of the rigidity factors{

that are given, it can be seen that there is a sudden variation in the rigidity
of the beams at the 23rd floor. The stories above and below this floor will
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Calcul des contraintes dfies au vent d’apres la méthode des panneaux.
Berechnung von Windbeanspruchungen durch die Feldmethode.
Calculation of Wind Stresses by the Panel Method.

therefore be analyzed by the panel method while the first approximate method
will be used for the other stories. The values of r, s, and C were first computed
for each panel by using an average K for the columns. Then for the panels

between the 23rd and 24th floors .222V, = 264V, or V, — .84V, and
2V, -+ V, = 37.54K from which V, = §278%% = 13,22K  V, = 11.1K, In the

first panel the primary moments will be
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(34 1.1) (1322)(11.25) _

= — 734 3 — 26.8 ft. kips
.« (3+424) (1322)(11.25) .
and 1134 5 = — 475 ft. kips.
The vertical corrections will be:
L, (420)(274) _ (110)(503) e
AM = + 1134 - 11347—_4-102 49 = + 53
at the top and 4 M” = —10.2 - 4.9 = — 5.3 at the bottom. The horizontal

correction is made after the vertical correction are all completed, and for
the bottom of the panel will be:

22.9

(39 %) + (0165 0.264) <~> =—32

AM” = (—0.369 + 0.264)

and (+O369+0264)(§9£>+ (-0165—0264)(—229—) — +76.

The moments in the girders were computed from the column moments
by distributing the sum of the column moments at each joint to the girders
in proportion to their rigidity. The figures shown in parentheses (Fig. 13)
are the corresponding values computed by the moment distribution method.

‘The above panel method will usually give satisfactory results when the
rigidity of the columns in each story is fairly constant and the arrangement
of the members is regular. For more accurate results the more laborious
exact methods can be utilized in which only a portion of the structure is used,
or the moment distribution method as already applied to the Vierendeel truss
will be found useful.

Summary.

In this paper the more recent methods of successive approximations are
presented, with particular emphasis upon two types; one, such as the moment
distribution method, in which each member is considered as a primary unit
of the structure and, a second type, called the panel method, in which the
various panels are taken as the primary structural units. The first type is
very useful for analyzing those structures in which the joints undergo rotation,
but when the joints have considerable displacement, as in the Vierendeel
systems, then this type of method gives a rather involved and indirect solution
for the majority of problems. The panel method, however, is particularly
applicable to many structures of the Vierendeel type and, as the numerical
examples show, it provides a direct solution with very little numerical work.
Several early methods of analysis are briefly mentioned to show more clearly
their place in the development of the above solutions.

In the panel method, simple formulae are given for the calculation of the
moments in Vierendeel trusses with chords of equal rigidity and these
formulae are then applied to numerical examples of viaducts, bridges and
buildings. A discussion accompanied by some numerical data is also given
of the effect of the change in length of the chords, which was neglected in
the first set of equations, and of variations in the tru% proportions upon the
bending moments.
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_ When these two methods of successive approximations are thoroughly
understood, they provide an easy and accurate solution for many types of
rigid frame structures.

Résumé.

Le but du présent mémoire est d’exposer les méthodes d’approximations
successives les plus récemment proposées, en insistant tout particulierement
sur deux principes généraux: le premier, constituant la méthode de distri-
bution des moments, dans laquelle chaque élément est considéré comme
élément primaire de l'ouvrage; le second, constituant la méthode des pan-
neaux, dans lesquels ce sont les différents panneaux qui sont considérés
comme éléments primaires de 'ouvrage.

La premiére méthode est trés utile pour 1’étude analytique des ouvrages
dans lesquels les assemblages sont exposés a des rotations; toutefois,
lorsque comme dans les systémes Vierendeel les assemblages ont a supporter
des déformations trés importantes, cette méthode ne donne dans la majorité
des cas que des solutions plutdt compliquées et indirectes. Par contre la
méthode des panneaux est appliquable tout particulierement a de nombreux
ouvrages du type Vierendeel; comme le montrent les exemples numériques,
elle permet d’obtenir une solution directe au prix de calculs numériques tres
peu compliqués.

L’auteur mentionne également brievement plusieurs méthodes antérieures
d’analyse, afin de mettre plus nettement en évidence le role qu’elles ont joué
dans le développement des deux méthodes principales ci-dessus.

Dans la méthode des panneaux, 'auteur donne des formules simples
pour le calcul des moments dans les systémes Vierendeel avec membrures
d’égale rigidité; puis il en montre application 2 des exemples numériques
de calcul de viaducs, de ponts et de charpentes. Une étude critique, accom-
pagnée de données numériques, porte également sur P'influence des modi-
fications de longueur des membrures, point qui a été laissé de coté dans les
équations précédentes, ainsi que sur I'influence des variations dans les pro-
portions des systémes sur les moments fléchissants.

La mise en oeuvre parfaitement judicieuse de ces deux méthodes permet
de déterminer facilement et avec précision la solution convenant a de
nombreux types d’ouvrages rigides.

Zusammenfassung.

Die vorliegende Arbeit behandelt die neuesten Methoden der sukzessiven
Anniherung unter besonderer Hervorhebung von zwei Typen; erstens der
Momentenverteilungsmethode, nach der jedes Konstruktionsglied als primére
Finheit betrachtet wird, und zweitens die Feldmethode, nach der die ver-
schiedenen Felder als primire Konstruktionseinheiten angesprochen werden.
Die erste Methode eignet sich besonders zur Berechnung von Konstruktionen,
bei denen die Knotenpunkte Drehungen erleiden; verschieben sich aber die
Knotenpunkte um ein betrichtliches MaB, wie beispielsweise bei Vierendeel-
systemen, dann ergibt diese Methode eine ziemlich verwickelte und indirekte
L6sung fiir die meisten Probleme. Die Feldmethode hingegen ist hauptsich-
lich fiir viele Konstruktionen des Vierendeel-Typus anwendbar, und, wie die
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numerischen Beispiele zeigen, liefert eine direkte L6sung mit geringem Rechen-
aufwand. Einige der fritheren Berechnungsmethoden sind kurz erwihnt, um
ihre Bedeutung in der Entwicklung der obigen Losungen deutlicher zu zeigen.

In der Feldmethode werden einfache Formeln entwickelt zur Berechnung
der Momente in Vierendeeltrigern mit Gurtungen von gleicher Steifigkeit,
die bei der Berechnung von numerischen Beispielen fiir Viadukte, Briicken
und Hochbauten angewendet werden. \

Im weiteren wurde, erweitert durch numerische Beispiele, die Wirkung
der Lingendnderung der Gurtungen betrachtet, was in den fritheren Glei-
chungen vernachlissigt wurde, sowie der EinfluB der Anderungen der Triger-
abmessungen auf die Biegungsmomente.

Diese beiden Methoden der sukzessiven Anndherung stellen, wenn sie
richtig aufgefaBt werden, eine leichte und genaue LOsung fiir viele Typen
von Steifrahmenkonstruktionen dar.
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