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Initially Deflected Thin Plate with Initial Deflection Affine
to Additional Deflection

Dre anfdanglich gekrivmmte Platte mat zur zusdtzlichen Einsenkung
affiner anfinglicher Verformung

La plaque initialement incurvée avec déformation initiale affine du
fléchissement ultérieur

HeNrRIK NYLANDER, Tekn. Dr. Professor of Building Statics and Structural Engineering
at the Royal Institute of Technology, Stockholm

Introduction

It is generally known that there is no linear relation between the load and
the deformations, or between the load and the stresses, in the case of thin
plates. The stress distribution is dependent on the type and the magnitude of
the deformations. Therefore, it is not possible to disregard the effect of an
initial deflection if it is of the same order of magnitude as the additional
deflection caused by the load. Since thin plates are often subjected to initial
deflections, it is desirable to acquire knowledge of the general effect of initial
deflections, as this knowledge is useful in drawing up design rules, and fre-
quently also in the interpretation of test results and in the design of measuring
instruments.

The most probable form of the initial deflection is difficult to determine in
advance. As will be shown below, the problem can be considerably simplified
if the initial deflection is assumed to be affine with the additional deflection
If the treatment of the problem is confined to this special case, it will also
afford information on the general effect of other types of initial deflections.
The fact that the form of the initial deflection is supposed to vary with the
thickness of the plate at a given load and with the load at a given thickness
— which is a consequence of the assumption that the initial deflection and
the additional deflection are affine — is of minor importance in studying the
general effect of initial deflections.
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Fundamental Relations

We use as a point of departure the fundamental equations deduced by
MARGUERRE for an initially deformed thin plate. These equations represent a
further development of voN KARMAN’S equations for an initially plane thin
plate 1).

If use is made of the notations:

@ = Airy’s stress function for a plane state of stress (in the z-y-plane),

w = the deflection of the plate due to the load (additional deflection) (in
the z-direction),

W = the initial deflection,

h = the thickness of the plate,

v

3
~ PP _ the stiffness of the plate, then MARGUERRE’S equations are

T 12(1-?)
as follows 2)
449 = E|(w,,)?—w,,w,, +2 W, w, — W, w,, —W, “m] (1)
Adw = N [D,, (W, +w,) + Dy (W, +w,,) — 2@, (W, +w,,)] — q =0 (2)
In these equations, the partial derivatives are denoted by subindices, viz.,
2w 2P
You = Gr oy’ Pov = 52dy
2w P
Wyp = G2 D, = ey ete.

As the initial deflection is assumed to be affine with the additional de-

flection we can write
W==Fk-w (3)

where £ is a constant.
Eqgs. (1) and (2) can then be written
44D = E (14 2k)[(w,,)?—w,, w,,] (1)

h q(xy) ,
AAw—W(1+k)[nywm-i—@mww—ﬂiwww]— h =0 (2')

This manner of writing Eqgs. (1) and (2) indicates that a comparison bet-
ween the equations of the initially deflected plate and those of the initially
plane plate can contribute to the solution of the problem.

1) MARGUERRE, K.: Zur Theorie der gekriimmten Platte mit groBer Forménderung.
Proc. of 5th Int. Congr. for Appl. Mech., Vol. V, p. 93, Cambr., Mass., 1939. — v. KARMAN,

Encyklopédie der Math. Wissenschaften. Vol. IV, p. 349, 1910.
2) Cf. also BERGMAN, STEN G. A., Behaviour of Buckled Rectangular Plates under

the Action of Shearing Forces. Doctor’s Thesis, Stockholm 1948, p. 49.
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For comparison, we write the equations of an initially plane plate (they
are obtained from Eqs. (1) and (2) by putting W equal to 0).

44D, = E [(woﬂ,,,)2 — W, wo,,,,] (1)
i 1Dy ,
Adw,—~ N, [@o,, wo,. + Do, Wo,, — 2Dy, wo,,] TN, =0 (2"

This initially plane plate has the same extent in the plane, and the co-
ordinate system zyz coincides with the co-ordinate system used for the
initially deflected plate. In comparison with the initially deflected plate, the
initially plane plate has a thickness 4,, a flexural rigidity V,, and a distributed
load g, (xy), which are so far unknown. The deflection is denoted by w, and
Airy’s stress function is designated by @,.

A comparison between Eqs. (1') and (2’) on the one hand and Eqgs. (1”)
and (2”) on the other hand shows that the functions @ and @,, as well as w
and w, are affine under certain conditions. Therefore, we shall determine the
conditions which must be fulfilled in order that the relations

Dy =c, P (4)
Wy = CuW (5)

where ¢, and ¢, are constants, shall hold good.
If use is made of the notations given by Egs. (4) and (5), then Egs. (1”)
and (2") become

44D = (ca)* Ef(w,,)?—w,w,,] ‘ (1)
- 01 Y xxr yy.

h 1 gqo(xy)

A4 w— CIZT[:, [2,, wm—HDm_ww— 20, w,,]— P ~°N—0 =0 (2")

A comparison between Egs. (1') and (2’) on the one hand and Egs. (1)
and (2”) on the other hand yields the following necessary conditions which
must be satisfied in order that Eqgs. (4) and (5) shall be fulfilled

2
—(C—2)~ =(1+2k) (6)
€y
3 h
oy = (48 (7)
1 g (xy) _qlxy)
’6“2 NO - AT (8)
Since
Ehy?
No=13 (1—»?)
3
N - V*Eh
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it follows that the three equations (6) to (8) can be satisfied by an appropriate
choice of the relations between the quantities

P owmd 2O

If Eqgs. (6), (7) and (8) are satisfied, then Eq. (1”) is identically equal to
Eq. (1) and Eq. (2”) is identically equal to Eq. (2').

In that case, a solution of the fundamental equations of the initially plane
plate also involves a solution of the fundamental equations of the initially
deflected plate.*)

The fact that the fundamental equations are satisfied implies that the
conditions for equilibrium and continuity are fulfilled.

On the other hand, it is not certain beforehand that the boundary con-
ditions for the initially deflected plate are fulfilled if they are satisfied for the
initially plane plate. This question should therefore be examined separately
in each special case.

One or several of the boundary conditions are usually expressed as con-
ditions for the deformation components # and v in the plane of the plate.
Before passing to the examples, we shall therefore study the relations between
u and v and between the deflection w of the plate and the stress components.

If the plate is initially plane, these relations are 3)

waz
Euy, + 5 | = 920~V %y (9)
w,
Y [”o;; + *--Oz-y*} = 0,9~ V0, (10)
G ['uoy +vox+waw0y] =TO (11)

For an initially deformed plate, the corresponding relations are 3)

E[u + 5 (1+2k)] =0,—va, (9)

E[?J +—2—(1+2k):l = 0, — V0, (10")

Glu, +v,+w,w,(1+2k)] =7 (11")

*) The fundamental equations (1), (2'), (17), (2”), (1”) and (2”) can also be written

as relations between— ¥ and g(zy) and between P Wo % (@Y) Then the eqgs. (4)
h?’ h h«N hoz’ hy’ hoNy °

] .
and (5) may be written ;?% = o33 TESp l]f—o = ﬂ W In this way the results in the

examples, which are given in dimensionless form, may be obtained more directly.
3) Cf. MARGUERRE, footnote 1).
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By integrating the relations (9) to (10) and (9’) to (10’), and in virtue of
Kqs. (4) to (6), (11) and (11’) it can be shown that*)

1 1
Cq 51
1 1
v=-—vy—A-x+C ="y, (13)
cq C2 |

Consequently, the deformations in the plane of the initially deformed
plate are affine to the deformations in the plane of the initially plane plate,
if the conditions in Eqgs. (6)—(8) are fulfilled.

Example No. 1

Rectangular plate submitted to a uniformly distributed load. The plate is
clamped at the edges. The deformations in the plane of the plate are equal to
zero along the edges (Fig. 1).

| 24
LLLLLLLLLLLL LY
7
7 4
/ .
25 4. L. / ol
7 | 2
! 4
JTTTTTIIA77777
I . - . .
' 2z ! Fig. 1. Notations and co-ordinate system

jEEEEEER gc} used in Example No. 1

The boundary conditions are

x:-a,l u =0 ow

w = - =
x=—|—a] v =0 ox
y=-—>b u =10 w—0 dnw:O
y =+b v=0 oy

In view of the relations (5), (12) and (13), it is seen that if these boundary
conditions are fulfilled for the initially plane plate, they are also fulfilled for
the initially deflected plate.

We shall determine the deflection as a function of the load.

It is convenient to represent the solutions in a dimensionless form. For an
initially plane plate, TrmosHENKO (Theory of Plates and Shells, p. 348) gives

w, .
—hl as a function of
0

*) The terms with the constants of integration 4, B and U represent a small relative
rotation and translation of the plates regarded as rigid bodies. The relative position in
the x-y-plane is fixed by putting 4 = B= (C = 0.
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o b*
Nohy

For the initially deflected plate, we obtain from the condition expressed
by Eq. (8)

S (®)

h c
770:1/ " (b)

Inserting (b) in (a) gives in view of Eq. (6)

From Eq. (7) we determine

-

gb* _ gob? 1
Nk Noho y(1+2k)(1+k)

Furthermore, Eqs. (5) and (7) yield the relation

w _wy 1 h
h ™ hy ¢y h
or 1
W W, :
“_ % d
h hy y(1+2k)(1+k) (@

The constant £ is determined as follows.
The maximum initial deflection W, , is expressed in terms of the thick-
ness of the plate by the relation

Wm(w =a-h (e)
Then we obtain from Eq. (3)
W az kwmax a-h
and from (d)
E=—2 =% ya+2k)(1+k) (f)
Winax Omax
h ho

When the values of o and 1”%&@2 are known, we can determine &k from this
0

4 4
equation. After that, %\% and % can be determined in relation to %and
0“0
%}9 respectively from Eqgs. (¢) and (d).
0

W, . bt
Womer a5 a function of 27 (these curves

I Ny hy
are reprinted from the above-mentioned book by TIMOSHENKO).

Fig. 2 shows curves representing

max

Fig. 2 shows the construction of X for W

h max
and for Yome — 1,
hy

=+ +hie fora=+1%
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With the values of k calculated from Eq. (f), we obtain from Egs. (c)
and (d) two points B and C for the initially deformed plate. According to
Eqgs. (¢) and (d), these points are situated on the secant O — A to the point

EU—‘;L—’:‘)ﬁ =1 on the curve for the initially plane plate, and correspond to the

positive and negative values of «.

4 “Omax Iz 2
Fig. 2. Variation in Womaz  (ith 200* for an KB /y:?——'/
ho N, oho 15 / A
initially plane plate in Example No. 1 determined C e
according to TimosHENEKO. The points B and C ///
10 A

for the initially deformed plate (g— = l) lie on the / /
05 A i

secant 0—A. The point B corresponds to a positive
initial deflection, whereas the point C corresponds
to a negative initial deflection A - - - w0

»
S
-

2

For any other value of ‘Z"‘”‘ the calculation (or construction) is carried
0

out in an analogous manner.
The tangent at the origin can be determined for the different curves.

From Eqgs. (¢) and (d) we obtain

wmaw 3 w()max
h hy
R = o - (2)
gb* bt qob*
B A %7071:0 E’oh04 VA+2k)(1+k) =

For Y1 +2k)(1+k)=oc0, we have k = + 0. Eq. (f) gives,

w o
for k= +o0, —om=—4y2,

Ry
for k= —co, —ome_ _qy3,
hy
Then Eq. (g) gives, for the tangent at the origin
wmaw w()ma:z:
h h ,
qb* Jgbt T\ @bt Wom )

EW Jga=0 \EBht) = te)2

that is to say, for an initially deflected plate, the tangent at the origin consists
of the secant to the curve for the initially plane plate at the point ""'“’ =a)2
(positive initial deflection) and w}"b;"“ = —a /2 (negative initial dgﬁectlon).

The curves corresponding to the negative initial deflection (« negative) for
small ]%, i have been omitted in this example because they would i 1mpa1r the

legibility of the diagram. (Cf. Example No. 4.)
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linear theory linear theory
Yrmax Lmax
h %
A L
25 ) 2 25 177 |
r’ |

/ / /a? - Z/L / / 0= 41 ?

20 T oo -7

X PFE=20

, | A
5 ! T — 15 /

7 : Reef i | 7 EEn
= -
25 Y I 1254 /

\g8* 90*
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\
AN

=

R
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Fig. 3. Deflection at the centre of an initially deflected plate for various values of the

initial deflection at the centre of the plate in Example No. 1. The initial deflection at the

centre of the plate W __ is expressed in terms of the thickness 2 of the plate by the

relation Wmaz: a+h. When the value of « is negative, this implies that the direction of

the initial deflection is opposed to that of the additional deflection. The curves for
qb*

negative values of o and for small values of N7, are omitted in these diagrams.
b a
a) a 1 b) B g

The results are reproduced in Fig. 3 for the plates having the side ratios

L 1,0 and A~
a a 3

The stresses can be determined by a correspondingly simple method. A
distinction must however be made between membrane and bending stresses.
The procedure to be followed in the determination of the stresses is illustrated
by Examples Nos. 3 and 5.

Example No. 2

Rectangular plate subjected to shearing forces applied along the periphery.
The plate is simply supported at the edges, which remain straight and do not
change in length during the deformation (cf. Fig. 4).

g Y
8
| t y
- t Fig. 4. Notations and co-
o ordinate system used in
X 2 _ X  Example No. 2
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The boundary conditions are

— o2
z=01 0 W _p
x=a ox?

- ' 2
y—O} w = 0 L
y=a oy®
x =0 u:y% v=20
x = U = 9 v-—a—a—

- — 9%

6

y=0 u =20 V=%
=a u~a£ ?)—.lei
y= 93 v

In this example, too, it follows from the relations (5), (12) and (13) that if
the above boundary conditions are fulfilled for the initially plane plate, they
are also fulfilled for the initially deflected plate.

We shall determine the deflection as a function of the change in angle 6.
We take as a starting-point the solutions given for the initially plane plate by
STEN G. A. BERGMAN 4). He has represented

Wo max

2
o as a function of 60}%—2 , where 0, is determined by the relation
0 0

0wy | 0y | Qwy Owy

bo = oy = ox  dx 0y

For the initially deformed plate, we have

_ou, oo, 0w d
oy  ox  ox dy

or, in view of Eqgs. (5), (6), (12) and (13),

0 (1+2k),

1

Then, in virtue of the relations in Eq. (7), we obtain

and, as in Example No. 1,

W w, 1

B ko Y(1+2k) (1K)
Eq. (f) and the definition in Eq. (e) in Example No. 1 hold in this case too.

(b)

4) See footnote 2).
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For known values of —13;’&—’"% in Fig. 5 and of «, we calculate ¢ by means of
Eq. (f) in Example No. 1. After that, 0%; and w;’b‘“‘” are determined from the
above equations (a) and (b).

It is of interest to determine the tangent at the origin. We get

Winax Wo maz
h h 1+k :
2 Bf =0 = 02 : (G)
a he a ]/(l+2k)(1+k)
60— o5 k=0
7 ) w Fo
max __ O
h
J
Womaz+ Wmaz
-Wh /
_— Fig. 5. Deflection at the centre of the
2 // plate in Example No. 2 as a function
2

of 8 qu for various values of the initial

h
deflection (for the angle 6, see Fig. 4).

, The curve for « = 0, initially plane
4 plate, has been calculated by BERG-
Z",/ MAN. The initial deflections are in-

= , cluded.
g 50 00 g 50

a=7

T\

The circumstance that £ shall be put equal to oo in the right-hand member

of Eq. (c) follows from Egs. (a) and (b) which give 6%2 and 30;':;" = 0 respec-

tively for k= oco. »
Eq. (f) in Example No. 1, which is also applicable in this case, yields the

corresponding value of w—,‘l’”ﬂ
0
wOmaa: _ 5y
ko = 1/2 (d)
Then we obtain from Eq. (¢)
%"_x E)()nmz
h 2 hy 1
| or=0=| w5 (e)
2 ] 0-—~=0 2
02 | n 0,2 V2 | Woner _ /s
h Wyar hO ho
T =0 ,

For several initial deflections, the results are given in Fig. 5.

BErGMAN has determined corresponding curves by means of detailed cal-
culations made on the assumption that the surface of the initially deflected
plate is sine-shaped. The curves shown in Fig. 5, which are based on the
assumption that the initial deformation and the additional deformation are
affine, are in close agreement with BERGMAN’S curves.
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The conclusions which can be drawn from the above results from the
standpoint of building statics agree, on the whole, with BERGMAN’S inferences.

The procedure in the determination of the stresses is the same, in principle,
as in Examples Nos. 3 and 5.

Example No. 3

Rectangular plate compressed in one direction. The plate is simply sup-
ported at all four edges. Along those edges at which the compressive forces are
applied, the deformation in the direction of compression is the same along the
whole edge (Fig. 6).

Using the notations given in Fig. 6, we have the %"

i) P
boundary conditions :
b >w '
y=to; w=0; S 2=0; |
2 oy ‘
A I
a —0- Pw 0 .
reEys o W=t e T | ¢
, L
y=i—;)“9 Txyzoy Oy=0: ‘P
"2
1 das - Fig. 6. Notations and
U, e U __o=I|F ny=72 T co-ordinate system used
2 2 _a - in Example No. 3
2
a
x =% 5 Ty =0 or v=0 (extreme cases)

These boundary conditions shall be satisfied both for the initially deflected
plate and for the initially plane plate used for comparison.

It follows from KEqs. (4), (5), (12) and (13) that if the above boundary
conditions are fulfilled for the initially plane comparison plate, they are also
fulfilled for the initially deflected plate.

a) Maximum Deflection

A convenient method of dimensionless representation is to express the
deflection w in relation to the thickness of the plate %4 as a function of P/P,,
where P denotes the compressive force applied to the plate, and P, designates
that compressive force at which the plane condition of equilibrium for the
originally plane plate of the thickness & ceases to be stable.

If 7 is the thickness of the initially deformed plate and A, is the thickness
of the initially plane plate, we have, for P,?%),

5) See BryanN, Proc. London Math. Soc., Vol. 22, p. 54, 1891, and TIMOSHENKO,
Theory of Elastic Stability, p. 327.
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> g™ EW
Pe=F% 12 (1—?) )
and for Py,
™ Ehyd
Pa=Py 12(-0 (b)

. . . . . < a o e
where B is a constant which varies with the side ratio X The minimum value

of B is 4.0, which holds good for %: 1.0, 2.0, 3.0, etc.
We obtain from Eq. (7)

h L /1+k
| o e (©)
The relations (a) and (b) yield
P, L/ (L+k)p
el (d)
Furthermore, we have, for the initially deflected plate,
P=fo,hdy (e)
b
T2
and for the initially plane plate,
.
PO = fb U.’to kO dy (f)
T2
In virtue of Eqs. (4) and (7), we get
P (1+Fk)
E N V ¢® ®
Eqgs. (d) and (g) give
P 1 P,
P,  1+k P, ()
For the same reasons as in Example No. 1 and Example No. 2, the relation
between ]ﬂ and 20 js
h hq
Q&n_@g _ Womaz o 1 (1)
h hy YA +2k)(1+k)

To the author’s knowledge, no strictly accurate solution of this problem
has been found for the initially plane plate. Approximate solutions have been
given by Cox, Yamamoro-Koxpo¢), and others. These solutions have been

¢) Cox, H. L., Buckling of Thin Plates in Compression. Aer. Res. Com. Reports and
Mem. No. 1554, London 1933. — Yamamoro, M. and Koxpo, K., Buckling and Failure
of Thin Rectangular Plates in Compression. Aer. Res. Inst., Tokyo 1934.
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deduced on simplified assumptions, viz. in treating the membrane state of
stress, the modulus of elasticity in shear ¢ has been put equal to zero, and
the shape of the deflection surface has been supposed to be of a certain defi-
nite character.

The curve for the initially plane plate shown in Fig. 7 has been calculated
by the author on simplified assumptions which are similar to those made
by Cox.

”;/;m o
60
7
/ @4
50 aﬂ'é"
//
40 /
20 / A
B //
—
10
d=741 10 20 5174 40 50 60 70 40 /7'97

2
Fig. 7. Additional deflection at the centre of the plate in Example No. 3 as a function

of }{i for various values of the initial deflection at the centre of the plate
K

Just as in Example No. 2, it can be demonstrated that % is determined by
the equation

hy

k=a V(L+2k)(1+k) G)
* Omax i
where « is defined by the relation
Wma:c =o-h (k)

As in Example No. 2, it can be shown that the tangent at the origin is
determined by the relation

24 Abhandlungen XI
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:ui@_]' wOmag
*%* P _q = - (1)
P Pk ( ) 1/2 wOma:g — o
P, Wmaz _ Py, ho « ¥2
h_ ==

Fig. 7 shows curves for several initial deflections computed by means of
the method outlined in the above.

b) Design Stresses and Effective Width

The system under consideration is statically indeterminate in a high
degree. Therefore, if the yield point stress is reached in some portion of a plate
made of steel, this involves at the beginning only a redistribution of stresses
at an increasing load. The relation between the practical ultimate load and
that load which causes the yield point to be reached in the most heavily
stressed portion of the plate is dependent on the stress distribution.

Yamamoro and Koxpo have found that the heaviest stress in an initially
plane plate is obtained in their solution as a combination of the normal stress
and the bending stress parallel to the direction of compression.

However, the load-carrying capacity is primarily determined by the ability
of the plate to withstand the edge stresses which are parallel to the direction
of compression, because the ability of the plate to bear a load above P, is
largely dependent on the redistribution of stresses resulting in a stress con-
centration at the edges.

In addition, as will be %hown below, it is necessary to consider the effect
of the initial deflection, which increases the highest compressive stress, but
decreases, in relation to the mean compressive stress, the bending and torsional
stresses due to the deflection of the plate in a large portion of the region used
in design.

It is convenient to represent the results by expressing — Jedse g5 a function
mean

of -, where o,,,, denotes the maximum compressive stress occurring at the

edge and o,,.,, = designates the mean compressive stress. Since the

bh
membrane state of stress in the initially deflected plate is a uniform enlarge-

ment of the membrane state of stress in the initially plane plate (the coefficient
of enlargement being given by cl in accordance with Eq. (4)), we can write
1

Gedge _ UOedgey (m)
Tmean O meang

Eqgs. (h), (j), and (m) determine 5 e as a function of - D -at varying initial
mre(l/n

deflections. The results are given in Fig. 8

At comparatively high values of 1% , the importance of the bending and
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torsional stresses in the initially deflected plate becomes smaller. In what
follows, we shall therefore deal only with the torsional stress for x = $a and
y=14b.

For the initially deflected plate, the torsional stress is given by the formula

My E 2w
= = ) n
() +h? 4(l+v) cxzdy (n)
We form the dimensionless expression
cw
T E 5 oxcy
= 0
Oean  HALHY) " G 9]
For the initially plane plate, the corresponding relation is
c*w,
( T #) B B cxcy
Omean/ 0 4’(1 + V) 0 Omeany (P)
Gegge ez
%@"’:’q”_ ; _%&?71225

-1
—
-
-

P
" P P
a=24 F/’ ]
_//’<— ,—"‘”_::-‘ ;
e S . 1At
/ -~ O T T
77 . e 05
2/ 7 7 oL
/ ==
a=J; //4—/
d” 4,// i
T Lo
1 7
2 0 20 70 40 50 60 0%

Fig. 8. 7¢%%¢ and bmean oo functions of L. for various values of the initial deflection

Omean b P k
in Example No. 3. Among the curves for the initially plane plate, it is Curve 4 that was

used for the calculation of the curves for the initially deformed plate. This curve repre-
sents an approximate solution for the method of support in question. — Curve C

. . P .
expresses MARGUERRE’S approximate solution “™% = (0,81 1/ = ™%} 0,19 in the case

Cedge Py Cedge
where those edges which are parallel to the direction of compression cannot be deformed

in the plane of the plate. — Curve D represents MARGUERRE'S strictly accurate solution,
and refers to the same method of support as Curve C. Curve B expresses an estimated

P . . .
Imean and =~ for the method of support in question. This curve

Cedge k P
was calculated on the assumption that the tangent at the point (P—-— = ] Tmean _ 1)
k Cedge

is known (given by MARGUERRE), and was obtained by interpolation between Curves 4 and D

actual relation between
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In virtue of the relation (¢c), Eq. (5), and Eq. (6), and in view of the fact
that

Omean = —cljo'me(mo
we obtain
TT -
O mean —I/l+‘k 1 1/ 1+k @)
(=) o Ve (1v2k) -V 142k !
Tmean/ 0

The results are graphically represented in Fig. 9.
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Fig. 9. Torsional stress due to the deflection of the plate at the point x = + g y== 2

as a function of the load for various values of the initial deflection

Eq. (q) and Fig. 9 indicate that torsional stresses due to the deflection of
the plate are less sensitive to initial deformations than the greatest edge stress.
An analogous conclusion can be drawn regarding the bending stresses because
the expressions for these stresses are analogous to the expressions for the
torsional stress.

Considering the above remark that the system is statically indeterminate
in a high degree, and seeing that the edge stress in the direction of compression
is predominant, particularly in the case of the initially deformed plate, this
edge stress should be used as a basis for design.

In view of the great importance that is obviously to be attached to the
initial deflection, a certain definite imaginable magnitude of this deflection
should be fixed in drawing up design rules.

It is also to be observed that the diagram representing Teds® a5 a function
mean

of % at the same time shows the inverse value of mga" This is a direct

consequence of the definition of mg“” The extremely great effect of the
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initial deflection is clearly seen from Fig. 8. For instance, when the initial

deflection is twice the thickness of the plate, then Z—)l”bi“ﬂ < 0,5 even for P=0.

In Fig. 10 the diagram representing Tedse a5 a function of ; for several

man

values of the initial deflection contains test values obtained by SECHLER and
WinTER. The extraordinary large dispersion of these test values is attributed
by WINTER to the insufficient accuracy of the measurements and to the probable
influence of initial deflections. The possible effect of initial deflections is
strikingly illustrated by Fig. 10.

__é meap
Gedge b

Omean . . 025
/a:z.ﬂ
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— — 233
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Fig. 10. Test values of 2¢4% (bigqﬁ) plotted in relation to the curves for various values
Omean
of the initial deflection.

@ Test values given by G. WiNTER in 1.A.B.S.E. Preliminary Publication, 1948, p. 137.

o Test values given by G. WINTER in A.S.C.E. Proc., 1946, p. 199.

x Test values given by E. E. SEcHLER in Publ. No. 27, Guggenheim Aeron. Lab., Cal. Inst.
of Technology, Pasadena 1933.

Finally, it is to be borne in mind that the basic solution for the initially
plane plate was approximate. Consequently, the curves for the initially
deformed plate are also approximate. Therefore, Fig. 9 also shows curves which
refer to boundary conditions other than those given in the legend. In addition,
this diagram contains an estimated curve representing the relation between

ZM and I}'; for the boundary conditions in question. The tangent to this
edge

curve for Br = 1 has been determined by MARGUERRE by means of an accurate

solution. For the rest, the shape of this curve has been estimated on the basis
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of the second case of loading completely treated by Marguerre and with the
aid of the author’s curve. The estimated curve indicates the direction in which
the curves for the initially deformed plate should be corrected.

Circular Plate

The fundamental equations given in the above refer to a rectangular co-
ordinate system. These equations are also applicable to circular plates, but
the solution of the problem can be considerably simplified in this case by using
a polar co-ordinate system. However, the above reasoning, which states that
the solution for the initially deflected plate whose initial deflection is affine
to the additional deflection can be obtained from the solution for the initially
plane plate, holds good irrespective of the co-ordinate system.7?)

Example No. 4

We shall deal with two cases of loading which have been calculated by
KARL FEDERHOFER and Haxs EcGEerS®) for the initially plane plate, viz.

a) Uniformly distributed load ¢. The plate is simply supported at the edge
in a radial direction. The supports are freely movable in the plane of the
plate.

b) Uniformly distributed load ¢. The plate is simply supported at the
edge in a radial direction. The supports are fixed in the plane of the plate.
Cf. Fig. 11.

In both these cases, the boundary conditions are so formulated, that if
they are fulfilled for the initially plane comparison plate,
then they are also fulfilled for the initially deformed
plate by virtue of the relations (4), (5), (12) and (13).

Just as in Example No. 1, we have

qat _ Goa* 1 (@)
O Ent  Eh' y(1+2k)(1+k)
and ,
Mr 9
w W 1 _ (b)
~ % ¢ b by Y(1+2k)(1+Fk)
‘ ’ 29 ] Furthermore,
Fig. 11. Notations and k=« 1 V(L+2k)(1+k) (c)
co-ordinate system W0 maz

used in Example No. 4 hy
?) The fundamental equations can also be written in terms of polar co-ordinates,
but this is unnecessary, at least for the examples treated below.
8) KarL FEDERHOFER and HANS EGGER, Berechnung der dinnen Kreisplatte mit
groBer Ausbiegung. Sitz.-Ber. d. Ak. Wiss. Wien, Math. Kl. Abt. ITa. 155, Bd. 1, und
2. Heft., 1946.
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The deflections of the initially deformed plate have been calculated on the
basis of the deflections of the initially plane plate computed by FEDERHOFER
and EaeErT. The results are reproduced in Fig. 12. The tangent at the origin
has been determined in the same manner as in Example No. 1.

In dimensionless representation, it is convenient to express the membrane
stresses 8o that o,, - k: is obtained as a function of Z, 5i- Lhe relation between
the membrane stresses in the initially deformed plate and the initially plane

plate is deduced as follows.

YWmax
]

a=-2

Fig. 12a. Deflection at the centre of the plate as a function of the load in Example No. 4a
for various values of the initial deflection at the centre of the plate. L.¢{. = the deflection
calculated in accordance with the linear theory of plates. The curves for negative values

of « and for small values of - 9 are omitted in this diagram. The curve for the initially

Eht
plane plate (« = 0) has been calculated by FEDERHOFER and KGGER
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Fig. 12b. Deflection at the centre of the plate as a function of the load in Example
No. 4b for various values of the initial deflection at the centre of the plate. L.t. = the
deflection calculated in accordance With the linear theory of plates. For negative values

of « and small values of I 5 hT* a curve is given only for « = —1
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Eqgs. (4) and (7) yield
1 a? 1 a* 1
ME T E b 14k (@
The curves for the initially deflected plate can be constructed from the
curves for the initially plane plate by means of Egs. (a), (c) and (d). The
results for the case (b) are reproduced in Fig. 13. The procedure in the deter-
mination of stresses in the plate supported according to the case (a) is the
same in principle. For lack of space, we shall not deal with this case.

AN
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3
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Vi i 2 Y
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\
\
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A
\\
e Fig. 13. Membrane stress at the centre of the plate
- :‘ — a8 a function of the load for various values of the
] ) initial deflection in Example No. 4b. For small
N 4 1
§" ‘ values of %%Z and negative values of «, a curve is
_; J given only for o« = — 1

The tangent at the origin is obtained from

1a 1 a 1
mE R B AE 1k _
ga*  Jgqat | g9 1 B
Ew JEn=" \ BT Yaiek(ik)FTE®
1 a2
5 Rt s
= i‘—‘?—airq“l/z (e)
: God for Womer _ 4, y3
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The plus sign refers to the positive initial deflection and the minus sign refers

to the negative initial deflection.
It follows from Eq. (d) that the membrane stresses are negative for k£ < — 1.
When k& — —1, the membrane stresses asymptotically tend towards — co.
2 2
The bending stresses o, are proportional to (ZTH; + vZ—Jj) h .
In dimensionless representation it is convenient to form the expression

1 o?
DE W
By virtue of Egs. (5) and (7), we have
Al ol -
o _ \oa*" "ay?) b _ 1. [1+E (f)

- 2 2
Tt 0% W ) 0?w,
oy

) by ¢y ¢y

0 x?
The same relation between the bending stresses in the initially deflected
plate and the initially plane plate is obtained for any arbitrary direction.

In view of Egs. (f), (7) and (6) we obtain

cla_ o la 1 flvk o 1 a ! (2)
"E R E hE ol o 14k T"E b a2k (i+k)  ©
b
a=-2

[ re

3

Fig. 14. Bending stress at the centre of the plate as a function of the load for various

4

values of the initial deflection in Example No. 4b. For small values of Zqi’ih‘l and negative

values of «, a curve is given only for « = — 1. L.{. = the bending stress calculated in
accordance with the linear theory of plates

The curves for the initially deflected plate can now be constructed in a
simple manner from the curve for the initially plane plate. Fig. 14 represents
the bending stress at the centre of the plate for the method of support (b).
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The expression for the tangent at the origin can be deduced by means of
a method which is similar to that used in the case of the membrane stresses.

We obtain
1 a2
o
. __qa_4
E ht
G,
% . %

Fig. 15. Notations and
co-ordinate system
used in Example No. 5

qat

- 1 a2y
_ boE ZL02 (h)
ae Dol DT g Yo pyyz
E h? Ehet ] Ehyt hy,

Example No. 5

Circular plate subjected to compression in a radial
direction and simply supported at the circumference
(Fig. 15).

If the boundary conditions are fulfilled for the
initially plane plate, they are also fulfilled for the ini-
tially deflected plate.

We introduce the following notations:

o, = the radial membrane stress,

og = the circumferential membrane stress,

o, = the radial bending stress at the upper surface,

Ores Oges Op = the values of stresses at the edge of the
plate,

o, = the critical value of o,,.

The quantities which are primarily of interest in the design are the maxi-

mum deflection w

Wrzv
A

max’

which occurs at the centre of the plate, oy, and oy, -

8

7

05 B
77
2_
e |
4
G My 7
g / 25

Fig. 16. Deflection at the centre of the plate as a function of the radial compressive

stress applied along the external circumference in Example No. 5 for various values of

the initial deflection. The curve for the initially plane plate has been calculated by
FrieDprICHS and STOKER
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The maximum value of g4, occurs at the edge of the plate. The fundamental
solutions for the initially plate are those due to FrRiEDRICHS and STOKER?).
The value of PoissoN’s ratio is taken to be 0.318.

The methods of deducing the relations between the initially plane plate
and the initially deformed plate are similar to those used in the foregoing
example, and are omitted in what follows. The results are given in Figs. 16,
17 and 18.

gs_& a=4

e

5 - 12

Fig. 17. Membrane stress in a tangential

direction as a function of the external load

at various values of the initial deflection in
Example No. 5

Fig. 18. Maximum bending

stress occurring in the plate

as a function of the external

load at various values of the

initial deflection in Example
No. 5

Discussion of Results

In the discussion of the basic results obtained in this paper, the examples
can be conveniently classified in two groups as follows.

%) K. O. FriepricHs and J. J. StokeR, Buckling of the Circular Plate Beyond the
Critical Thrust. Journal of Appl. Mech., March 1942. — CH. MASSONET has studied a
radially compressed clamped plate with an initial deflection of a certain definite form,
see CH. MassoNET: Buckling of Plates. Final report of Third Congress, Int. Ass. for
Bridge and Struct. Eng. 1948.
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Group No. 1 comprising Examples Nos. 1 and 4, in which the external
load consists of a transverse load acting at right angles to the plane of the plate.

Group No. 2 comprising Examples Nos. 2, 3, and 5, in which the external
load consists of forces acting in the plane of the plate.

In Group No.1 we can distinguish between two principal cases, viz.,
positive and negative initial deflection, i.e. the initial deflection and the
additional deflection having the same or the opposite directions respectively.
~ When the initial deflection is positive, the stiffness of the plate increases
as the initial deflection becomes greater (see Figs. 3a, 3b, 12a and 12b). It is
of interest to note that the stiffness of the initially deflected plate is greater
than that of the initially plane plate also at small values of the transverse
load (the slope of the tangents at the origin in the above-mentioned diagrams
decreases as the value of « becomes greater). It is quite natural that the
smallest increase in the stiffness of the plate is to be observed in that example
(Fig. 12a) where the deformation in the plane of the plate was not prevented
at the supports.

In Example No. 4, Case (b), we have determined the stresses at the centre
of the plate. The results given in Figs. 13 and 14 show that there is a very
large decrease in the bending stresses at the centre of the plate when the initial
deflection is positive. This statement holds at small loads too. On the other
hand, the membrane stresses are relatively insensitive to the initial deflection.
Even though the maximum stresses at higher loads do not occur at the centre
of the plate, a comparison with the stresses calculated from the linear theory
shows that there are extensive possibilities of utilising the effect of the initial
deflection in various structures, e.g. in roof slabs on circular cylindrical con-
tainers, by designing the plate so as to obtain an initial deflection.

When the initial deflection is negative, the stiffness of the plate is reduced
by the initial deflection at high values of ¢ (cf. Figs. 3a, 3b, 12a and 12b).
This reduction is connected with an increase in the bending stresses (cf. Fig. 14),
whereas the membrane stresses are relatively insensitive to the initial deflec-
tion, just as in the case of the positive initial deflection (cf. Fig. 13).

When the value of ¢ is small and the initial deflection is negative, the
problem is relatively intricate. The results are given only for o« = —1 in
Example No. 4. It follows from the dash-line curve in Fig. 12b that the
problem is not unambiguous within a given region, if we consistently adhere
to the assumption that the initial deformation and the additional deformation
are affine. For o« = —1, the linear theory provides a solution at the points

v—w";zax = 1,0 and w—’z‘”ﬁ = 2,0. A corresponding statement can be made about

the bending stresses (Fig. 14), whereas the membrane stresses are negative
4

at small values of ]—%%I, and tend towards —oo at that point which cor-

responds to 30—’;%& = 1,0. This phenomenon can probably be attributed to the

effect of the assumed affinity.
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It is obvious that due regard must be paid to the initial deflection in the
interpretation of test results. At small initial deflections and high values of
al
17
loading tests in both directions on the initially deformed plate, as may be

seen from Figs. 3a, 3b, 12a, and 12b.

In Examples Nos. 2, 3 and 5, Group No. 2, the initially plane plate remains
plane when the values of the external load are smaller than the critical buckling
force. On the other hand, the deflection of the initially deformed plate increases
from the very moment of application of external load. Figs. 5, 7 and 16 shows
the deflections of the initially deformed plates. When the values of the external
load are small, the plates subjected to the greatest initial deformation exhibit
the greatest deflections, whereas the reverse is the case at heavy loads.

The curves indicate how the results obtained from tests made at known
initial deformations can be interpreted in respect of the magnitude of the
critical load.

As regards the stresses, it is the membrane stresses that are of interest in
the first place. Fig. 8 shows the effect of the initial deflection on the greatest
edge stress in Example No. 3, and Fig. 17 gives the membrane stress in a
tangential direction at the support in Example No. 5. The membrane stresses
shown in these diagrams represent the maximum values of these stresses
occuriing in both examples. It is seen that the initial deflection has an extremely
great influence on the magnitude of these stresses. The increase in stresses due
to the initial deflection is particularly marked in the region P < P,. In both
examples, the membrane stresses are concentrated in the neighbourhood of

the edges.

the stiffness of the initially plane plate can be determined by making

Tedge

In Example No. 3, &
effective width to the total width of the plate. The strong influence of the
initial deflection on the effective width is therefore clearly seen from Fig. 8.

The stresses due to the bending of the plate (Figs. 9 and 18) do not increase
to the same degree as the membrane stresses on account of the initial deflection.

The fact that the membrane stresses are so strongly influenced by the
initial deflection, particularly in the subcritical region (P < P,), but also in
the supercritical region (P> P,), shows that due regard should be paid to the
effect of possible initial deflections in drawing up design rules for similar
cases of loading.

expresses the inverse value of the ratio of the

Summary

This paper deals with thin plates subjected to an initial deflection which
is of the same order of magnitude as the thickness of the plate, and is affine
to the additional deflection.

By comparing the fundamental equations of an initially plane plate and
an initially deformed plate, which have been deduced by von KARMAN and
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further developed by MARGUERRE in accordance with the non-linear theory of
plates, it is demonstrated that the solution for the initially deformed plate
can be obtained from the solution for the initially plane plate if the initial
deflection is assumed to be affine to the additional deflection. The reasoning
is as follows. The condition that the initial deflection shall be affine to the
additional deflection (W =k-w) is satisfied by the solution of Egs. (1’) and (2').
For a certain definite k, the solution is single-valued. The fundamental equa-
tions (1’) and (2’) for the initially deflected plate and the fundamental equations
(1”) and (2”) for the initially plane plate are identical if the conditions in
Eqgs. (6), (7) and (8) are fulfilled. In this manner the solution of the equations
of the initially deflected plate can be obtained from the solution of the equations
of the initially plane plate.

Since the fulfilment of the fundamental equations is an expression of the
-fact that the conditions of equilibrium and continuity are satisfied, but does
not affect the boundary conditions, it is necessary to make sure that the
boundary conditions are fulfilled in each individual example.

The examples adduced in this paper show, among other things, how that
form of the initial deflection which complies with the condition that the addi-
tional deflection shall be affine to the initial deflection can be determined
from the solutions for the initially plane plate. (For instance, in Example
No. 1, it is found to be given by that deflection form of the initially plane plate

which corresponds to the value of fb;i-" determined by Eqs. (3), (d) and (f)).
0

Furthermore, a comparison of the fundamental equations shows that the
membrane stresses in the initially deformed plate and its deflection at a known
load are uniform enlargements of the membrane stresses in the initially plane
reference plate and its deflection at another known load.

In applying the rules deduced in this paper, it is to be observed that the
boundary conditions shall be fulfilled.

Five selected examples demonstrate the procedure of deducing the solutions
for the initially deflected plate from previously known solutions for the
initially plane plate. The results are discussed.

Zusammenfassung

‘Die vorliegende Arbeit behandelt die diinne Platte mit anfanglicher Ver-
formung, die von gleicher GroBenordnung wie die Dicke der Platte und zu
der zusédtzlichen Verbiegung affin ist.

Durch Vergleich der Grundgleichungen einer anfinglich ebenen Platte mit
denen einer anfinglich gekriimmten Platte, welche von KArRMAN abgeleitet
und von MARGUERRE in Ubereinstimmung mit der nichtlinearen Plattentheorie
weiter entwickelt worden sind, wird gezeigt, dal3 die Losung fiir eine anfanglich -
gekrimmte Platte aus der Losung der ebenen Platte gefunden werden kann,
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wenn die anfingliche Verformung zu der zusétzlichen affin angenommen wird.
Die Uberlegung geht wie folgt: Der Bedingung, daB die anfingliche Durch-
biegung affin zur zuséitzlichen sein soll (W =k.w) geniigen die Gleichungen (1’)
und (2). Fiir ein bestimmtes k ist die Losung eindeutig. Die Grundgleichungen
(1) und (2') fiir die anfianglich gekrimmte Platte und die Grundgleichungen
(1”) und (2”) fir die ebene Platte sind identisch, wenn die Bedingungen in den
Gleichungen (6), (7) und (8) erfiillt sind. Auf diese Weise kann die Losung der
anfianglich gekriimmten Platte aus der Losung der ebenen Platte erhalten
werden.

Da die Erfiilllung der Grundgleichungen die Tatsache ausdriickt, dafl das
Gleichgewicht und der Zusammenhang gewihrleistet sind, iiber die Rand-
bedingungen aber nichts aussagt, ist es notwendig, dafl die Randbedingungen
in jedem einzelnen Falle erfiillt werden.

Die in dieser Arbeit angefiihrten Beispiele zeigen u. a., wie die Form der
anfinglichen Durchbiegung, welche affin zu der zusitzlichen Durchbiegung
sein soll, aus der Losung der ebenen Platte bestimmt werden kann. (Z.B. in
Beispiel No. 1 ist sie gegeben durch die Biegefliche der ebenen Platte, welche
dem Wert wo/ho, bestimmt durch Gleichung (3), (d) und (f), entspricht.)

Weiter zeigt ein Vergleich der Grundgleichungen, dafl die Membrankréfte
in der anfanglich gekrimmten Platte und ihre Durchbiegung unter einer ge-
gebenen Last dhnliche Vergroflerungen der Membrankrafte und Durchbiegun-
gen einer ebenen Platte unter einer anderen bekannten Last sind.

Bei der Anwendung der abgeleiteten Regeln ist zu beachten, da3 die Rand-
bedingungen erfiillt sein miissen. |

Finf ausgesuchte Beispiele zeigen das Vorgehen zur Ableitung von Losun-
gen fiir die anfianglich gekriimmte Platte aus vorher bekannten Losungen der
ebenen Platte. Die Ergebnisse werden besprochen.

Résumé

Le présent mémoire porte sur le cas d’une plaque mince comportant une
déformation initiale du méme ordre de grandeur que sa propre épaisseur et
affine du fléchissement ultérieur. '

Par comparaison entre les équations de base d’une plaque initialement
plane et d’une plaque initialement incurvée, telles qu’elles ont été établies par
KArMAN et développées ultérieurement par MARGUERRE en concordance avec
la théorie non linéaire des dalles, I’auteur montre que la solution relative a
une plaque initialement incurvée peut étre obtenue a partir de la solution
relative a une plaque plane, lorsque 1’on peut admettre que la déformation
initiale est affine de la déformation ultérieure. Le raisonnement est le suivant.
La condition pour que le fléchissement initial soit affin du fléchissement ulté-
rieur (W =Fk-w) est satisfaite par les équations (1) et (2’). Pour une valeur
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déterminée de k, la solution est parfaitement déterminée. Les équations de
base (1’) et (2) pour la plaque initialement incurvée et les équations de base
(1”) et (2”) pour la plaque plane sont identiques lorsque les conditions des
équations (6), (7) et (8) sont remplies. Dans ces conditions, la solution relative
& la plaque initialement incurvée peut étre obtenue a partir de celle de la
plaque plane.

Les équations de base exprimant le fait que 1’équilibre et la cohésion sont
assurés, mais ne donnant aucune indication au sujet des conditions marginales,
il est nécessaire que ces derniéres soient remplies dans chaque cas parti-
culier.

Les exemples cités dans le présent mémoire montrent, en particulier,
comment la forme du fléchissement initial, qui doit étre affine de celle du
fléchissement additionnel, peut étre déduite de la solution relative a la plaque
plane. (C’est ainsi que dans l’exemple 1, elle est donnée par la surface de

flexion de la plaque plane, qui correspond a la valeur 1;“’— déterminée par
0

I’équation (3), (d) et (f).

Une comparaison des équations de base montre en outre que les efforts de
membrane dans la plaque initialement incurvée et son fléchissement sous une
charge donnée représentent des accroissements analogues des efforts de
membrane et des fléchissements respectifs d’une plaque plane, sous I’action
d’une autre charge connue. '

Dans D’application des regles établies, il faut noter que les conditions
marginales doivent étre remplies.

Cinq exemples mettent en évidence la marche & suivre pour arriver aux
solutions relatives a la plaque initialement incurvée, a partir des solutions
déja connues de la plaque plane. L’auteur discute les résultats ainsi obtenus.
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