Méthode de calcul pratique des poutres bowstring

Autor(en): Heygers, O. de

Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 9 (1949)

PDF erstellt am: 27.05.2024

Persistenter Link: https://doi.org/10.5169/seals-9698

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Méthode de Calcul pratique des poutres Bowstring

Eine Berechnungsmethode für Bogen mit Zugband Method of calculating tied arches

O. D'HEYGERS, Ingénieur au Bureau des Ponts, Ministère des Travaux Publics, Bruxelles

I. Poutre considérée

Soit une poutre Bowstring à n panneaux égaux. Les deux membrures ont des axes paraboliques et des sections quelconques. Elles sont réunies par n-1suspentes verticales infiniment flexibles. Les charges extérieures sont verticales et suspendues aux noeuds inférieurs. (fig. 1)

Fig. 1

Nous calculons d'abord les moments et les efforts axiaux dans un système de base, moyennant certaines hypothèses non conformes à la réalité. Après cela, nous tenons compte de l'influence de ces hypothèses et nous corrigeons les résultats donnés par le système de base. En vue de simplifier les formules, nous ne tiendrons pas compte de termes pratiquement inopérants, ni de l'influence d'une correction sur les autres.

II. Système de base. Hypothèses supplémentaires

- 1. Les axes des deux membrures sont des polygones inscrits dans des paraboles du second degré, ayant leurs sommets aux noeuds des suspentes.
- 2. Les moments d'inertie des membrures suivent les relations

$$\frac{1}{j'} = I' \cos \alpha' = c^{ste}; \quad \frac{1}{j''} I'' \cos \alpha'' = c^{ste}.$$

3. Les membrures ont une section infinie (déformations par N et T nulles.)

4. Les suspentes ont une section infinie (déformations par N nulles).

Calcul des moments aux noeuds

$$M'_{x} + M''_{x} = M^{iso}_{x} - Hy_{x} = D_{x}$$

où M_x^{iso} = moment isostatique en la section x d'une poutre sur 2 appuis, créé par les charges suspendues aux noeuds (fig. 2).

 y_x = distance verticale entre les axes des membrures polygonales au droit du point x.

Le travail moléculaire total est proportionnel à

$$\int_{0}^{t} \left[\frac{M_x^{\prime \, 2}}{I^{\prime} \cos a^{\prime}} + \frac{(D_x - M_x^{\prime})^2}{I^{\prime\prime} \cos a^{\prime\prime}} \right] dx \, .$$

Considérons tous les M_x en chaque point comme inconnues hyperstatiques; il y en a une infinité. Chaque inconnue est liée à ses deux voisines par la condition d'une variation linéaire dans un même panneau.

$$\frac{\partial \widetilde{C}}{\partial M'_{x}} = 0 \qquad \text{donne} \quad \frac{M'_{x}}{I' \cos a'} - \frac{D_{x} - M'_{x}}{I'' \cos a''} = 0$$

Ces équations existent également en nombre infini. Nous en déduisons:

$$M'_{x} = \frac{I'\cos a'}{I'\cos a' + I''\cos a''} D_{x} = \frac{j''}{j} D_{x}$$

$$\tag{1}$$

$$M_x'' = \frac{I'' \cos a''}{I' \cos a' + I'' \cos a''} D_x = \frac{j'}{j} D_x.$$
 (2)

Comme D_x varie linéairement dans un même panneau, la condition de liaison est observée.

$Calcul \ de \ H$

Dérivant le travail moléculaire total par rapport à H on trouve:

$$H = \frac{\int\limits_{0}^{l} M_x^{iso} y_x \, dx}{\int\limits_{0}^{l} y_x^2 \, dx}$$

soit i_{γ} l'ordonnée de la ligne d'influence $\frac{fH_{\gamma}}{lP_{\gamma}}$ où H_{γ} est le H créé par une force verticale P_{γ} suspendue au noeud γ

$$i_{\gamma} = \frac{5}{8} \frac{\gamma (n - \gamma)}{n^2 - 1} \cdot \frac{\gamma (n - \gamma) + n^2 - 1}{n^2 - \frac{2}{3}}$$
(3)

ce qui permet de dessiner la ligne d'influence i_{γ} pour toute poutre à n panneaux.

La surface totale de la ligne d'influence vaut $\frac{l}{2}$.

Calcul de D_x

Soit $i_{m\gamma}$ l'ordonnée de la ligne d'influence $\frac{D_{m\gamma}}{lP_{\gamma}}$ où $D_{m\gamma}$ est le D_m créé en m par une force verticale P_{γ} suspendue au noeud γ .

$$i_{m\gamma} = \frac{m\left(n-\gamma\right)}{n^2} - \frac{5}{2} \frac{\gamma\left(n-\gamma\right)}{n^2-1} \cdot \frac{\gamma\left(n-\gamma\right)+n^2-1}{n^2-\frac{2}{3}} \cdot \frac{m\left(n-m\right)}{n^2} \quad \text{si } m \leq \gamma \quad (4)$$

$$i_{m\gamma} = \frac{\gamma \left(n-m\right)}{n^2} - \frac{5}{2} \frac{\gamma \left(n-\gamma\right)}{n^2-1} \cdot \frac{\gamma \left(n-\gamma\right)+n^2-1}{n^2-\frac{2}{3}} \cdot \frac{m \left(n-m\right)}{n^2} \quad \text{si } m \ge \gamma$$
 (5)

ce qui permet de dessiner les $\frac{n-1}{2}$ (ou *n*) lignes d'influence $i_{1\gamma}$ $i_{2\gamma}$... en cas d'un nombre impair (ou pair) de panneaux. La surface totale d'une ligne d'influence $i_{m\gamma}$ est nulle, car une charge identique en tous les noeds peut être portée par la poutre non fléchie, avec un travail moléculaire total nul.

Calcul des efforts axiaux dans les membrures

$$N'_{x} = \frac{H}{\cos a'_{x}} + \frac{j'' \sin a'_{x}}{j} [T^{iso}_{x} - H \operatorname{tg} a_{x}]$$
(6)

$$N_x'' = \frac{H}{\cos a_x''} - \frac{j' \sin a_x''}{j} \left[T_x^{iso} - H \, \mathrm{tg} \, a_x \right] \tag{7}$$

où $j' = \frac{1}{I' \cos a'}$ $j'' = \frac{1}{I'' \cos a''}$ j = j' + j'' $\operatorname{tg} a_x = \operatorname{tg} a'_x - \operatorname{tg} a''_x$

Pratiquement $N'_x \simeq \frac{H}{\cos \alpha'_x}$ et $N''_x \simeq H$.

Calcul des efforts tranchants dans les membrures

$$T'_x = \frac{j'' \cos a'_x}{j} [T^{iso}_x - H \operatorname{tg} a_x]$$
(8)

$$T_x'' = \frac{j' \cos \alpha_x''}{j} [T_x^{iso} - H \operatorname{tg} \alpha_x]$$
(9)

Calcul des efforts axiaux dans les suspentes

$$N_m = \frac{j''}{j} P_m + \frac{8}{n \, l \, j} \left[f' \, j' + f'' \, j'' \right] H \tag{10}$$

où P_m = charge du seul noeud m.

H = composante horizontale de l'effort axial dans les membrures, dûe à la charge totale.

La ligne d'influence $\frac{N_{m\gamma}}{P_{\gamma}}$ a l'allure de la fig. 3.-

Toutes les ordonnées sont positives, donc les suspentes ne sont jamais comprimées.

III. Calcul exact d'une poutre Bowstring

Une poutre Bowstring à 12 panneaux (fig. 4) a été calculée exactement. Les résultats de ces calculs constituent des repères auxquels on peut comparer les

résultats obtenus dans une poutre de base appropriée. Ils constituent également un critère permettant de juger les corrections traitées ci-après.

Les fig. 5-6 et 7 donnent les lignes d'influence calculées exactement pour HM'_6 et N_6 de la poutre de la fig. 4. Les lignes d'influence ont même allure que celles d'une poutre de base, sauf celles N_m des efforts dans les suspentes, où les perturbations sont notables aux points m et $m \pm 1$.

En pratique, les corrections sont négligeables pour les N et les T dans les membrures, mais il y a lieu d'en tenir compte pour les M dans les membrures et les N dans les suspentes. Lorsque n < 7 le calcul exact des lignes d'influence est encore expéditif, moyennant la considération de deux systèmes chargés, l'un symétriquement et l'autre antisymétriquement; lorsque $n \ge 7$ la méthode faisant l'objet de la présente étude est plus expéditive.

IV. Corrections dues à la variabilité des I cos a

La variabilité des $I \cos a$ pose 3 problèmes:

- 1. La valeur à prendre pour les $I \cos a$ dans le système de base, pour le calcul des moments au noeud m, pour que les corrections ultérieures soient faibles, quelle que soit la sollicitation envisagée.
- 2. Les corrections μ'_m et μ''_m sur les moments au noeud m en supposant que le H n'a pas de valeur η supplémentaire;
- 3. La correction η sur H et les corrections μ'_m et μ''_m qui en résultent pour les M. Lorsque les I sont faibles en une zône fortement fléchie, il se produira un η qui réduira les M au détriment de ceux dans les zônes à I relativement forts.

1. Valeur à prendre pour les I cos a dans le système de base

Mesurons les x horizontalement à partir du noeud m et posons:

$$\int_{m-1}^{m+1} \frac{1}{I'_x \cos a'_x} \left(1 - \frac{x}{\Delta}\right)^2 \frac{dx}{\Delta} = \frac{2}{3} j'_m$$
(11)

$$\int_{m-1}^{m+1} \frac{1}{I''_x \cos a''_x} \left(1 - \frac{x}{\Delta}\right)^2 \frac{dx}{\Delta} = \frac{2}{3} j''_m$$
(12)

$$\int_{m}^{m+1} \frac{1}{I'_{x} \cos a'_{x}} \frac{x}{\Delta} \left(1 - \frac{x}{\Delta}\right) \frac{dx}{\Delta} = \frac{1}{6} j'_{m-1,m}$$

$$j'_m + j''_m = j_m$$
 $j'_{m-1,m} + j''_{m-1,m} = j_{m-1,m}$

aux noeuds extrêmes les valeurs $j'_0 j''_0$ sont données par des équations de la forme

$$\int_{0}^{1} \frac{1}{I'_{x} \cos a'_{x}} \left(1 - \frac{x}{\varDelta}\right)^{2} \frac{dx}{\varDelta} = \frac{1}{3} j'_{0}$$

Annulant la dérivée du travail moléculaire total par rapport à M'_m on trouve:

$$j_{m-1,m} M'_{m-1} + 4 j_m M'_m + j_{m,m+1} M'_{m+1} = j''_{m-1,m} D_{m-1} + 4 j''_m D_m + j''_{m,m+1} D_{m+1}$$

Pour chaque m on peut écrire une équation analogue aux 3 moments. Le système d'équation est celui d'une poutre continue à travées égales et à I variable.

 \mathbf{Si}

$$\frac{j_{m}''}{j_{m}} = \frac{j_{m-1,m}''}{j_{m-1,m}} = \frac{j_{m,m+1}''}{j_{m,m+1}} = \frac{j_{m-1}''}{j_{m-1}} =$$

= une constante pour toute la poutre, nous aurions:

$$M'_m = \frac{j_m}{j_m} D_m$$

ce qui revient à admettre comme valeurs constantes dans le système de base, pour le calcul des M au noeud m:

$$I'\cos a' = \frac{1}{j'_m} \qquad \qquad I''\cos a'' = \frac{1}{j''_m}.$$

Nous adoptons ces valeurs. En particulier lorsque les courbes des $\frac{1}{I'\cos a'}$ et $\frac{1}{I''\cos a''}$ peuvent être assimilées à des polygones ayant leurs sommets au droit des noeuds, nous avons (fig. 8):

$$j'_{m} = \frac{1}{I'_{m} \cos a'_{m}} - \frac{s'_{m}}{4}$$
$$j''_{m} = \frac{1}{I''_{m} \cos a''_{m}} - \frac{s''_{m}}{4}.$$

Fig. 8

2. Corrections μ'_m et μ''_m dues à la variabilité des I cos a

Généralement, cette influence est petite.

$$\begin{split} & \varTheta_{m-1} = \frac{j'_m j''_m}{j^2_m} \left[\frac{j'_m - j'_{m-1}}{j'_m} - \frac{j''_m - j''_{m-1}}{j''_m} \right]. \\ & \varTheta_{m-1, m} = \frac{j'_m j''_m}{j^2_m} \left[\frac{j'_m - j'_{m-1, m}}{j'_m} - \frac{j''_m - j''_{m-1, m}}{j''_m} \right] \quad \text{etc.} \qquad \varTheta_m = 0 \,. \end{split}$$

l'équation des 3 moments du noeud m peut être écrite:

 $\mu'_{m-1} + 4 \mu'_m + \mu'_{m+1} = D_{m-1} \Theta_{m-1,m} + 4 D_m \Theta_m + D_{m+1} \Theta_{m+1,m} = -p_{m,m\pm 1} \frac{\Delta^2}{2}$ où $p_{m,m\pm 1}$ représente une charge fictive uniformément répartie de m-1 à m+1.

L'équation du noeud m-1 peut être écrite:

$$\mu'_{m-2} + 4 \mu'_{m-1} + \mu'_{m} = D_{m-2} \Theta_{m-2,m-1} + 4 D_{m-1} \Theta_{m-1} + D_{m} \Theta_{m-1,m} = -p_{m,m\pm 1} \frac{\Delta^2}{4} - p_{m-1,m-2} \frac{\Delta^2}{4}$$

et ainsi de suite. Nous en déduisons lorsque le noeud *m* est situé loin des appuis:

$$\mu'_{m} = -\mu''_{m} = -\omega \Delta^{2} \left[2 p_{m,m\pm 1} - \beta \left(p_{m-2,m-1} + p_{m+1,m+2} \right) + \beta^{2} \left(p_{m-3,m-2} + p_{m+2,m+3} \right) - \beta^{3} \left(\right) \dots \right]$$

$$\omega = \frac{3 - \sqrt{3}}{24} = 0,0527 \qquad \beta = 2 - \sqrt{3} = 0,268.$$
13)

La solution comporte le dessin du diagramme des D pour la sollicitation par surcharge envisagée. On l'obtient en superposant le diagramme des M^{iso} à celui des Hy. La sollicitation par charges égales en chaque noeud n'est pas à envisager car elle produit des D nuls.

Les p se déduisent de proche en proche en fonction des Θ et des D à partir de l'équation du noeud m. Les puissances successives de β tendent rapidement vers des valeurs négligeables. Lorsque le point m est voisin d'un des appuis $(m \leq 3)$ on commence par l'équation du noeud 0.

$$2 \mu'_{0} + \mu'_{1} = D_{1} \Theta_{01} = -p_{01} \frac{\Delta^{2}}{4}$$
$$\mu'_{0} + 4 \mu'_{1} + \mu'_{2} = 4 D_{1} \Theta_{1} + D_{2} \Theta_{12} = -p_{01} \frac{\Delta^{2}}{4} - p_{12} \frac{\Delta^{2}}{4}.$$
$$\mu'_{1} + 4 \mu'_{2} + \mu'_{3} = D_{1} \Theta_{12} + 4 D_{2} \Theta_{2} + D_{3} \Theta_{23} = -p_{12} \frac{\Delta^{2}}{4} - p_{23} \frac{\Delta^{2}}{4} \quad \text{etc.}$$
ce qui détermine les p à partir de p_{0} .

Le point 0 constitue un encastrement parfait d'après la forme de l'équation de son noeud; on suppose donc la poutre prolongée au delà de l'appui et on y fait agir les charges symétriques $p_{01} p_{12}$ etc. avant d'appliquer la formule en ω et β .

Soient

3. Corrections dues à l'effort axial supplémentaire

Soit $H = H^{base} + \eta$.

Contrairement aux 2 problèmes précédents, celui-ci est un problème d'ensemble. Le H réel est fonction des dimensions de toute la poutre et η agit avec une intensité indépendante de la position de la charge.

Comme il s'agit d'un problème d'ensemble où $\frac{M'}{I'\cos a}$ et $\frac{M''}{I''\cos a''}$ interviennent par leur somme, nous admettons en chaque section:

$$\frac{M'_{x'}}{I'_{x}\cos a'_{x}} = \frac{M''_{x}}{I''_{x}\cos a''_{x}} = \frac{D^{base}_{x} - \eta y_{x}}{I_{x}}$$

Dérivant le travail moléculaire total par rapport à η nous trouvons:

$$\eta = \frac{1}{I_{moyen}} \frac{\int\limits_{0}^{l} \left(D \cdot y \cdot \frac{I_{moyen} - I}{I} \right)_{x} dx}{\int\limits_{0}^{l} \frac{y_{x}^{2} dx}{I_{x}}}$$
(14)

où I_{moyen} = valeur moyenne quelconque des I de toute la poutre.

$$I_x = I'_x \cos a'_x + I''_x \cos a''_x.$$

Pour faciliter les calculs, il y a intérêt à ajouter la surcharge symétrique de façon à doubler η . La charge égale en tous les noeuds n'est pas à considérer: elle ne crée pas de flexion dans l'hypothèse actuelle. Ayant les η on obtient les moments correctifs qui en résultent par:

$$\mu'_{m} = \frac{-j''_{m}}{j_{m}} \eta y_{m}.$$
(15)

$$\mu_m'' = \frac{-j_m'}{j_m} \eta \, y_m \,. \tag{16}$$

où les γ sont ceux donnés par les formules (11) et (12).

V. Corrections dues à l'allongement des suspentes

Les efforts dans les suspentes, obtenus par la formule (10) comportent une partie N^C commune à toutes les suspentes, et une partie N^E excédant la partie commune. La formule (10) peut être écrite:

$$N_m = P_m \frac{j_m''}{j_m} + \frac{8}{n \, l \, j_m} \left(f' \, j_m' + f'' \, j_m'' \right) H \qquad \text{lorsque}$$

les suspentes ont une section différente, la distinction porte sur $\left(\frac{N}{\Omega}\right)^C$ et $\left(\frac{N}{\Omega}\right)^E$.

1. Influence de l'allongement de la suspente m dû à l'excédent N_m^E

en négligeant l'accroissement η de H.

 \mathbf{Soit}

$$r_p = \frac{6 y_p}{\Delta^3 \Omega_p j_p}$$

où la valeur j_p est obtenue par les formules (11) et (12) ou par la figure 8 appliquée au noeud p; y_p et Ω_p = longueur et section de la suspente p. En pratique r_p est compris entre 0 et 0,5.

Calculons les moments supplémentaires μ'_{pm} et μ''_{pm} créés au noeud p par l'allongement ξ_{mm} subi par la suspente m du fait du N_m^E trouvé dans le système de base par la formule (10).

$$N_m^E = P_m^E \, \frac{j''}{j}$$

où P_m^E = excédent du P_m suspendu au noeud m sur la partie commune à toutes les suspentes.

En chaque point nous avons $\mu'_{xm} = -\mu''_{xm}$. Soient ξ'_{xm} et ξ''_{xm} les déformations verticales vers le bas et $\xi_{xm} = \xi'_{xm} - \xi''_{xm}$ le rapprochement vertical des membrures au point x.

$$\xi'_{xm} = \frac{j'}{j}\xi_{xm} \qquad \qquad \xi''_{xm} = \frac{-j''}{j}\xi_{xm}.$$

Soient $X_1 X_2 \dots X_m \dots X_{n-1}$ les réactions créées dans les suspentes du fait des moments supplémentaires $\mu'_{1m} \mu'_{2m} \dots$

$$\xi'_{pm} = \frac{\mathcal{A}^{3} r_{p} j'}{6 E} X_{p} \qquad \xi'_{mm} = \frac{\mathcal{A}^{3} r_{m} j'}{6 E} (X_{m} - N_{m}^{E}).$$

La membrure supérieure se comporte donc comme une poutre continue à extrémités encastrées et sur appuis élastiques, sollicitée au noeud m par la force N_m^E dirigée vers le haut (fig. 9).

On peut donc écrire les n + 1 équations suivantes:

 $2 \mu'_{0} + \mu'_{1} = -r_{1} X_{1} \Delta$ $\mu'_{0} + 4 \mu'_{1} + \mu'_{2} = 2 r_{1} X_{1} \Delta - r_{2} X_{2} \Delta$ Méthode de calcul pratique des poutres Bowstring

$$\mu'_{n-1} + 2\mu'_n = -r_{n-1}X_{n-1}\Delta.$$

Tenant compte que $X_p \Delta = \mu'_{p-1} - 2\mu'_p + \mu'_{p+1}$ on dispose en tout de n + 1équations linéaires à n + 1 inconnues μ' donc $\mu'_{mm} = K_{mm} r_m N_m^E \Delta$; $\mu'_{km} = K_{km} r_m \Delta N_m^E$ où les K sont des coefficients numériques, fonctions de m, k et les r.

Cherchons ces valeurs des K_{km} .

Cas A où le nœud m est situé loin des appuis.

Les r sont inférieurs à 0,5 donc petits. Dans ce cas, les perturbations dues à l'élasticité des appuis sont vite amorties à partir du noeud chargé. D'ailleurs, le calcul exact du cas où r atteint une valeur excessivement grande a montré que les perturbations n'existent pratiquement qu'au droit des noeuds m - 1, m et m + 1. Nous supprimons donc l'élasticité des appuis $m \pm 2$, $m \pm 3$ etc. $r_1 = r_2 = \ldots = r_{m-2} = 0$, $r_{m+2} = r_{m+3} = \ldots = r_{n-1} = 0$.

Les rapports

$$\frac{\mu'_0}{\mu'_1} = \frac{\mu'_n}{\mu'_{n-1}}; \qquad \frac{\mu'_1}{\mu'_2} = \frac{\mu'_{n-1}}{\mu'_{n-2}}; \dots \qquad \frac{\mu'_{m-3}}{\mu'_{m-2}} = \frac{\mu'_{m+3}}{\mu'_{m+2}}$$

valent respectivement, arrondis à la 3 ème décimale:

 $-0,500 - 0,286 - 0,269 - 0,268 - 0,268 \dots$

Ils sont obtenus par récurrence, suivant la règle :

$$\frac{\mu'_{p-1}}{\mu'_{p}} = \frac{-1}{4 + \frac{\mu'_{p-2}}{\mu'_{n-1}}} \quad \text{en partant de} \quad \frac{\mu'_{0}}{\mu'_{1}} = -0.5$$

et ils tendent rapidement vers leur limite $-2 + \sqrt{3} = -0,268$ d'où $\mu'_{m\pm 3} = -0,268 \mu'_{m\pm 2}$.

Le système est ramené à 5 équations aux inconnues $\mu'_{m-2} \mu'_{m-1} \mu'_m \mu'_{m+1}$ μ'_{m+2} en fonction de $r_{m-1} r_m$ et r_{m-1} connues. Dans la plupart des cas, nous pouvons poser $r_{m-1} \simeq r_{m+1} \simeq r_m$ en nous basant sur les considérations suivantes:

- a) pour $m \ge 4$ les sections et les longueurs des suspentes voisines sont généralement peu différentes.
- b) les formules cherchées ont pour but de déterminer le moment correctif μ'_m sous l'influence des forces $H^E_m H^E_{m\pm 1}$ et tout auplus $H^E_{m\pm 2}$. Or, tant pour M'^{max+}_m que pour M'^{max-}_m la charge est distribuée plus où moins symétriquement du point m et on peut prendre pour r_{m+1} une valeur moyenne.

c) l'élasticité d'un appui quelconque réduit la valeur absolue des moments μ' en tous les noeuds. Comme nous avons négligé l'élasticité des appuis au delà de $m \pm 2$ il semble logique de compenser la faible erreur faite, en prenant pour r_{m-1} et r_{m+1} une valeur plus grande que leur moyenne arithmétique.

Le tableau I donne les valeurs des K ainsi calculés pour $r_m = 0$, 0,25 et 0,50.

m > 3	r_m	K _{mm}	$K_{m\pm 1,m}$	$K_{m\pm 2,m}$	$K_{m\pm}p_{.m}$	p>2
	0 0,25 0,50	-0,733 -0,364 -0,26 (0,261)	+ 0,465 + 0,182 + 0,106 (-0,104)	-0,125 0 +0,031(+0,036)	$(-0,268)^{p-2}_{Km\pm 2}$	

Tableau	I
	-

Entre parenthèses figurent les K obtenus lorsque $r_{m\pm 2} = r_m = 0,5$ au lieu de $r_{m\pm 2} = 0$.

On voit que l'élasticité des appuis au-delà de $m \pm 1$ n'a plus guère d'influence.

Un N^E identique en tous les noeuds doit engendrer un μ'_m nul, donc comme vérification $K_{mm} - 2 K_{m-1,m} + \frac{2}{1,268} K_{m-2,m} = 0$ quelque soit r_m .

Cas B

où le noeud m est situé près de l'appui gauche.

Par rapport au cas précédent, les premières équations changent; mais par des considérations analogues à celles développées ci-dessus, on obtient un système de 4 ou 5 équations à 4 ou 5 inconnues, d'après que m = 1 ou m > 1. Ces équations contiennent les valeurs $r_{m-1} r_m r_{m+1}$.

a) Exprimons les r en fonction de r_m par l'hypothèse:

$$\frac{r_{m-1}}{m-1} = \frac{r_m}{m} = \frac{r_{m+1}}{m+1}$$

Cette hypothèse est plausible lorsque l'appui droit se trouve à grande distance du point m $(n \simeq \infty)$. Appelons K^{∞} les K qui en résultenț.

Les tableaux II, IV et VI donnent les valeurs des K^{∞} pour m = 1, 2, 3.

b) Exprimons les r en fonction de r_m par l'hypothèse $r_{m-1} = r_m = r_{m+1}$. Cette hypothèse est plausible lorsque le point m se trouve près du milieu de la poutre. Appelons K^0 les K qui en résultent. Les tableaux III, V et VII donnent les valeurs des K^0 pour m = 1, 2, 3.

164

.

Tableau III

	K^{0}_{01}	K_{11}^{0}	K^{0}_{21}	K^{0}_{31}
	+0.927	- 0,855	+0,497	-0,133
25	+0.521	-0,431	+0,165	+0,008
50	+0,384	-0,298	+0,079	+0.035

$egin{array}{cccccc} K^{0}_{02} & K^{0}_{12} & K^{0}_{22} & K^{0}_{32} & K^{0}_{42} \ 0,248 & +0,496 & -0,740 & +0,466 & -0,125 \ 0 & +0,184 & -0,364 & +0,182 & +0,005 \ 0,052 & +0,106 & -0,261 & +0,106 & +0,031 \ \end{array}$
--

	K^0_{53}	-0,124 + 0,002 + 0,036
	K_{43}^0	+0,465 $+\dot{0},182$ +0,099
au VII	K^0_{33}	- 0,736 - 0,363 - 0,360
Table	K^{0}_{23}	+0,466 +0,182 +0,100
	K^{0}_{13}	-0,133 + 0,002 + 0,038
	r_3	$\begin{array}{c} 0\\ 0,25\\ 0,50\end{array}$

Tableau II

K_{31}^{∞}	-0,133 +0,048 +0,076
K^{∞}_{21}	+0,497 +0,107 +0,035
K_{11}^∞	-0.855 -0.405 -0.285
K_{01}^∞	+0.927 +0.524 +0.395
r_1	$\begin{array}{c} 0\\ 0,25\\ 0,50\end{array}$

Tableau IV

r_1	K_{02}^{∞}	K_{12}^{∞}	K^{∞}_{22}	K^∞_{32}	K_{42}^{∞}
_	-0,248	+0,496	-0,740	+0,466	-0,125
,25	-0,060	+0,232	-0,368	+0,140	+0,026
0.50	-0,005	+0,152	-0,262	+0.074	+0,052

Tableau VI

r_3	K_{13}^∞	K_{23}^∞	K^{∞}_{33}	K_{43}^{∞}	K_{53}^{∞}
$\begin{array}{c} 0\\ 0,25\\ 0,50\end{array}$	-0,133	+0,466	-0,736	+0,465	-0,124
	-0,022	+0,210	-0,364	+0,158	+ 0,014
	+0,011	+0,134	-0,260	+0,084	+ 0,046

Méthode de calcul pratique des poutres Bowstring

c) Le cas réel est intermédiaire entre les 2 cas extrêmes considérés. Nous posons approximativement:

$$K_{m+p\ m}^{r\acute{e}el} = \frac{2\ m}{n}\ K_{m+p\ m}^{\acute{0}} + \left(1 - \frac{2\ m}{n}\right)\ K_{m+p\ m}^{\infty} \quad \text{pour} \quad 0 \le p \le 2$$

où les K sont donnés dans les tableaux précités.

$$K_{m\pm p,m}^{r\acute{e}el} = (-0,268)^{p-2} K_{m\pm 2,m}^{r\acute{e}el} \quad \text{pour} \quad p > 2.$$

Les moments μ'_m et μ''_m dûs aux forces N^E excédant la partie commune N^C des N de toutes les suspentes sont donnés par

$$\mu'_{m} = -\mu''_{m} = [K_{mm}N_{m}^{E}r_{m} + K_{m,m-1}N_{m-1}^{E}r_{m-1} + K_{m,m+1}N_{m+1}^{E}r_{m+1} + K_{m,m-2}N_{m-2}^{E}r_{m-2} + K_{m,m+2}N_{m+2}^{E}r_{m+2}]\Delta$$
(17)

où les K sont donnés par les tableaux précédents.

On peut limiter cette formule à 1,3 ou 5 termes d'après la membrure considérée et l'importance numérique de la correction. La formule permet de calculer l'influence d'une température plus élevée dans une suspente par rapport au restant de la poutre.

2. Influence de l'allongement de toutes les suspentes, dû à l'effort commun N^C en négligeant l'accroissement η de H

Nous supposons que les suspentes ont même section. Dans le cas contraire, nous considérons la partie commune des $\frac{N}{\Omega}$. La membrure supérieure est une poutre sur appuis élastiques, encastrée aux extrémités et soumise à une charge identique en tous les noeuds, dirigée vers le haut de façon à ce que les noeuds se déplacent vers le haut sur une parabole du second degré.

Appliquons dans un 1^{er} stade un moment constant M'_0 aux 2 extrémités de cette poutre, supposée libre de rotation, tel que:

$$M'_0 = - \; rac{8 \; E \, \xi'_{max}}{l^2 \; j'}$$

Les extrémités subissent une rotation vers le haut autour des appuis de:

$$lpha_0'=rac{4\,\xi_{max}'}{l} \quad ext{où} \quad \xi_{max}'=rac{j'}{j}\;rac{N^C y_{max}}{E\,\Omega}=rac{j'}{6\,E}\;N^C \varDelta^3 r_{max},$$

Pour réaliser les conditions imposées, il nous reste à appliquer, dans un 2^e stade, aux extrémités de la poutre des moments inconnus $\mu'_0 - M'_0$ produisant des rotations a'_0 de sens contraire aux précédentes. L'influence de ces moments se fait sentir aux noeuds voisins des appuis, mais elle est vite amortie plus loin. Nous posons donc

$$r_3 = r_4 = \dots = r_{n-4} = r_{n-3} = 0$$
 $r_{n-2} = r_2 = 2r_1 = 2r_{n-1}$

166

Résolvant le système des équations, on trouve:

$$\mu_p'=rac{4}{3}\,k_p\,arDelta\,r_{max}\,rac{N^O}{n}$$

où les k sont fonction de r_1 et varient un peu avec n pour les petites valeurs de n.

Additionnant les résultats des 2 stades, nous trouvons:

$$\mu'_{p} = -\mu''_{p} = \frac{4}{3} \frac{\Delta r_{max} N^{C}}{n^{2}} (-1 + n k_{p}).$$
⁽¹⁸⁾

Le tableau VIII donne les valeurs des k_p pour p < 4. Pour $p \geqq 4 \quad k_p = 0$.

r_1	n	k _o	k_1	k_2	k_3
0	$\left\{\begin{array}{c}7\\\infty\end{array}\right.$	+0,1760 + 0,1930	-0,0517 -0,0515	+0,0138 +0,0138	-0,0037 -0,0037
0,25	∞	+0,1520	- 0,0146	+0,0072	+0,0017
0,50	$\left\{\begin{array}{c} 7\\\infty\end{array}\right.$	+0,1195 +0,1350	-0,0023 -0,0023	-0,0087 -0,0086	-0,0013 -0,0021

Tableau VIII

La formule (18) permet de calculer l'influence d'une température plus élevée dans les suspentes que dans les membrures.

3. Corrections dues à l'éffort axial supplémentaire η

On trouve

$$\eta = \frac{-H \sum_{m=1}^{m=n-1} \left(W_m^2 \frac{y_m}{\Omega_m} \right) - \sum_{m=1}^{m=n-1} \left(W_m \frac{j_m''}{j_m} \frac{y_m}{\Omega_m} P_m \right)}{\int_0^l \frac{y^2 dx}{I} + \sum_{m=1}^{m=n-1} \left(W_m^2 \frac{y_m}{\Omega_m} \right)}$$

$$W_m = \frac{8}{nl} \frac{f' j_m' + f'' j_m''}{j_m}$$
(19)

où

$$\mu'_m = \frac{j_m}{j_m} \eta y_m. \tag{20}$$

$$\mu_m'' = \frac{-j_m'}{j_m} \eta y_m. \tag{21}$$

Abhandlungen IX

VI. Corrections dues à la déformabilité axiale des membrures

Cette déformabilité pose 2 problèmes:

- 1. Les corrections μ'_m et μ''_m sur les moments au noeud m en supposant que le H n'a pas de valeur η supplémentaire.
- 2. La correction η sur H et les corrections μ'_m et μ''_m qui en résultent.

1. Corrections μ'_m et μ''_m dûes à la déformabilité axiale des membrures dans le cas que η est nul

Généralement, les rapports $\frac{I'}{\Omega'}$ et $\frac{I''}{\Omega''}$ varient peu aux environs du noeud m considéré, et ces corrections peuvent souvent être négligées. Toutefois, on peut appliquer une méthode analogue à celle suivie pour le calcul de l'influence locale de la variabilité des I cos.

En annulant la dérivée du travail moléculaire total par rapport à μ'_m on obtient:

$$\begin{split} \mu_{m-1}' + 4\,\mu_{m}' + \mu_{m+1}' &= \frac{-12\,j_{m}'j_{m}''}{\Delta^{2}j_{m}^{2}} \left[D_{m} - \frac{D_{m-1} + D_{m+1}}{2} \right] \left[\frac{\sin^{2}a' + \frac{E}{G}\cos^{2}a'}{j'\Omega'\cos a'} - \frac{\sin^{2}a'' + \frac{E}{G}\cos^{2}a''}{\beta''\Omega'\cos a''} \right]_{m} - \frac{48\,H}{l^{2}j_{m}} \left[\frac{f'}{\Omega'\cos a'} - \frac{f''}{\Omega''\cos a''} \right]_{m} = -p_{m,m\pm 1} \frac{\Delta^{2}}{2} \\ \mu_{m-2}' + 4\,\mu_{m-1}' + \mu_{m}' = \frac{-12j_{m-1}'j_{m-1}''}{\Delta j_{m-1}^{2}} \left[D_{m-1} - \frac{D_{m-2} + D_{m}}{2} \right] \left[\frac{\sin^{2}a' + \frac{E}{G}\cos^{2}a'}{j'\Omega'\cos a'} - \frac{\sin^{2}a'' + \frac{E}{G}\cos^{2}a'}{j'\Omega'\cos a'} - \frac{\sin^{2}a'' + \frac{E}{G}\cos^{2}a''}{j'\Omega'\cos a'} \right]_{m-1} - \frac{48\,H}{l^{2}j_{m-1}} \left[\frac{f'}{\Omega'\cos a'} - \frac{f''}{\Omega''\cos a'} \right]_{m-1} = \\ &= -p_{m\pm 1,m} \frac{\Delta^{2}}{4} - p_{m-2,m-1} \frac{\Delta^{2}}{4} \end{split}$$

etc. Nous en déduisons, lorsque m est suffisamment loin des appuis:

$$\mu'_{m} = -\mu''_{m} = -\omega \Delta^{2} \left[2 p_{m-1,m} - \beta \left(p_{m-2,m-1} + p_{m+1,m+2} \right) + \beta^{2} \left(\dots \right) \right]$$
(22)

où les ω et β ont les valeurs 0,0524 et 0,268; les puissances de β deviennent rapidement négligeables. Pour *m* voisin de l'appui ($m \leq 3$) on commence par l'équation du noeud 0.

$$2\mu_{0}' + \mu_{1}' = -\frac{12j_{0}'j_{0}''}{\varDelta j_{0}^{2}} \left[\frac{D_{0}}{2} - \frac{D_{1}}{2}\right] \left[\frac{\sin^{2}\alpha' + \frac{E}{G}\cos^{2}\alpha'}{j'\Omega'\cos\alpha'} - \frac{\sin^{2}\alpha'' + \frac{E}{G}\cos^{2}\alpha''}{j''\Omega''\cos\alpha''}\right]_{0} + \frac{24H(n-1)}{l^{2}j_{o}} \left[\frac{f'}{\varOmega'\cos\alpha'} - \frac{f''}{\varOmega''\cos\alpha''}\right]_{0} = p_{01}\frac{\varDelta^{2}}{4}$$

Méthode de calcul pratique des poutres Bowstring

$$\mu'_{0} + 2 \mu'_{1} + \mu'_{2} = -p_{01} \frac{\Delta^{2}}{4} - p_{12} \frac{\Delta^{2}}{4}$$
 etc.

ce qui détermine les p à partir de p_{01} .

Le point 0 constituant un encastrement parfait, on suppose la poutre prolongée au-delà de l'appui et on y applique les charges symétriques $p_{01} p_{12}$ etc. avant d'appliquer la formule en β et ω .

2. Effort supplémentaire η

Soit $H = H^{base} + \eta$. Annulant la dérivée du travail moléculaire par rapport à η on trouve:

$$\eta = \frac{-H\int_{0}^{l} A_{x} dx + \int_{0}^{l} T_{iso} C_{x} dx}{\int_{0}^{l} y^{2} \frac{dx}{I} + \int_{0}^{l} A_{x} dx}$$
(23)

où
$$A = \frac{a'^2 + \frac{E}{G}b'^2}{\Omega'\cos a'} + \frac{a''^2 + \frac{E}{G}b''^2}{\Omega''\cos a''}$$
 $C = \frac{1}{I}\left[\frac{c'I'\cos a'}{\Omega'\cos a'} - \frac{c''I''\cos a''}{\Omega''\cos a''}\right]$
 $a' = \frac{1}{\cos a'} - \frac{I'\cos a'}{I}\sin a' \operatorname{tg} a$ $a'' = \frac{1}{\cos a''} + \frac{I''\cos a''}{I}\sin a'' \operatorname{tg} a$
 $b' = \frac{I'\cos a'}{I}\cos a' \operatorname{tg} a$ $b'' = \frac{I''\cos a''}{I}\cos a'' \operatorname{tg} a$
 $c' = a'\sin a' - \frac{E}{G}b'\cos a'$ $c'' = a''\sin a'' + \frac{E}{G}b''\cos a''$
 $\operatorname{tg} a = \operatorname{tg} a' - \operatorname{tg} a'' = \frac{f}{f'}tg a'$

 $T_{iso} =$ effort tranchant isostatique dans le panneau considéré (fig. 2) dû aux forces extérieures, sur une poutre supposée librement appuyée aux 2 extrémités de la poutre Bowstring.

Les moments μ'_m et μ''_m qui en résultent sont donnés par

$$\mu'_m = -\frac{j_m''}{j_m} \eta y_m \tag{24}$$

$$\mu_m'' = -\frac{j_m'}{j_m} \eta \, y_m \tag{25}$$

On peut tenir compte de l'influence d'une température inégale des 2 membrures, des effets de retrait ou de déformation permanente sous charge d'essai ou par fluage à la longue, en appliquant la formule (23) où T = 0 et où $H \Omega'$ et Ω'' sont remplacés par des valeurs appropriées.

VII. Corrections dues à la courbure des membrures

Admettons (fig. 10) que l'axe de la membrure supérieure suit une allure parabolique entre 2 noeuds, tel que

$$\epsilon_{x}' = 4 \epsilon_{max}' \frac{x}{\varDelta} \left(1 - \frac{x}{\varDelta} \right)$$

solution solution solution solution solution $H = H^{base} + \eta$ $M'_x = M'_x^{base} + \mu'_x$ $M''_x = M''_x^{base} + \mu''_x$

nous supposons η et les ϵ' suffisamment petits, pour que leurs produits soient négligeables.

$$M'_x + M''_x = D_x^{base} - \eta y_x - H^{base} \epsilon'_x.$$

Dérivant le travail moléculaire total par rapport à μ'_m on obtient:

$$\mu'_{m-1} + 4\mu'_{m} + \mu'_{m+1} = -\eta \frac{I' \cos a'}{I} (y_{m-1} + 4y_{m} + y_{m+1}) + \frac{4H^{base} I'' \cos a''}{I} \epsilon'_{max}$$

Nous en déduisons:

$$\mu''_{m} = \frac{-\eta I' \cos \alpha' y_{m}}{I} + \frac{2}{3} \frac{H^{base} I'' \cos \alpha'' \epsilon'_{max}}{I}$$
$$\mu''_{m} = \frac{-\eta I'' \cos \alpha'' y_{m}}{I} - \frac{2}{3} \frac{H^{base} I'' \cos \alpha'' \epsilon'_{max}}{I}$$
$$\mu''_{x} = \frac{-\eta I' \cos \alpha' y_{x}}{I} - H^{base} \left[\epsilon'_{x} - \frac{2}{3} \frac{I'' \cos \alpha'' \epsilon'_{max}}{I}\right]$$
$$\mu''_{x} = \frac{-\eta I'' \cos \alpha'' y_{x}}{I} - \frac{2}{3} \frac{H^{base} I'' \cos \alpha'' \epsilon'_{max}}{I}$$

Dérivant le travail moléculaire total par rapport à η on obtient:

$$\eta = \frac{-H\int_{0}^{l} y_{x} \epsilon_{x} dx}{\int_{0}^{l} y_{x}^{2} dx}$$

Méthode de calcul pratique des poutres Bowstring

d'où les formules

$$\eta = -\frac{5}{6} \frac{\epsilon'_{max}}{f} H^{base}$$
(26)

$$\mu'_{m} = \frac{H^{base} \epsilon'_{max}}{3 j_{m}} \left[2 j'_{m} + 2.5 j''_{m} \frac{y_{m}}{f} \right] \quad \text{toujours} > 0 \tag{27}$$

$$\mu_m'' = \frac{H^{base} \epsilon_{max}' j_m'}{3 j_m} \left[2.5 \frac{y_m}{f} - 2 \right] \stackrel{>}{<} 0 \tag{28}$$

$$\mu'_{m+0,5} = \frac{-H^{base} \,\epsilon'_{max}}{3 \, j_m} \left[\, j'_m + j''_m \left(3 - 2.5 \, \frac{y_{m+0,5}}{f} \right) \, \right] \quad \text{toujours} < 0 \quad (29)$$

Lorsque l'axe de la membrure supérieure est une parabole du 2^e degré sur toute la longueur de la poutre $\epsilon'_{max} = \frac{f'}{n^2}$. Du fait de la courbure, des moments négatifs supplémentaires naissent dans la zône milieu d'un panneau de la membrure supérieure et des moments positifs dans la zône des noeuds.

Si l'on désire réaliser des profils d'égale résistance, on est amené à prévoir plus de matière vers la fibre inférieure de la zône milieu et vers la fibre inférieure au droit des noeuds. Donc, quoique les fibres extrêmes ont une allure parabolique, les axes ont une tendance à rejoindre la forme polygonale du système de base et $\epsilon'_{max} < \frac{f'}{n^2}$. L'ordre de grandeur de ce ϵ'_{max} est donné par

$$\epsilon'_{max} \cong rac{f'}{n^2} rac{\sigma'_M}{\sigma'_N + \sigma'_M}$$

où

 σ'_N = tension normale sur membrure rectiligne dûe à N' σ'_M = tension normale dûe à M';

la formule à été obtenue en explicitant les μ' dûs à la courbure par des transports de matière d'une fibre extrême à l'autre.

VIII. Contrôle du degré d'exactitude de la méthode

Quoique la méthode s'applique à une sollicitation globale, nous la vérifions pour une ordonnée des lignes d'influence calculées exactement (fig. 5 et 6). Comme dans ce calcul exact, les déformations dues à T furent négligées, nous ferons $\frac{E}{G} = 0$ dans les formules précédentes pour permettre la comparaison des résultats.

Les tableaux suivants renseignent les caractéristiques géométriques de la poutre.

171

Tableau IX. Valeurs constantes

 $I'' \cos \alpha'' = 0,07905 \text{m}^4 \quad j'' = 12,650 \frac{1}{\text{m}^4} \quad l = 53,25 \text{m} \quad \Omega'' \cos \alpha'' = 2,676 \text{m}^2$ $\Omega' \cos \alpha' = 0,640 \text{m}^2 \quad \Delta = 4,438 \text{m} \quad f' = 10,65 \text{m} \quad f'' = 0,25 \text{m} \quad f = 10,40 \text{m}$ $\Omega = 0,0503 \text{m}^2 \quad \text{soit} \quad I \text{ moyen} = 0,118 \text{m}^4$

Tableau X. Valeurs variables indépendantes de la sollicitation

m	$I' \cos a'$	$\frac{1}{I'\cos\alpha'}$	Ι	$\frac{y}{t}$	$\frac{y^2}{f^2 I}$	$\frac{0,118-Iy}{I} \frac{f}{f}$	W _m	$W_m^2 \frac{y}{f}$
6	0,03413	29,297	0,11318	1	$2 \cdot 4,41$	0,0425	0,094	2 · 0,00442
5	0,03474	28,790	0,11379	0,972	8,30	0,0360	0,0936	0,00852
4	0,03656	27,352	0,11561	0,889	6,85	0,0184	0,0923	0,00757
3	0,03961	25,246	0,11866	0,750	4,73	-0,0042	0,0893	0,00598
2	0,04385	22,805	0,12290	0,556	2,50	-0,0222	0,0870	0,00420
1	0,04933	20,272	0,12838	0,306	0,73	-0,0248	0,0834	0,00212
0	0,05603	17,848	0,13508	0	0	0	0.0793	0
	1	1		1	27,52			0,03281

m	j'	j	$ heta_{m-2,m-1}$	$ heta_{m-1}$	$ heta_{m-1,m}$	$ heta_{m,\ m+1}$	$ heta_{m+1}$	$ heta_{m+1,m+2}$
6	29,170	41,820	0,00795	0,00311	0,00080	0,00080	0,00311	0,00795
5–6	29,043	41,693						
5	28,674	41,324	0,01755	0,01038	0,00446	-0,00266	-0,00367	-0,00266
4–5	28,071	40,721						
4	27,269	39,919						
3–4	26,299	38,949			5			

(Suite voir page 173)

m	tg a'	cos a'	sin a'	a'	a''	C'	<i>C''</i>	A	C	$\frac{12\sin^2 a'}{\varDelta^2 j \Omega' \cos a'}$
6	0	1	0	1	1	0	0	0,968	0	0
5	0,133	0,991	0,132	1,004	1	0,132	0,0031	1,948	0,063	0,017
4	0,267	0,965	0,254	1,016	1	0,260	0,0063	1,988	0,127	0,061
3	0,400	0,927	0,371	1,030	1	0,383	0,0094	2,030	0,199	0,131
2	0,533	0,883	0,470	1,045	1	0,491	0,0125	2,078	0,275	0,211
1	0,667	0,832	0,554	1,060	1	0,588	0,0157	2,131	0,352	0,293
0	0,800	0,780	0,637	1,072	1	0,698	0,0188	1,086	0,453	0,388
	}							12,229		

Tableau XI. Valeurs variables propres à la sollicitation considérée:

m	$\frac{D}{Pl}$	$\frac{D}{Pl}\frac{y}{f}\frac{9,118-I}{I}$	T _{iso}	T_{iscC}	$\frac{1}{Pl} \left(D_m - \frac{D_{m-1} + D_{m+1}}{2} \right)$	$W_m \frac{j''m}{jm} \frac{y_m}{f} P_m$
6	0,0535	$2 \cdot 0,001125$	0,5	0	0,03620	2.0,0142
5	0,0173	0,000583	0,5	0,0322	-0,00545	0
4	-0,0080	-0,000132	0,5	0,0638	-0,00546	0
3	-0,0224	0,000134	0,5	0,0995		0
2	-0,0258	0,000590	0,5	0,1375		0
1	-0,0184	0,000469	0,5	0,1760		0
0	0	0	0,5	$2 \cdot 0,1132$		0
	1	0,002769		0,6222	•	0,0142

,

.

1. Système de base

Lectures sur les lignes d'influence (fig. 11 et 12) résultant des formules 3, 4 et 5.

$$D_6 = 0,053505 \cdot 53,25 = 2,84912 \text{ tm}$$
 $H = 0,196495 \cdot \frac{53,25}{10,40} = 1,00609 \text{ t.}$

$$M_6' = \frac{12,65}{41,749} \cdot 2,84912 = 0,86329 \text{ tm}$$
(1)

$$M_6'' = \frac{29,099}{41,749} \cdot 2,84912 = 1,98583 \text{ tm}$$
 (2)

174

Fig. 12

2. Variabilité des I cos a

a) Influence locale

$$\begin{split} & \theta_6 = 0 \qquad \theta_{56} = 0,0008 \quad \theta_5 = 0,00311 \quad \theta_{45} = 0,00795 \quad \theta_4 = 0,0138 \\ & \theta_{34} = 0,0208 \quad \theta_3 = 0,0288 \quad \theta_{23} = 0,0372 \quad \theta_2 = 0,0462 \qquad \theta_{12} = 0,055 \\ & \theta_1 = 0,0645 \quad \theta_{01} = 0,0724 \quad \theta_0 = 0,0778 \\ & -p_{56} \frac{\Delta^2}{4} = D_5 \theta_{56} + 2 D_6 \theta_6 = 53,25 (0,0173 \cdot 0,0008) = 0,000735 \\ & p_{56} \frac{\Delta^2}{4} = -0,000735 \\ & -p_{45} \frac{\Delta^2}{4} - p_{56} \frac{\Delta^2}{4} = D_4 \theta_{45} + 4 D_5 \theta_5 + D_6 \theta_{56} = 0,010385 \\ & p_{45} \frac{\Delta^2}{4} = -0,010385 + 0,000735 = -0,00965 \\ & -p_{34} \frac{\Delta^2}{4} - p_{45} \frac{\Delta^2}{4} = D_3 \theta_{34} + 4 D_4 \theta_4 + D_5 \theta_{45} = -0,041015 \\ & p_{34} \frac{\Delta^2}{4} = 0,05140 \qquad p_{23} \frac{\Delta^2}{4} = -0,146 \qquad p_{12} \frac{\Delta^2}{4} = 0,205 \\ & p_{01} \frac{\Delta^2}{4} = 0,154 \qquad p_{-1,0} = 0,154 \ \text{etc.} \end{split}$$

$$= -0,268^{\circ} \cdot 0,146 \pm 0,268^{\circ} (1-0,268^{\circ}) \cdot 0,205 \pm 0,268^{\circ} (1-0,268) \cdot 0,154 \end{bmatrix}$$

= -0,419 [-0,000735 + 0,00258 + 0,00369 - 0,00280 + 0,00103 - 0,000155]
= -0,00150 tm. (13)

b) Influence générale.

8

$$\eta = \frac{1}{0.118} \frac{0.002769 \cdot 53.25}{27.52 \cdot 10.4} = 0.00437 \text{ t}$$
(14)

$$\mu_{6}' = \frac{-12,65}{41,749} \cdot 0,00437 \cdot 10,4 = -0,01375 \text{ tm}$$
(15)

$$\mu_{6}^{''} = \frac{-29,099}{41,749} \cdot 0,00437 \cdot 10,4 = -0,03175 \text{ tm}$$
(16)

3. Allongement des suspentes

a) Influence locale de charges excédentaires

$$N_{6}^{E} = \frac{12,65}{41,749} \cdot 1 = 0,303^{T}$$

$$r_{6} = \frac{6 \cdot 10,4}{4,438^{3} \cdot 0,0503 \cdot 41,749} = 0,343$$
(10)

un graphique $K_{mm} = f(r)$ donne: $K_{66} = 0,315$ pour r = -0,343.

$$\mu_{6}' = -\mu_{6}'' = -0.315 \cdot 0.343 \cdot 0.303 \cdot 4.438 = -0.14530 \text{ tm.}$$
(17)

b) Influence locale de charges communes

$$N^{c} = \frac{8.1,00609}{12 \cdot 41,749 \cdot 53,25} [10,65 \cdot 29,099 + 0,25 \cdot 12,65]$$
(10)
= 0,095 t. $k_{6} = 0.$

$$\mu_{6}' = -\mu_{6}'' = -\frac{4}{3} \frac{4,438 \cdot 0,343 \cdot 0,095}{144} = -0,00133 \text{ tm.}$$
 (18)

c) Influence générale

$$\eta = \frac{-1,00609 \frac{0,03281 \cdot 10,4}{0,0503} - 0,0142 \cdot \frac{10,4 \cdot 1}{0,0503}}{27,52 \cdot \overline{10,4^2} + \frac{0,03281 \cdot 10,4}{0,0503}}$$
(19)

$$\mu_6' = \frac{12,65}{41,749} \cdot 0,0033 \cdot 10,4 = 0,01040 \text{ tm.}$$
(20)

$$\mu_{6}^{"} = \frac{29,099}{41,749} \cdot 0,0033 \cdot 10,4 = 0,02400 \text{ tm.}$$
(21)

4. Déformabilité axiale des membrures

a) Influence locale

$$\frac{48 \cdot 1,00609}{53,25^2 \cdot 12,65} \left[\frac{10,65}{0,64} - \frac{0,25}{2,676} \right] = 0,0223.$$

$$- p_{56} \frac{\Delta^2}{4} = \frac{-0,0223}{2} \qquad p_{56} \frac{\Delta^2}{4} = 0,01115$$

$$- p_{45} \frac{\Delta^2}{4} - p_{56} \frac{\Delta^2}{4} = 0,017 \cdot 0,00545 \cdot 53,25 - 0,0223 = -0,01736$$

$$p_{45} \frac{\Delta^2}{4} = 0,01736 - 0,01115 = 0,00621$$

$$p_{34} \frac{\Delta^2}{4} = -0,00161.$$

$$\mu_{6}' = -\mu_{6|}'' = -0.0524 \cdot 4 \cdot 2 [0.01115 - 0.268 \cdot 0.00621 - 0.268^{2} \cdot 0.00161] \quad (22)$$
$$= -0.00435 \text{ tm}.$$

b) Influence générale

$$\eta = \frac{-1,00609 \cdot 12,229 + 0,6222}{27,52 \cdot \overline{10,4}^2 + 12,229} = -0,0039 \text{ t.}$$
(23)

$$\mu_{6}' = \frac{12,65}{41,749} \cdot 10,4 \cdot 0,0039 = 0,0123 \text{ tm.}$$
(24)

$$\mu_6'' = \frac{29,099}{41,749} \cdot 10,4 \cdot 0,0039 = 0,0283 \text{ tm.}$$
⁽²⁵⁾

Méthode de calcul pratique des poutres Bowstring

5. Courbure des membrures

$$\epsilon'_{max} = \frac{10,65}{144} = 0,074 \text{ m.}$$

$$\eta = -\frac{5}{6} \cdot \frac{0,074}{10,40} \cdot 1,00609 = -0,00595 \text{ t}$$
(26)

$$\mu_{6}' = \frac{1,00609 \cdot 0,074}{3 \cdot 41,749} [2 \cdot 29,099 + 2,5 \cdot 12,65] = 0,05345 \text{ tm.}$$
(27)

$$\mu_{6}^{"} = \frac{1,00609 \cdot 0,074 \cdot 29,099}{3 \cdot 41,749} [2,5-2] = 0,00866 \text{ tm.}$$
(28)

6. Totalisation

	M_{6}^{\prime}	M_6''	H
système de base	$0,86329~{ m tm}$	$1,\!98583~\mathrm{tm}$	1,00609 t
$I \cos a \log a$	-0,00150	0,00150	
$I \cos a$ général	-0,01375	-0,03175	0,00437
suspentes local excéd.	-0,14530	$0,\!14530$	
suspentes local comm.	-0,00133	0,00133	
suspentes général	0,01040	0,02400	-0,00330
membrures local	-0,00435	0,00435	
membrures général	0,01230	0,02830	-0,00390
courbure	0,05345	0,00866	-0,00595
total	0,77321	$2,\!16752$	0,99731
valeurs exactes	0,778	2,171	0,996
erreurs	-0,615%	-0,161%	+0,132%

Le système de base sans corrections donnerait les erreurs:

+11% - 8,52% + 1,01%.

Remarques:

- 1. Dans le cas étudié, l'influence locale de l'allongement de la suspente No. 6 est relativement forte. En pratique, la charge qui existe aux suspentes voisines, atténue cette influence.
- 2. Théoriquement, il faut noter que les charges fictives p créées par les $D\Theta$ du 2. a) ci-dessus peuvent croître en s'écartant du noeud m considéré, jusqu'aux appuis. Mais au delà des appuis, les mêmes p sont appliqués, et les puissances successives de 0,268 assurent une convergence rapide. Pratiquement, on pourra généralement négliger le terme correctif dû à l'influence locale de la variabilité des $I \cos \alpha$.

177

IX. Mode opératoire pour chaque sollicitation globale

- 1. Sur la ligne d'influence $D_{m\gamma}$ déterminer la position la plus défavorable de la surcharge. Déterminer D_m et H correspondant.
- 2. Dessiner le diagramme $D_x = M_x^{iso} Hy_x$ pour la surcharge totale en superposant à la ligne polygonale $y_x = f(x)$ le diagramme M_x^{iso} obtenu graphiquement par un polygone funiculaire moyennant une échelle appropriée. Le diagramme polaire correspondant donne T_x^{iso} pour la surcharge. En y ajoutant T_x^{iso} pour la charge constante en tous les noeuds, on obtient le diagramme des T_x^{iso} pour la charge totale.
- 3. Dresser des tableaux analogues à ceux du calcul de contrôle précédent, mais pour la sollicitation globale. Le dernier tableau est à refaire pour chaque sollicitation différente.
- 4. Calcul des inconnues dans le système de base pour la sollicitation globale.
- 5. Calcul des corrections pour la sollicitation totale.
- 6. Totalisation.

Lorsque la surcharge est dissymétrique par rapport au milieu, il y a intérêt de doubler la surcharge de façon symétrique, pour le calcul des corrections η dues à l'inégalité des $I \cos \alpha$, à l'allongement des suspentes et à la déformabilité axiale des membrures.

Résumé

Le calcul exact d'une poutre Bowstring comporte la résolution d'un système d'équations à grand nombre d'inconnues. Lorsque le nombre de panneaux est inférieur à 7, ce calcul est encore pratique en scindant la sollicitation réelle en une sollicitation symétrique et une autre antisymétrique, de façon à réduire le nombre d'inconnues dans chacune de ces deux sollicitations.

Au cas contraire, il est plus expéditif de suivre la méthode exposée.

On calcule d'abord les moments et les efforts axiaux dans un «système de base». Les corrections sont données par des formules simples et explicites. Les lignes d'influence dans le système de base sont à dresser avec exactitude, mais les calculs et les épures des corrections peuvent être faits sans grande précision.

Successivement, on calcule l'influence de la variabilité des $I \cos \alpha$, de l'allongement des suspentes, de la déformabilité axiale des membrures et de la courbure des membrures.

Les résultats d'un pareil calcul ont été comparés aux résultats obtenus sur une poutre à 12 panneaux, calculée exactement par le système complet des équations de déformation. Le système de base sans corrections donne une erreur sur les moments de 11 et 8,52 %. La méthode exposée réduit ces erreurs à 0,615 et 0,161 %.

Il appartient au calculateur de négliger certaines corrections d'après les cas particuliers qui se présentent.

Zusammenfassung

Die genaue Berechnung eines Bogens mit Zugband erfordert die Auflösung eines Gleichungssystems mit zahlreichen Unbekannten. Wenn die Anzahl der Felder kleiner als 7 ist, ist eine rationelle Auflösung des Systems noch möglich durch Trennen der Belastung in einen symmetrischen und einen asymmetrischen Anteil. Dadurch wird die Zahl der Unbekannten für jede der beiden Teilbelastungen kleiner.

In allen anderen Fällen führt die angegebene Methode schneller zum Ziel.

Man berechnet zuerst die Momente und die Axialkräfte in einem "Grundsystem". Die notwendigen Korrekturwerte werden durch einfache explizite Formeln gegeben. Die Einflußlinien für das Grundsystem müssen genau ermittelt werden, während für die Zahlrechnungen und die graphischen Konstruktionen der Korrekturwerte eine kleinere Genauigkeit ausreicht.

Der Reihe nach berechnet man den Einfluß der Veränderlichkeit von $I \cos \alpha$, der Verlängerung der Hängestangen, der axialen Deformationen der Bogen und der Krümmung der Bogen.

Die Resultate dieser Berechnungsmethode wurden verglichen mit denjenigen für einen Bogen mit 12 Feldern, der mit dem vollständigen System der Deformationsgleichungen berechnet wurde. Die Fehler der Momente im Grundsystem ohne Verbesserung betragen 11 und 8,52 %. Die vorgeführte Methode vermindert die Fehler auf 0,615 und 0,161 %. Es ist dem projektierenden Ingenieur überlassen, gewisse Korrekturwerte zu vernachlässigen, je nach der besonderen Art des vorliegenden Systems.

Summary

For the exact calculation of an arch with the member it is necessary to solve a system of equations with numerous unknowns. If the number of panels is less than 7, a rational solution of the system is still possible by dividing the loadings into a symmetrical and a non-symmetrical part. In this way the number of unknowns becomes smaller for each of the two partial loadings.

In all other cases the given method leads more quickly to the desired result. First of all, the moments and the axial forces are calculated in a "basic system". The necessary correcting values are given by simple explicit formulae. The influence lines for the basic system must be determined accurately, whilst for numerical calculations and graphic constructions of the correcting values, a lower degree of accuracy is sufficient.

The following are calculated successively:

The influence of the variation of $I \cos \alpha$, the elongation of the suspension rods, the axial deformation of the arches, and their curverture.

The results of these methods of calculation have been compared with those for an arch with 12 panels, which was calculated with the complete system of deformation equations. The errors of the moments in the basic system without improvement amount to 11 and 8,52 %. The illustrated method diminishes the errors to 0,615 and 0,161 %. It is left to the designing engineer to decide whether certain correcting values should be neglected, depending on the particular nature of the system used.