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The Load Distribution in Interconnected Bridge Girders with Special
Reference to Continuous Beams

Repartition de la charge dans les poutres de ponts associees entre elles, avec prise
en consideration particuliere de la poutre continue

Die Lastverteilung in zusammenhängenden Brückenträgern unter besonderer

Berücksichtigung des durchlaufenden Balkens

Arnold W. Hendry D. Sc, Ph. D., M.I.C.E., M. I. Struct. E., and
Leslie G. Jaeger M. A. Ph. D., University College of Khartoum

Several methods for the analysis of interconnected bridge girder Systems
have been formulated in recent years. Apart from relaxation or moment
distribution [1], which have the disadvantage of not yielding general Solutions,
all methods entail the use of simplifying assumptions either as to the mode
of deformation of the structure or as to its construetion or both. One of the
most successful Solutions has been by the application of the theory of plates
[2, 3] but recently the authors have developed a method in which the cross
girders only are replaced by a continuous medium of total moment of inertia
equal to that of the actual transverse System. The method has been discussed
in detail elsewhere [4,5]; it possesses a number of advantages as compared
with plate theory in that its derivation is comparatively simple, that
distribution coefficients of immediate physical significance and application are
obtained, that greater accuracy is obtained in certain cases and that all the
longitudinals need not have the same moment of inertia. Furthermore the
treatment of .transverse moments is believed to be more aecurate.

The objeet of this paper is to give a brief resume of the method as applied
to simply supported spans and to discuss its application to the analysis of
interconnected continuous beams. The analytical procedure depends on whether
or not the longitudinals possess torsional stiffness and will be illustrated by
considering the Solution for a three girder bridge. A general Solution for any
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degree of torsional stiffness is possible but in practice it is more convenient to
obtain distribution coefficients for zero and for infinite torsional stiffness and
to interpolate intermediate values by use of a suitable function.

The method is based on two simplifying assumptions only:

1. That the transverse members may be replaced by a continuous medium
of the same total moment of inertia.

2. That the torsional stiffness of the transverse members may be neglected.

Assumption (1.) has been found to be valid for as few as three cross girders.
Torsion of the transverse members can be taken into account, but its effect is

usually very small.

Analysis of Three Girder Bridge: Zero Torsional Stiffness

Fig. 1 (a) shows a cross section of the bridge at distance x from mid-span.

Suppose that the inner girder (2) is given a deflection y2 a2cos7Tjr- then the

deflections of girders (1) and (3) will be y1 y3 a1eos7^; aY and a2 are of
course the mid span deflections of the girders (1) and (2) respectively. The
transverse medium receives only vertical forces from the longitudinals and

© © ©
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Fig. 1

these forces are proportional to the deflections of these girders. Thus the forces

per unit length of the transverse medium are Kyx,Ky2 and K ys; reversed in sign
these forces are the loads per unit length applied to the longitudinals. Thus

EIdL^ Ky1 and JE I^ Ky2dx* dx*
4

so that K is equal to EI ^j on Substitution for yx and y2. The flexural rigidity

per unit length of the transverse medium is n T. The bending moment

diagram is triangulär so that by area moments:
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Kh?L
Ttm; " <*•-*>>

Substituting K EI^ and putting a -^ l-j~\ T we have —^ 2/2 — 2/i

i. e. yx y2
* 1 or ax a2 l * 1. If we put a1 + a2 + a3 A we then obtain

-A =PlA

A =p2A

4 + 3a

4 + a
4 + 3a

A is the amplitude of the first harmonic component of the "free deflection"
curve which is the deflection curve of one of the longitudinals if it carried the
entire loading on its own. px and p2 are distribution coefficients for the first
harmonic of the free deflection curve. If the deflection of the loaded girder is

cos p -y- or sin p -j- it is easily seen that the distribution coefficients will be

obtained by substituting ot/p* in place of a in the formulse for the first
harmonic coefficients.

If, therefore, the free deflection curve is analysed by Fourier's series into
its harmonics, the deflection curve of each of the longitudinals can be found
by applying the corresponding distribution coefficients to the component
terms of the series i.e.

TTX 3 TTX 2 TTX
yx pxA cos -y- + p1 A cos —f h • • - +p1 A sm —¦= (- • • •

Ij Ij Li

TT X OTT X 2 TTX
y2 p2A cos —=r- + p2 A cos -~f h • • • + p2 A sm —= h • • •

Ij Lj JU

Exactly the same holds true for the bending moment curves so that the
bending moment diagram for each longitudinal can be found by distributing
the harmonics of the free bending moment diagram. In practice the first
harmonic is always dominant and is frequently the only one which need be
considered.

If the outer longitudinals are of different moment of inertia from the inner
it is evident that we must write

EI^w riKyi and EI*-ä Ky*

I 4

where 7] j1 and K E I^jj- 0n Solution we find

cc 4 7] + a
pi T^Tzirr^ZÄ and P2

4r? + a(l+2r?) r2 47? + a(l+2r?)
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These are deflection distribution coefficients; bending moment distribution
coefficients in this case are obtained by multiplying the deflection coefficients
for the outers by rj.

Analysis of Three Girder Bridge: Infinite Torsional Stiffness

In this analysis the longitudinals are assumed to be infinitely stiff tor-
tionally and the cross girders are assumed to be rigidly connected to the main
girders. Torques are thus transmitted into the longitudinals from the transverse

medium and the longitudinals rotate as rigid bodies into positions of
torsional equilibrium. To illustrate the method the analysis of a bridge having
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Fig. 2

three equal longitudinals, loaded on the centre one, will be worked out. Referring

to fig. 2, suppose that the angle of rotation of each outer longitudinal is 01?

then it is easily shown that the shear per unit length of the transverse medium
at its connection with girder (1) is

2
r hei~\

s1 m\y2-y1—^H

and that the bending moment per unit length in the transverse medium at
the same place is

6nEIrr T 2hd1~6nEIT T 2h01~]
Lh2 |*a *i 3

This bending moment acts as a torque on longitudinal (1) and since the ends
of this longitudinal are not restrained we must have for equilibrium:

Z/2

M1dx 0

-Z/2

Taking y1 a1cos-jy, y2 a2 cos ^- and using the expression for M1 given
above, we find that
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3
hdx — (a2 — ai)

TT

The characteristic equation for the deflection of longitudinal (1) is then

The expression for hdx is a constant and to obtain a first harmonic Solution
we replace h 9X by its first harmonic component which is

— hvx COS -y-TT Li

_.,774 TTX TTX 6m x 7T#
i£ i -=j- ax cos -=— m (a2 — a{j cos -= T (a2 — ax) cos -=.-

Zr Z/ Ij TT* Li
Then

Zr* ~ -Z " "

whence ax a (a2 - ax) II ^ l

Putting ax a I 1
^ I:

ai ai (a2"~ ai)

and the distribution coefficients are

l + ax
Pi 1 o ' P2

1 + 3 aj. r^ 1 + 3 Ä1

As in the previous case, distribution coefficients are easily obtained by the
same procedure when the inner and outer girders are of different sections by
the introduction of the ratio rj.

In connection with calculations on interconnected continuous beams
distribution coefficients are also required for the conditions that the longitudinals
are of infinite torsional stiffness and do not rotate i. e. 01 O in the above
example. These are very easily obtained and are

a o
1 +a

Pi 1,_Q„ Pl+3a r l+3a
It is interesting to note that the form of px is the same in each case, as the

"no torsion" coefficients are obtained by putting a/4 instead of a in the "no
rotation" case just quoted and the "füll torsion" coefficients by substituting

Distribution coefficients for bridges having two, three, four, five and six
longitudinals are given in appendix I for both füll torsion and no torsion cases
and for loads on the various longitudinals.
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The Interpolation Function

In practice the cases of negligible and infinite torsional stiffness of the
longitudinals are of greatest importance as it is found that on the one hand the
torsional stiffness of structural steel girders of I section may be neglected and
on the other that reinforced concrete beams are torsionally so stiff that they
may be considered to be of infinite torsional stiffness. Only occasionally are
structures encountered between those extremes. The criterion is established
by a non-dimensional parameter:

IT» (h\ (GJ\p 2n\L \EITJ
For negligible torsional resistanee ß -> 0. It has been found that if ß exceeds

about 1.25 the longitudinals can be considered infinitely stiff in torsion. Inter-
mediate values of the distribution coefficients may be found by using the
following interpolation function:

Pß Po + (poo~Po) 1/
ß«

3+ßoc

where pß is the required value and p0 and p^ are the distribution coefficients
corresponding to ß 0 and ß oo respectively. This function was obtained
from consideration of the results of general analyses taking into account twist
as well as rotation of the longitudinals.

Loads Acting Between the Longitudinals

In the analysis described above it has been assumed that the loads are
applied directly to the longitudinals. If they are applied to the cross girders
or the deck slab between the longitudinals they must be replaced by an equi-
valent System of loads acting on the longitudinals. The equivalent System is
found by considering the cross girder or slab as a continuous beam simply
supported at the longitudinals; the reactions of this beam are then the loads

applied to the longitudinals and the moments and deflections arising from
them are distributed by means of the distribution coefficients discussed above.
The reason for this procedure may be appreciated by considering the
longitudinals to be propped when the loads are applied; the simply supported
continuous beam reactions will then be developed on the longitudinals and
will be distributed through the System when the props are removed.

Transverse Moments

Expressions for transverse moments are obtained in the following manner.
As an illustration, consider a three girder bridge with the loading on the
outer girder.
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a) No torsion case: The equation for bending moment in a strip of the
transverse medium of unit width is

Mz rjKys-z + Ky2[z-h]
There are no bending moments at girders (1) and (3); putting z h the transverse

moment over the centre longitudinal is

But Y= A cos ^ß- and at mid span M EI ^ Y or Y= -^-ttt • M. ThereforeL r Z2 7T2EI

Mz2 L*
2

M h ™

b) Infinite torsion case: In the case under consideration

h01 — [öaj-eag + ag], Äö2 — [2a1-2a3], Äö3= — [-a1+ßa2-5a3J
Z 7T Z 77 Z 7T

The bending moment per unit length in the transverse medium at its connec-
tion to the loaded girder is therefore:

6nEIT x / 77;r 2\
wnence: JfZl

^ (ax — a2) I cos -= — I

At midspan i.e. at x 0

6nEI„, / 2\ 6L2nEI„/M?M«= h*L
r i x /, 2\ 6L2nEIT/MXl „, W 2\^K-a2) (l--) ^-ypf (-^- -Jf„) (l--)

since the moments at midspan in the longitudinals -M^, and ikf^ are respec-
tively

TT2 .Ei 772^7
Mx, V —jpr % and MX2 ^2 a2

Substituting MXl p1M and MX2 p2M where Jf is the free bending moment,
and also

6L2nEIT tt2 h
— OL

MZ1 TT2 / 2\ Ä
we have -^- - « ^1 - -j (Pl -Pa) _

TT*EIh*L 2 L2

„ A

X2

or
M* L*
M̂ -x L79a(Pl-p2)



102 Arnold W. Hendry and Leslie G. Jaeger

Similar expressions for other loading cases and numbers of longitudinals up to
four are tabulated in appendix IL For five and six longitudinals it is more
convenient to evaluate the h 0 terms numerically and to Substitute into the
slope deflection equations for transverse moments.

Solution of Continuous Girder Systems by Superposition

The above theory may be applied to the Solution of continuous beam

bridges and also to derive influence lines for the structure in the following
manner: in essence, the bridge is treated as a single span between the first and
last support with the intermediate supports removed and the applied loads

are distributed in the usual manner. The support forces are introduced and
their magnitudes are calculated from the requirement that the deflections at
the support points must be zero. The support forces are then considered to be

applied to a single span bridge and are distributed accordingly. Superposition
of the effects of the loads and support forces then gives the Solution for the
continuous beam bridge.

Calculations by this method are greatly facilitated by a suitable System of
notation which will be clear from the following example. Consider a two span.
three girder continuous beam with intermediate support distance r, and a concen-
trated load W distance a from the left hand end. Then, with origin at the left
hand end, the Fourier series for the deflection of one of the longitudinals car-
rying the load by itself (i.e. the "free" deflection) with its centre support
removed is:

Yz
2WLS

^E
L3 T 77a TTX 1 2Tra 2ttx 1 3rra 3ttX

24 sm xSmx + p sin -j- sm -j- +

where L is the total length of the bridge.
Then considering this load to be distributed amongst the three

longitudinals of the bridge treated as a single span L, the deflections of the three
longitudinals are:

VlL
2WI?
T*EI

Tra TTX
p-L sm -j- sm -j-+p1

1 2-rra 2ttx_8in__8in__ +

1 3Tra 3TTX
+ Pi *

34
sm "£- sm -JJ~ + Pi.™

V*L
2WL*
TT*EI

na 77 x „
p2sm-^-sm-g-+p2

1 277« 277£
._Bm__8m__ +

1 H+ P2
1 377a 377#

sm T sm —-=—h
34

P22[YL]
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2W L3 [ Tra ttx 1 277a 2 ttx
2/3Z ^e I p3 Sm X Sm IT +p3 '

24
Sm ~ZT Sm ~TT +

1 3 77 a 3 TTX
+ P3 '34Sm~X~ Sm~X- + P32[^z]

where p is used as an Operator in the manner indicated. The suffixes are intro-
duced to define the girder to which the coefficients apply and the girder on
which the load acts. Thus p12 is the distribution Operator for the first
longitudinal for the load acting on the second. In the same way, the series for the
free deflections which would result from application of unit load at the reaction
point on any longitudinal is:

2L3 [ -nr TTX 1 2 77 r 2ttx l 3 77 r 377a;

Thus the deflections of the longitudinals for unit load applied to longitudinal
(1) are:

VlR= Pll lYR], y2R= P21 [YR], VZR= Psi l YR~\

and similarly for unit loads at the reaction points on the other two girders.
We may then write down the following equations to express the condition

of zero deflection at the intermediate support point of each girder:
For longitudinals (1) and (3)

^2 * Pl2 [ YB\x=r + ßl (Pll + Pia) [ YRlx=r Pl2 [ YL~\x=r (1)

For longitudinal (2)

R2 ' P22 [ YR\x=r + '2^l P21 [ Yr\x=t P22 [ Yl\x=v (2)

Solving (1) and (2) we obtain:

R _ 2p12 [YL] ß21[YB] -p2i[YL] (pu +ß13) [YR]
2 2pi2[YRlP2i[YRi-P2,[YE](Pii+Pi3)lYR]

and
P22 [ Yl\ P12 [ ^7?] - P12 [ Yl1 P22 [ YtA

Ä1
2 P12 [ yr] P21 [ Yr] - P22 [ YR] (pn + p13) [ YB]

assuming that x is put equal to r in each of the deflection series. Knowing Rx
and R2 in terms of W the deflection curves for girders (1) and (2) with loads
and reactions acting together are obtained immediately.

To obtain the bending moments in the continuous bridge, R1 and R2 are
calculated as described and the bending moments to which they give rise are
distributed through the single span bridge and superimposed on the bending
moments due to the external loads similarly distributed.

As a simple example suppose that for a certain structure having torsionally
stiff longitudinals and for which a 22.2 (taken over the whole length L) the
]oad is applied at a L/4 and the intermediate supports are located at r L\2.
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Then the distribution coefficients are as follows:

Load on Girder (1) Pu or P33 P21 or P23 Psi or P13

1 st. Harmonic 0.435 0.321 0.244
2nd. Harmonic 0.575 0.268 0.156
3rd. Harmonic 0.816 0.150 0.033

Load on Girder (2) Pl2 P22 P32

1 st. Harmonic 0.321 0.358 0.321
2nd. Harmonic 0.269 0.462 0.269
3rd. Harmonic 0.150 0.700 0.150

Substituting a L/4 in the free deflection series:

YL
2WL3

[EtH-x + ii
2ttx 0.707

si sm L
TTXl

TAt * ^, YL=2-^ [0.707(l-^)]

For the reactions r L/2 so that:

21? r. 77X 1 3ttx
8lSmT

for unit load and at x r Lj2
2L* r n

w*EI L 8lJY„

The figures within the Square brackets must not, of course be added or sub-
tracted before application of the distribution coefficients.

Substituting, we obtain (for R2):

Ro
2-0.707 [0.321-M5] [0.321 + ^]-0.707[0.358-^] [o.679+^]

2 [o.321+^] [0.32l7^] - [o.358+^] [o.679+^]
W

i.e. R2 0.560 W.

Similarly Rx 0.065 W and the deflection equations for the girders are

Vi Pu [ YL] - Bx (ßn + p13) [ FÄ] - R2 p12 [ YR]

2WL3
n*EI 0.0065 sin ^ + 0.0168 sin^ + 0.0065 sin ~Li L/ Li

Ü2 P22[YL]-2R1p21[YR]-B2p22[YR]
2WL3
TT*EI

0.0110 sin ^ + 0.0289 sin^ + 0.0110 sin^Li L L
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It will be observed that a check on the result is obtained since y! y2 0

at x L\2 i.e. at the intermediate support points. The second harmonic term
is in any case zero at x=-L\2 and thus the coefficients of the first and third
harmonics must be equal. Inspection will also show that the calculation of
Rx and R2 is quite short as many of the terms appear more than once. The
above is a simple example which has been solved in general terms; in more
complicated cases the equations are easily written down and may be solved
numerically. Due regard must of course be paid to numerical accuracy as the
Solution depends fundamentally on the differences of comparitively large
numbers.

The method of deriving influence lines is based on Maxwell's reciprocal
deflection theorem. If in the structure referred to in the previous example, the
centre support of girder (2) is removed and unit vertical load applied at the
reaction point, it is well known that the vertical deflection at any point is to
some scale equal to the ordinate of the influence line for vertical reaction at
the point of application of the unit load. The procedure is therefore as follows:

a) Assuming that all the intermediate supports are withdrawn find the
deflection of each of those points resulting from the application of unit vertical
load at the support for which the reaction influence line is required.

b) Calculate the forces which have to be applied at the other support
points to bring them back to their original positions. Superposition of the
deflection curves given by (a) and (b) will yield influence line curves for the
support force to a certain scale; the scale may be corrected by adjusting the
ordinate at the support removed to unity.

c) We may now obtain influence lines for bending moment at any point
on the bridge, as indicated in fig. 3. First, draw the free influence line for
bending moment at the required point for the bridge as a single span. Second,
for several positions of the load on the span calculate the bending moments
in the unloaded girders at this section and subtract their sum from the free
bending moment influence line; this gives the influence line for the loaded
girder treating the bridge as a single span interconnected System. Finally,
superimpose on this influence line, the influence line for bending moment at
the support point of the loaded beam resulting from the application of the
intermediate support forces. The superimposed curves must obviously have
the same ordinate at the support point as the ordinate of the bending moment
influence line is there equal to zero.

Although this may appear to be rather lengthy, it is not in fact unduly so
as may be seen from the following example. Taking the two equal span bridge
of the previous example, to derive influence lines for the mid-point of the first
span we draw first the "free" influence line diagram, the maximum ordinate
of which is 0.1875 L (see fig. 3a). The series for the free bending moment
diagram for a unit load applied to a single span beam at distance a from the
left hand end is:
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Free beam I.L

2"Ordinate of I.L. for ß.M cn outer

I. L. Girder 2, Load on (2) Single Span
i/c Bridge (A)

I. L.for 6.m. at centre pier
of Bridge (ß)

b)

L/U Je Z/* L/2
0.1

/\(A)
0.05

M

- L /
(B)

L-
C) Influence line For moment m girder (2) at a Z/4 For load on (2)

Fig. 3

M„ 2L I na^ [sm T
77^ 1 277a 277# 1 377» 3772?

sm ——V - sm —^— sm —= 1- - sm -^^~ sm -^r—L 4 L L 9 L L

Applying the appropriate distribution coefficients and substituting x L/4:
we obtain the influence line for this point on one of the outer girders with the
load acting on the centre girder:

2L
mx -,- (0.

77 (1 2 TT a
221 sin — + 0.067 sin -^- ~\- 0.0118 sin

Li Li

3 77a\

m-L-J

taking the first three harmonics. On substituting several values of y-, multi-

plying the resulting values by two and subtracting the ordinates from those
of the free influence line we obtain the influence line for bending moment at
the required section for the bridge simply supported on a single span, as shown
in fig. 3 a.

We must next obtain the influence line for the intermediate support force
on girder (2) which is given by the deflection curve of that girder for unit load
at its mid-point when the support points on the outers are brought back to
their original levels. The restoring forces are obtained from the equation:



Load Distribution in Interconnected Bridge Girders 107

Ri (Pn + P13) [ yr\ P12 [ YL]

Pl2[YL]i. e. Rx
(Pll+Pl3)[YB]

In this case YL and YR both refer to loads placed at the mid-point of the
bridge and therefore

[o.6™+°fi5]
*> '

oSBT " °"68

The upward deflection of girder (2) due to the forces Rx on (1) and (3) is
therefore:

Ä: (0.468-0.642 sin^-^8. 0.300 sin 3?7^
(0.468- o.e

L 81 L

where k is some constant. The net deflection of (2) i. e. the influence line for
R2 is then

k ^0.358sin^-- — sm -^j - ^0.3008 sm -^ — sm -^jJ
i. e. Jfc To.0472 sin ^ - 0.0069 sin ^J^l

The deflection curve for girder (2) for unit load at the mid-point of girder (1),
the support there being removed, gives the influence line for Rx with the load
on girder (2). This curve is found in the same way as R2 and is given by:

k I 0.0065 sin ^ + 0.0065 sin IZ^l

It will be noted that we are concerned only with the form of the curves and
therefore the constant k need not be evaluated. The forces R1 and R2 must
now be considered to be applied simultaneously to the structure and their
effect superimposed on the single span interconnected bridge. The upward
bending moment due to Rx and R2 will therefore be proportional to

p22R2 + 2p21Rx i.e. (0.358 -0.0472 sin ^-0.700 0.0069 sin ^*j +

+ 2 (0.321 • 0.0065 sin ^ + 0.15 • 0.0065 sin ^*j
and the bending moment influence line is:

mr k' (o.0209 sin ^ - 0.0038 sin^\
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This curve is plotted to an arbitrary scale in fig. 3 b and superimposed on the
curve for the single span bridge in fig. 3 c to give the bending moment influence
line for the mid-point of the first span of the continuous beam bridge. Other
bending moment influence lines are readily derived in the same manner.

Conclusion

Space does not permit the comparison of the theoretical results obtained
by the method described in this paper with those obtained by experiment.
A large number of comparisons have, however, been made both for single
span and continuous beams and very satisfactory agreement has been obtained
for zero and infinite torsional stiffness and also for intermediate cases. These
results are being described elsewhere [4, 5].

The method is extremely convenient for single span bridges, particularly
with design loadings when sufficient accuracy will be obtained by distributing
only one or two harmonics of the bending moment diagram. Continuous
beams with a limited number of supports and longitudinals can also be solved
without difficulty for particular loading cases but for design purposes it may
be found more convenient to derive influence lines for the various longitudinals.
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Notation

L Span of bridge.
h Transverse spacing of longitudinals.
n Number of cross girders.

EI Flexural rigidity of longitudinals when all are of same dimensions.

E Ix Flexural rigidity of outer longitudinals.
EI2 Flexural rigidity of inner longitudinals.

EIT Flexural rigidity of one cross girder. In a beam and slab bridge: flexural
rigidity per unit length of slab.

C J Torsional rigidity of longitudinal (referred to inner when sections are
different).

m —-^g-=—- for a bridge with cross girders.

—13
T f°r a heam and slab bridge)

* T^WI^^Kh) ~Err~r7\T) -^y- for a beam and slab bridgej

ax, a2- • • reduced a parameters as defined in Appendix I.

ß - Yn (r) {wß [= tl {t) {wßfor a beam and slab bridge]

EI.
71 E-f2

p Distribution coefficient.

p Distribution coefficient Operator.

x Distance measured in the longitudinal direction (from mid-span unless
otherwise stated).

z Distance measured in the transverse direction (from left hand edge
unless otherwise stated).

y Vertical deflection of the structure.

sx,s2. Load per unit length transferred to longitudinals by the transverse
medium.

M12, M21. Moments per unit length in the transverse medium at the ends
of the intercepts between longitudinals 1, 2 etc.

Y Free deflection of single beam carrying total load on bridge (referred to
inner girder if outers are of different section).

M Bending moment corresponding to 7i.e. total bending moment on the
span.

A Amplitude of 1 st. harmonic component of Y.
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Appendix I
Table "A"

First harmonic bending moment distribution coefficients for interconnected

bridge girders

12 /hL\3 nEIT i 8 \ /_ 6\
a ^Vh) ~~eT Ä0 al1-^J «i «{1--^)

a2 a(1"5^) a3 a(l-3^) a4 a(l-A)
For deflection coefficients divide bending moment coefficients for outers by 77.

No. of girders
and load
Position

Coefficient

ß 0 0 00

2

Load on (1)
P11

P12

1.0
0.0

(l+a0)/(l + 2a0)
a0/(l + 2ao)

3

Load on
(1)

P11

P21

P31

[8^ + a(l + 4i?)]/Z>1
2 a/n»!

JD1 8i? + a(2 + 417)

V2 {(1 + 2 ai)/-D2+ 1/(7 + a0)}
*l/£>2
*?/2{(l + 2a1)/_D2-l/(r7 + a0)}

i)2 1? + a1(l + 2iy)

3

Uniformload
covering
bridge

P10

P20

(3 +4 a) VA
(10 iy + 4 «)/!>,
D3 4[4>7 + a(l + 2>?)]

7(16a1 + 3)/16a1(l + 21?) + 16i7
(16a1+1017)/16a(l + 2 77) + 16 77

4

Load on
(1)

P11

P21

P31

P41

[60772 + a217(9 + 57?) + 8a'7(l + 121?)]/Z>4

2a[9i? + a + 3a)JP4
a[- 12 ra+ 3a i,]/^
2a1?(l-2a)/D4
JD4=[1017 + a(l+77)][6 77 + a(l + 9i7)]

V2{(l+a2)/D5 + (l + 3a4)/i)6}

As p2i but with — sign between terms
As pu but with — sign between terms
-D5=h + a2(l+,)]

-D. [fo+ «.)(! +3 «.)-(«t)M

4
Load on

(2)

P12

P22

P32

/>42

2al?[9)] + a(l + 31?)P4
[60i?2 + a2(l + 5i?) + 16ai7(l + 3i7)]/Z)4
2 a 77 (26 77 + 2a)/.D4

i{(V + a2)/D, + (r, + cc3)/De}

As p22 but with — sign between terms
As />12 but with — sign between terms

4
Uniformload

covering
bridge

PlO P40

P20 P30

7? (3 a+ 8)^!
(3a + 22i,)/D1
D^öa (l + ^) + 60 4

V(10a2 + 1)/D8

(l0*2 + 4tV)/D8
2>8=10a2(2 + 2i?) + 10i?

5

Load on
(1)

Pix

P21

P31

P41

Pol

(224 + 654 a + 324 a2 + 15 a3)/.D9

a(68+101a+10a2)/-D9
a(a-6)(5a+8)/HD9
a (12-35 a)/D9
a(-5a2+12a-2)/D9
D9=(5a+8) (5a2 + 68a + 28)

(0.5+ 1.305 a +0.171 a2)/_D10 +
+ (0.5 + 0.392 oc)/Dn

(0.239 a + 0.171a2)/-D10 + 0.196a/-D11
(-0.174 a + 0.171a2)/_D10
As p21 but with — sign between terms
As pxl but with — sign between terms
D10 (l + 2.914 a + 0.855 a2)

jDu (1 + 1.07 a + 0.076 a2)
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No. of girders
and load
Position

Coefficient
ß 0 ß 00

5

Load on
(2)

77=1

Pl2

P22

P32

P42

P52

a(68+101a+10a2)/-D9
(224 + 500 a + 152 a2 + 7.5 a3)/_D9

a(22 + a)(5a + 8)/_D9

a (-72 + 44 a + 2.5 a2)/D9

a (12-35 a)/_D9

(0.239 a + 0.17la2)/_D10 + 0.196 ajDlx
(0.5 + 0.805 a + 0.171a2)/-D10 +

+ (0.5 + 0.145 a)/X)u
(0.826 a + 0.17la2)/D10
As p22 but with — sign between terms
As p12 but with — sign between terms

5

Load on (3)
77=1

Pl3 P53

P23 P43

P33

a(a-6) (5« + 8)/D,
a(22 + a) (5a + 8)/_D9

(28 + 36a + a2) (5a + 8)/_D9

(- 0.174 a + 0.171 a2)/-D10

(0.826 a + 0.17la2)/.D10
(l + 1.61a + 0.171a2)/-D10

6

Load on
(1)

77=1

Pll

P21

P31

P41

Pol

P61

(76+78 a+a2)/_D12+(44+130 a+25 a2)/_D13

a (a+ 22)/_D12 + a (15 a+ 14)/D13

a(a-12)/D12 + a(5a-12)/D13

As p31 but with — sign between terms
As p21 but with — sign between terms
As pn but with — sign between terms
_D12 (152+176a+6a2),D13 (88+272 a+

+ 70a2),

i{(l + 1.4a + 0.109a2)/i)14 +
+ (1 + 3.34 a+ 1.25 a2)/Z>15}

J {(0.424 a + 0.109 a2)/D14 +
+ (0.448 a +0.75 a2)/D15}

i {( - 0.128 a + 0.109 a2)/.D14 +
+ (-0.221 a + 0.25 a2)/-D15}

As p31 but with — sign between terms
As p21 but with — sign between terms
As plx but with — sign between terms

_D14 (l+1.696a+0.327a2)
D15 (1+3.64 a+2 a2+0.094 a3)

6

Load on
(2)

1

Pl2

P22

P32

P42

P52

P62

a (a + 22)/_D12 + a (15 a + 14)/_D13

(76+32 a+a2)/D12+(44+96 a+9 a2)/D13

a (a + 34)/_D12 + a (3 a + 50)/D18

As p32 but with — sign between terms
As p22 but with — sign between terms
As p12 but with — sign between terms

£ {(0.424 a + 0.109 a2)/i)14 +
+ (0.448 a + 0.75 a2)/D15}

|{(1 +0.72a + 0.109 a2)/nD14 +
(1 + 2.53 a + 0.62 a2)/-D15}

i {(0.552 a + 0.109 a2)/D14 +
+ (1.115 a +0.235 a2)/£>15}

As p32 but with — sign between terms
As p22 but with — sign between terms
As p12 but with — sign between terms

6

Load on
(3)

77=1

Pl3

P23

P33

P43

P53

P63

a(a-12)/D12 + a(5a-12)/.D13

a (a + 34)/_D12 + a (3 a + 50)/Z>13

(76+66 a+a2)/D12+(44+46 a+a2)/-D13

As p33 but with — sign between terms
As p23 but with — sign between terms
As p13 but with — sign between terms

i {(-0.128 a+. 0.109 a2)/D14 +
+ - 0.221 a + 0.25 a2)/D15}

i {(0.552 a + 0.109 a2)/nD14 +
+ (1.115 a + 0.235 a2)/_D15}

i {(1 + 1.272 a +0.109 a2)/.D14 +
+ (1 +1.415 a + 0.14a2)/D15}

As p33 but with — sign between terms
As p23 but with — sign between terms
As p13 but with — sign between terms
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Table "JB"
Bending moment distribution coefficients for higher harmonics

For ß 0: Use coefficients of table "A" but replace a by a/p4
For ß=co: Use coefficients of table "B" but replace a by a/p4

No. of
girders and

load
Position

Coefficient

ß 0
No. of

girders and
load

Position

Coefficient

ß=oo

2

Load
on
(1)

Pu
P21

(l+a)/(l + 2a)
<%/(l + 2a)

5

Load
on
(2)

77=1

P12

P22

P32

P42

P52

Ha(l + 2a)/_D5 + a/_D6}

i{(l+a)(l + 2a)/D5 + (l+a)/D6}
a(l+a)/_D5
As p22 but with -sign between terms
As p12 but with -sign between terms

3

Load
on
(1)

Pu
P21

P31

Hl/D1 + (l + 2«)/Dl}
a/D2
As pu butwith-sign between terms
X»! + «) Z)s ij + a(l + 2i,)

5

Load
on
(3)

Pl3 P53

P23 — P43

P33

«VA
«<1+«)/£>,
(l + 3a + a*)/£>6

3

Load
on
(2)

P12 P32

P22

7,a/X>2

fo + <x)/Z>,

6

Load
on
(1)

77=1

Pll
P21

P31

P41

P51

Pol

H(l' + 3«+a2)/-D7 + (l+5a+5a2)/£>8}
H«(l+«)/A + «(l + 3a)/-D8}

H-VA + aVA^
As p31 but with-sign between terms
As p21 but with-sign between terms
As pn but with—sign between terms
£>7 (l+a)(l + 3a)

D8=(l + 6a + 9a2 + 2a3)

4

Load
on
(1)

P11

P21

P31

P41

,/2{(l + «)/D, + (l + 3<x)/D«}
i{«/D3 + a/D4}
As p21 but with-signbetween terms
As pn but with-sign between terms
jD3 77 + a(l + 77)

D4 77 + a(l + 377) + 2a2

6

Load
on
(2),

77=1

Pl2

P22

P32

P42

P52

P62

J{a(l+a)/i)7 + a(l + 3a)/-D8}
i{(l+a)2/D7 + (l+a)(l + 3a)/D8}
i{a(l+a)/D7 + a(l+a)/HD8}
As p32 but with-sign betweenterms
As p22 but with—sign between terms
As p12 but with-sign between terms

4
Load

on
(2)

P12

P22

P32

P42

77/2{a/i)3 + a/JD4}

i{(77 + a)/.D3 + (77 + a)/D4}
As p22 but with-sign between terms
As p12 but with—sign between terms

5

Load
on
(1)

77=1

Pll
P21

P31

P41

P51

H(l + 4 a+2 a2)/A> + (1 + 2 a)/D6}
i{« (1 + 2 «)/£>, + «/£>,}
'«VA
As p21 but with-sign between terms
As pn but with -sign between terms
D5 (l + 5a + 5a2)nD6=(l + 3a+a2)

6

Load
on
(3)

77=1

Pl3

P23

P33

P43

P53

P63

±{a(l + a)/_D7 + a(l+a)/_D8}

i {(l+3a+a2)/D7+(l+3a+a2)/D8}
As p33 but with-sign between terms
As p23 but with-sign between terms
As p13 but with-sign between terms
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Appendix II
Transverse moments

Transverse moments are per unit length of transverse medium at mid-span.
M is the "free" longitudinal bending moment.

Distribution coefficients in formulse are for bending moment.

No. of girders
and

load position
ß 0 ß=oo

2 Load
on(l) M12 M21= 1.79 jj ol (Pl-P2) M

3

Load on
(1)

M12 M32 0

TT2

M21 M23 — -h-p3-M

ilf12=1.79^a(p1-p2)-M

M21 4.94 Aa[(p2_/)l) + o.l6(3p1-2p2-p3)].M

ilf23 4.94 Aa[(/02_/)3) + o.l6(3p3-2p2-p1)].M

M32=1.79 ^a(p3-p2)-M

3

Load on
(2)

M12 M32 0

M21 M23=~.h-Pl-M

M12 M32= 1.79 — «(pi-paJ-M^2
ikf21 M23=3.37-^a(p2-p1).M

3

Uniform
load over

bridge

M12 M32 0

M21 M23=~.h-Pl-M- —

M12 M32= 1.79 JL«(Pi-P2).M

M21 M23 3.37 ^«(p2-Pl).M- ^A

4

Load on
(1)

M12 MA3 0

M21 M2Z=~'h(2p^Pz)'M
TT2

M32 MM=—-h'Pt'M

M12=1.79 j^a(Pl-p2)-M
M21 4.94 A a[(p2-px)-0.044 (-11 Pl+Gp2+Gp3-pM'M

M23 4.94 A «[^-p^-0.044 (-4 Pl - 6 p2+9 p3+p^)] • M

M32 4.94 A a[(p3_p4)_0.044(-4p4-6p3+9p2+p1)].M

M34 4.94 A a[(P3-p4)-0.044(-llp4+6p3+6p2-p1)].ikf

M43=1.79 -p- a(P4-p3)-M

4

Load on
(2)

M12 M43 0

M21 M23=~-h'Pl-M

M32 MM=£.h-p4.M
As for load on (1)

4

Uniform
load over

bridge

M12 Mi3 0

TT2
7 ^W^2M21 M23= —'h-p^M——

M32 M3i= do.

^12 ^43 1.79 -^ a (Pl -p2)-M

M21 M3i 2A3 A a (p2_Pl).M- ^
M23 M32 0.628 Aa(p2_Pl).M-^A

Transverse moments in bridges having more than four torsionally stiff longitudinals
(i. e. ß= oo) are most conveniently obtained by Substitution in the general equations:

Mv QnEIT {yz-yi-ihe1-\he2\ Mv GuEIt
Lh2 [y2-Vi-§hO1-%h02~\

M23= 6nzEJT [y,-y2-ihd1-ihd3-] etc.^
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Values of the h 0 terms are tabulated below. For this case the Solutions are in two
w w

parts a) a symmetrical System: and b) a skew symmetrical System:

12 A2
— — The distribution coefficients resulting from these two parts are respectively
the first and seeond terms in the expressions for distribution coefficients in Appendix I.
The corresponding h 0 values are quoted separately in the following table.

No. of girders
and

load position
ß 0 ß=oo

M12 M5t 0

5 M21 M23=^ M3p5 + 2p4 + p3)M
Load on

(1) M32 M3i=£h(2p5 + P4)M a) h 0X -— (— 3 ax + 4 a2 — a3)
7 TT

Mi3 Mt5=~hp5M hß2 — (-a1-a2 + 2a3)
1 TT

he3 oM12 M5, 0

5 M21 M23=£hPlM
Load on

(2) M32 M34=^h(2 p5 + pA) M b) h 0± ^— - 5 ax + 6 a2)
2i TT

TT2

Mi3 M45=jjhp5M
L Tt

h B3 5— K - 6 a2)
Z TT5

Load on

M12 M5i 0
TT2

M21 M23= — hPlM Mi3 M45

(3) M32 M3A=^- h (2 Pl + P2) M

M12 M65 0

M21 M23=-£2-Ä(4p6 + 3p5 + 2p4 + p3)M
6

Load on M32 M34= £j- h (3p6 + 2 p5 + p4) M
(1) Mi3 Mi5=^h(2 p6+p5) M

M5i M56=£hP6M
a) h 0X j^r— (-8a1+10a2-2 a3)

19 TT

r*

h 02 —— - 3 ax — a2 + 4 a3)
M12 M65 0

2 19 tt
v 1 3

h03 j^r- (ax - 6 a2 + 5 a3)
iy ttM21 M23=~hPlM

6

Load on
M32 M3t=^j h (3 p6 + 2p5+p4) M

2
b) h 0X -^r— (-14:^+18^-6^)11 TT

(2) M,z M,b=^h(2p6 + p5)M

MM M56=^jhp6M
2

h 02 ——(-Öa^aa+^ag)11 TT

2
Ä 03 —— (ax - 6 a2 - 9 a3)

11 TT

M12 M65 0

M21 M23=~hPlM
6

Load on M32 M3i= ~h(2 Pl + p2) M
(3) Mi3 M,5= jj h (2 P6 + p5) M

MM M56=~hP6M
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Summary

The method outlined is for the analysis of interconnected bridge girders
having any degree of torsional rigidity and is based on two assumptions viz.
that the transverse members can be replaced by a continuous medium and
that torsion of these members can be neglected. The Solution is reached by
harmonic analysis and distribution coefficients are tabulated for single span
bridges having from two to six main girders for all harmonics of the bending
moment and deflection curves for the span. The application of the method to
continuous beam Systems by superposition is demonstrated; this is greatly
facilitated by the use of an operational System of notation. A method for the
derivation of influence lines for bending moments in the longitudinals of
continuous bridges is also developed.

Resume

La methode ici indiquee est destinee au calcul des poutres de ponts associes
entre elles et presentant une rigidite de torsion arbitraire. Cette methode
repose sur deux hypotheses, ä savoir que les elements transversaux sont rem-
places par une liaison continue et que la torsion de ces elements peut etre
negligee. L'etude de la Solution conduit a une analyse harmonique, c'est-ä-
dire au developpement de la flexion sous la forme d'une somme trigono-
metrique; les coefficients de repartition relatifs aux ponts a poutres simples
comportant deux ä six poutres principales sont indiques dans des tableaux
pour tous les termes de la serie du moment flechissant et de la courbe de flexion.
En outre, les auteurs exposent les conditions de 1'application de la methode
aux poutres continues avec superposition; l'emploi du Systeme de travail relatif

aux designations facilite notablement l'etude. Les auteurs indiquent enfin
une methode pour l'obtention des lignes d'influence pour les moments flechissants,

dans les poutres longitudinales continues des ponts.

Zusammenfassung

Die angeführte Methode ist für die Berechnung von miteinander verbundenen

Brückenträgern mit beliebiger Torsionssteifigkeit bestimmt. Sie beruht
auf den zwei Annahmen, daß die Querglieder durch eine kontinuierliche
Verbindung ersetzt und die Torsion dieser Glieder vernachlässigt werden kann.
Der Lösungsweg führt über eine harmonische Analyse, d. h. eine Entwicklung
der Durchbiegung in eine trigonometrische Summe, und die Verteilungskoeffizienten

für einfache Balkenbrücken mit zwei bis sechs Hauptträgern sind für
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alle Reihenglieder des Biegungsmoments und der Durchbiegungskurve tabel-
liert. Ferner wird .die Anwendung der Methode auf Durchlaufträger mit
Superposition gezeigt; die Verwendung eines Arbeitssystems für die Bezeichnungen
erleichtert dabei dieses Vorgehen wesentlich. Dann folgt noch eine Methode
für die Herleitung von Einflußlinien für die Biegungsmomente in durchlaufenden

Brückenlängsträgern.
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