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Matrix-Analysis of Successive Moment-Distribution

Calcul matriciel de la repartition continue des moments

Matrix-Berechnung der fortlaufenden Momentenverteilung

Sven Olof Asplund, Tekn. D., Prof. of Structural Theory, Chalmers University
of Technology, Gothenburg, Sweden

Introductory

In "A Study of Three-Dimensional Pile-Groups" (AIPC Memoires 1947,

p. 13) the author showed how one could by means of an infinite matrix series
describe a sequence of successive approximations, useful in determining the
forces in pile-groups. He added that it seemed possible in general to establish
by simple matrix methods the coincidence in results between Standard methods
of successive approximations and the direct Solution according to the classical
theory of statically indeterminate structures.

The author particularly had in mind a proof for the statement that the
method of successive moment distribution could be explained by an infinite
matrix series whose convergent sum (for stable Systems) would coincide with
the state of stress of the structure, solved directly as an elastic System. That
this must be the case is seif-evident almost to triviality from a physical point
of view. In the feeling that elementary matrix methods may in the future
become more widely used for simply and clearly formulating the propositions
of the theory of structures, a proof of the theorem stated was believed to be
of some value. By-products of practical value may moreover emerge from the
proof of quite abstract general statements.

It is a frequently observed paradox of applied matrix analysis that it is
easier to treat a general case by general methods than special cases by special
methods.

As far as is known by this author only one paper (S. Benscoter, ''Matrix
Analysis of Continuous Beams", Transactions ASCE, p. 1109) has undertaken
to adapt the Cross method, to matrix treatment. This meritorious paper treats
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the practically important special case of continuous beams (with two bars
connected to each Joint) in such a manner that it would obviously not be easy
to proceed to the general case along the same lines.

Chen ("Matrix Analysis of Pin-Connected Structures", Transactions ASCE
1949, p. 181) has studied trusses with pinned joints, by matrix methods. His
Solution is direct, without approximations or matrix series.

R. Oldenburger (Convergence of Hardy Cross's balancing process, Journ.
of App. Mech. 1940, p. 166) has proved by a comparatively complicated matrix
method the convergence of successive moment-distribution for beams. Ch.
Massonnet (Sur la convergence de la methode de Cross Revue universelle
des mines, Liege 1946, no. 6) has treated analytically the convergence for
frames.

The Method of Successive Moment Distribution

The method of successive moment-distribution (K. A. Calisev, Technicki
List, Zagreb 1922, and AIPC Memoires 1936; Hardy Cross, Trans. ASCE 1932)
is best suited to girders, frames, and trusses having joints that are rigid,
rotatable, and having essentially no displacements in space. Complements to
the method admit the analysis of Joint translations and other special conditions.

Fig. 1. Framework

Structures suited for treatment by this method are thus characterized by
a number of almost stationary joints 1, 2, i, j, at which straight or
curved members with uniform or varying stiffness are rigidly connected. Hinges
exist at such points where the stiffness EI of the members decreases to zero.
The members connect various pairs of points i, j in this structure; no members

run between many pairs of points, fig. 1.

The method of successive moment distribution is performed in the following
manner: In the unloaded structure all joints are locked for rotation. Members
(or joints directly) are then loaded by the external loads for which the com-
putation of the real structure is required. In every case where external loads
act upon a member ij, elementary statical methods are used to compute the
fixed-end moments Moij, Moji at the (as yet fixed) ends ij and ji. All end-
moments will be given positive signs, if they tend to turn the Joint in a positive
(clockwise) direction. The sum 2Moij Moi of all fixed-end moments Moij at

1

a Joint i and all moments Moii that act directly upon the Joint i, is called the
(primary) "unbalanced" moment Moi acting upon the Joint i.
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The method proceeds by unloching one Joint in the structure, while all the
other joints remain locked for rotation. This Joint i is first rotated through
an angle of — 1 radians (joint-rotation angles 0 in a clockwise direction are
considered as positive) by the action of some external moment, fig. 2. Then
the end ij end i of member ij) will be bent by a moment Sijf defining the
absolute end-stiffness of the end ij.

/^frt
6, -t

Fig. 2. End-stiffness Sy and carry-over factor C^-.

The opposite, fixed, end ji of the same member ij will simultaneously be
bent by a moment C^ S^. Cti is termed the "carry-over factor" for the member

ij (in the direction i to j).
End-stiffnesses S and carry-over factors C can be conveniently computed

by simple statical methods. Tables are worked out of S and C for a great
number of stiffness variations EI. It is possible, according to James (Principal

Effects of Axial Load etc., NACA Techn. Note 534, 1935), to account for
the influence upon S and C of an axial force in the members. For members of
uniform stiffness this influence is expressible by Berry's functions. Diagrams
by Hoff etc. (Bückling of Rigid-Jointed Plane Trusses, Transactions ASCE
1951, p. 958) reformed as in fig. 3, furnish values of S and C, taking into account

P «-:.-: *--»-
«£*

r rML.^i2-30 -20 -10 0^2.0
\W

V Relative End-stiffness

*&Z. *'ß.6£r «v*&
'm
.oo-

-10-30 -20 ^ \K+^>ZZM.
/ZS7 Positive P=tensfor»

Negative P= compression

Fig. 3. Hoff's stiffness chart for gusseted member under axial load, rearranged.
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extra Joint rigidities caused by concurrent members or by gusset plates. Charts
by J. E. Goldberg (Stiffness Charts for Gusseted Members under Axial Load,
Transactions ASCE 1954, p. 43) can also be used for this purpose.

However, under the action of the "unbalanced" moment Moi the Joint i
will rotate an angle @lt instead of — 1. This rotation ©li induces in end ij a
moment — Sij@li, fig. 2. All end-moments of members connected at i will
together balance the acting moment MQi: Moi — U Sij&li 0, or, denoting
i7S<,byS<,Jf0< £,«„.i

If Si is written in a diagonal matrix S and Mni and ©ni in column matri-
ces Mn and @n

Mn
Mn2

s= - 8X 0

0 8.

this may be written
M0 -80,, or @x

© nl
n2

(i)

The end-moments will thus be —MoiSijlSi —s^M^i, where the distri
bution number stj Sy/Si.

The far end of member ij will be bent by 'CijSijMoi -cHMoi> where

Consequently, an external moment — 1 acting on a single unlocked
Joint i will cause at end ij a moment stj and at end ji a moment c^, fig. 4.

Unbalanced moments MQj in the "neighbor joints" / of i will thus increase

by -cHMoi.
Now Joint i is locked in its new equilibrium position ©li. Some other Joint,

generally the one, j, having the largest total unbalanced moment the
original M0j- plus all additional —c^M^i caused by the rotation of neighbor
joints i) is unlocked, balanced, and relocked according to the same method.

This procedure is continued if it is convergent, until the largest remaining
unbalanced moment is of no significance for the purpose of the analysis (check
on strength, etc.).

MM*-t

y-fc/

Fig. 4. Distribution of moment Moi — 1 at Joint i
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It might be possible to describe this procedure by a series of matrix Operations.

However, from a matrix point of view the rule "largest remaining
moment" for the choice of the "next Joint" is extremely awkward. It will be

advantageous to devise some other rule by which the moment-distribution
proceeds to the same final result, but with simple matrix analysis.

Moment-Distribution in Stages

A short consideration will make clear that such a goal can hardly be
attained by any means other than by performing the moment-distribution in
stages in such a way that all joints are balanced in each stage disregarding in
each stage all moments — cHMoi carried-over during that stage. Instead all
these moments — cjtMoi left behind will be applied as (only) unbalanced
moments in the next stage.

Because of its more systematic character such a stage-sequence of Operations

is recommended in the practical application of the Cross method. Moment-
distribution in stages, carried on until the largest remaining undistributed
moment falls below a specified magnitude or percentage may imply a somewhat

greater total number of balanced joints. Work can nevertheless be saved
since the additions of carried-over moments before the balancing of each Joint
will be concentrated to the changes between the stages.

Very few papers on the moment-distribution method, or text-books on
structural theory mention moment-distribution in stages. Instances are
S. Hultin, Lecture Notes on the Calculation of Frames, Gothenburg 1949,
and Wang C.-K., Statically Indeterminate Structures, New York 1953, p. 218.
Distribution in stages is, however, currently used by a great number of European

and American structural Computers.

Matrix Analysis of Distribution in Stages

With'this rule of balancing in stages it is easy to write down the unbalanced
moments which were disregarded in the first stage in order to be balanced in
the second. They are for the Joint /

-cnM01-cj2MQ2-cjzM02

In this sum the j-th term, —c^Mq^ vanishes, c^ being null. The sum just
written down equals the element in the j-th row of the matrix product

Mx -cM0 -
o21 0

^01
^02



22 Sven Olof Asplund

The second stage of balancing starts with the unbalanced moments M±
— c M0. In the same manner as new unbalanced moments - c M0 were formed
during the balancing of the moments M0 of the first stage, the unbalanced
moments M2 —c(—c M0) c2 M0 will appear after the moments — c M0 have
been balanced in the second stage, — c3M0 after the third stage, etc.

In case this manipulation converges, the final balanced moments in every
Joint will be given by

-^/= ZMn MQ-cM0 + C2M0-C*M0+...

Mt (I + c)-*MQ
00

causing the final Joint rotations ©/ 2 ®n» °f- (*)>
»=i

et S-1 Mf S-1 (I + c)-1 M0

Premultiplication by (I + c)S yields

(I + c)S0f Mo

(2)

(3)

(4)

"Statically Indeterminate" Matrix Solution

The direct "statically indeterminate" Solution without successive approxi-
mation is obtained by first locking the structure in its undeformed (fixed-end)
condition. All members are now loaded, resulting in fixed-end moments Moij

9P2

/ ^
8ff

Fig. 5. Final rotations.

and unbalanced moments Moi over the whole structure. All joints i of the
structure are then unlocked and finally rotated through &fi to equilibrium.

In member 12, fig. 5, the end 12 and end 21

was bent before the rotation by MQ12 M{
©fl adds the moment
and ©/2

-S120fl
- ^21 $21 ®/2

021

¦0»Su9n
-s21ef2

Finally, end 12 will be bent by the moment

¦M/12 ^"012 - Su 0fl - G21S21 ©,2 (5)

Mfl denoting the sum 2 [(~ c)n ^q\i °f a^ the consecutive unbalanced moments
n=0

at Joint 1.
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All moments at the ends Ij connected to Joint 1 must balance the direct
moment M011 at Joint 1:

or, since

Mn
c21 b1

Mmi+Mm* + Mm* +012" L013"

- C21S21 ©f2 — <731£31 ©n • =0

2 sij si and Gij sij cjisi>
i

XMQlj M01 S1ö/1 + c12Sae/a + c13S8ö/3+

ox C12b2 C13o3

^2 C23 ^3

M0 (I + c)S&f

Sx 0

0 5,
ef

(6)

The agreement of (4) and (6) proves the statement that the Cross moment-
distribution, if it converges, does so towards the classical direct Solution of
the statically indeterminate structure.

Asymptotic Geometrie Matrix Series

After the n-th stage there remains at Joint i an unbalanced moment
Mni [(—c)nM0]i. It will be demonstrated that these terms are asymptotic
to the terms of a geometric series. Denote by cn an element with definite
position in the matrix cn and by A the largest latent root of c (one such root is
assumed; the following conclusions can easily be extended to apply also in
the more improbable cases in which there are several equally large latent
roots, cf. Frazer, Duncan, Collar, Elementary Matrices, Cambridge 1938, p. 135).

Sylvester's theorem easily proves that the ratio cjcn_1 between corres-
ponding elements in the matrices cn and cn~1 for increasing n all approach the
largest latent root A of c. As a consequence, if cn and cn~1 are postmultiplied by
the same column matrix M0, the ratio of all corresponding elements in the
two resulting column matrices obviously tend to A with increasing n:

Arei (c»itf0)i/(c»-iJf0)i^A (6)
for all i.

This important theorem can be utilized in ordinary moment-distribution
according to Cross, if it is performed in stages as clearly indicated by the
matrix treatment itself. Each completed stage n concludes with numerical
values of Mni ((— cn)M0)i. The calculator writes down a column with the
before-mentioned ratios Xni. When he has found that this column of figures
can be replaced without harmful inaecuraey by a column of equal numbers
Anmed < 1), he will employ Xnmed as an approximate value of the largest latent
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root A, terminate the moment distribution, and calculate the sums of all
remaining unbalanced moments in the geometric series Mni (~hnmed + A^med-...)
by the formula

JjJ. VPoi ii -L'J- wi ***i med /(l+An med/

It may sometimes be possible to do this at an early stage n of the moment
distribution. In such a case a number of Joint distributions can be saved which
otherwise would have been necessary in a Standard computation according
to Cross. This saving of labor alone could in some cases motivate the procedure
of moment-distribution in stages.

Arrangement of Numerical Computations

Matrix moment-distribution in stages can be carried through in the following

form for the framework of fig. 6 to 12:

2.0
4X)

^8
2.0

0.62 0.43 0.43 Qu
0.38
0.25
0.SO 0.40

0.14 *¦

0.10
0.40 Ot

0.5 OJ

Fig. 6. Stiffnesses Sy and

i

Fig. 7. Distribution num-
bers sij Sij/Si.

Fig. 8. Carry-over factors

<v

End-stiffnesses Sy and Joint stiffnesses Si9 distribution numbers sij} carry-
over factors Cy, matrix elements ctj, and fixed-end moments Moij and pri-
mary unbalanced moments Moi are noted upon framework sketches fig. 6 to
10 near the joints to which the magnitudes pertain. Stiffnesses, moments etc.
that are the same at both ends of a member are noted near the middle of the
member.

0.22 0.31 0 0.22 *

0.13
0.19
0.20 0.25

0

0.13

0.05 v

0.07
0 0.20 *
0

0.05

Fig. 9. Matrix elements

2.08

4.17 -4.17
^4.17

-2 08 ™

IST*

Fig. 10. Fixed-end moments Fig. 11. Joint numbers i.
Moij and primary unbalanced

moments Moi ^Moii.
i

After numbering the joints, fig. 11, the elements c# are entered into a

Square matrix c, table 1. Blank elements are zero.
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Table 1. Matrix moment-distribution

Row i Columns /
(opposite end)

(Joint) 12 3 4

1, c .13 .22
2 .19 .20
3 .25 .07
4 _.31 .05

M0 cM0 c2Mn c3M0 M4

~ 2.08' - .08" ~ .04" "¦ .04" ~ 2.00
4.17 -.44 .19 -.01 4.81

-4.17 .88 -.08 .05 -5.18
_-2.08. .44. _ .07. .01. _~2.46_

The primary unbalanced moments Moi are entered into a column matrix
MQ at the right hand side of c. Cumulative multiplication and addition on an
ordinary desk calculating machine expedites the consecutive evaluation of
the matrix products c M0, c2 MQ, The final sum of all the distributed
moments in each Joint is Mf M0 — c M0 + c2 M0 + The final end-moments
Mfij of the members ij ean be computed according to

MHi Moij ~ siJ Mfi - ciJ MfJ (7)

cf. (5), (1), or by balancing only the moments Mfi in the fixed-end condition
of fig. 10, which is carried through in fig. 12.

2.08 -2.08
-1.24 1.06

0.54 -0.62
,1.38 -1.64-. ,1.06 o.5y. m

0.76 :\ / \ 0.34 m

0.63 / 2.00 -2.46 \ 0.26

f.3* 4.17 -4.17 ^0.60

f.20 -2.41 2.07 0.52
0.38 1.04 -1.20 0.15

1.58 /2.80 -3.30 '^0.67 f.04v.^\ / '2.07 ks;

1.20 4.81

-0.60

-5.18 -0.52

0.26
7/.

Fig. 12. Distribution of final end-moments.

Only insignificant unbalanced moments should remain after one balancing
stage. This furnishes a check upon the numerical computations. In that stage
the correct final end-moments M^ of all members ij have also been evaluated.

Framework Bückling Criterion

Hoff's buckling criterion (Stable and Unstable Equilibrium of Plane
Frameworks, J. Aeron. Sei. 1941, p. 115) is based upon the convergence or
divergence of the moment-distribution, using James's (I.e.) stiffnesses and
carry-over factors. In investigating stability, it also appears preferable to
perform the moment-distribution in stages. Instead of a more or less vague
idea of convergence or divergence developed during an irregulär wandering
about among the joints of the structure, a distribution in stages furnishes
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after each stage, through the column Xni, a better-defined indication of whether
the critical root tends to a value below or above 1. This determines the
convergence or divergence of the remaining series tMni Z(( — c)nM0)i which is

asymptotic to a geometric series with ratio — |A|.

Successive stages of the Cross moment-distribution correspond to successive

powers of c. A large number of moment-distribution stages can be saved by
repeatedly squaring the matrix c, to c2, c4, c8, c16 etc., by means of simple
matrix multiplication: c8cs c16. Approximate values of the largest latent root
then are, for instance, |A|appn (c16^/c8^-)1/8.

High powers of the matrix c will contain only proportional rows. This
implies that any originally applied Virtual moments will after a number of
distribution stages approach proportionality to the related elements in any
column of c.

Numerical Example on Framework Bückling

As another example of matrix treatment of successive moment distribution
the buckling load of the framework shown in fig. 13 will be computed. This
framework 1234 has members of equal lengths 1 and equal stiffnesses EI.

0.5U

IM

0.50

0.22 0.56
0.22

Fig. 13. Buckling offrame- Fig. 14. Si;j.4:EI0/l0. Fig. 15. Sij.
work.

The rigidity caused by the triangulär framework makes the displacements of
the joints 1 and 3 negligible. A trial axial load of P 20 E Iß2 induces in the
members 12 and 23 forces P12 - -11.5 E Iß2 and P13 +11.5 E Iß2. End-
stiffnesses and carry-over factors from fig. 3 for sß 0 (no gussets) are noted
in fig. 14 and 16; s^ and c{j are computed in fig. 15 and 17. Symmetrie magnitudes

are not noted.

12!

0.32

0.27.

0.6// 0.18

Fig. 16. Cir Fig. 17. ciV

For antisymmetric Virtual applied moments M'Q1 M'os, M02 M'03.
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cM'0 .61 .18 61
"

~M01
.27 .27 M'o»
.18 .61 .61 ^03
.27 .27 M0i

is equivalent to
cM0 ".18 1.22' ~M01

-54 .M02

Hence the stability of the System characterized by c is the same as of that
characterized by c\ Simple matrix multiplication yields

r-2

[:69 .22
10 .66

c* .50 .30
.14 .46

c8
"

.29 .29" c1G

.13 .25
_

"
.88 .93 '

_
.93 .90

_

.11 .16

.07 .10

the elements of the matrix of |A|appr being computed as (c16#/c8#)1/8.
For a matrix c of order two, as in this instance, the largest latent root

would have been more easily computed by a direct Solution of the charac-
teristic equation of c:

A-.18 -1.22
-.54 A

0, A2-.18A-.66-0

with the roots A .91 and .73.
After a large number of distribution stages, all "later" unbalanced Virtual

moments and all "later" deflections of the structure are multiplied by — A for
each new distribution-stage. When |A| < 1 the structure will reach stable equi-
librium under the action of any initial Virtual disturbances Moi. If the actual
forces upon the structure are increased by a factor K, it seems plausible from
a physical point-of-view that the multiplier A of the "later" Virtual moments
should increase at least approximately by the same factor K. To make A equal
to the buckling value 1 the loads upon the frame should thus be increased
approximately by the factor 1/A.

Choosing an axial load of P 22.5 E Iß2 for a possibly diverging moment-
distribution, fig. 14 to 17 will be modified as shown in fig. 18 to 21.

0.U5.

1.38

0.50

020 0,60

1U6

0.31

029

0 73/ 0.19

Fig. 18. SylEItJlt. Fig. 19. sir Fig. 20. Cir Fig. 21. ct
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C .73 .19 .73
.29 .29
.19 .73 .73
.29 .29

[" .19 1.46] c2=[" .88 .28 1

[ .58 J L -11 .85 J

I .19 .75 J I .29 .65 J |_ .40 .64
1, c8=|" .73 .74], c16=f" .1

J [ .29 .65 J L .4

|AU,= [1.00 1.04]
L 1.04 1.00 J

Loads of P 20 and 22.5 E Iß2 have thus yielded largest latent roots of
about .91 and 1.02. By interpolation, a latent root of 1 can be expected for
P 22.1 EIjl2. This load can be accepted as the buckling load, or as initial
force in a second iteration.

Conclusions

The trivial theorem tjiat the Hardy Cross successive moment-distribution
approaches the direct classical Solution of the elastic structure has been proved
by matrix analysis. The simple proof was in fact made possible by studying a
general case and by considering a moment-distribution in stages. The advan-
tages of the matrix treatment of a moment-distribution in stages suggests
that the same procedure could also be advantageous in practical numerical
applications.

The matrix treatment of moment-distribution in stages also discloses that
the stage-series of unbalanced moments is asymptotic to a geometric series,
the ratio and sum of which can be approximated; this property may sometimes
be useful in practical numerical work and in the numerical application of
Hoff's buckling criterion for frameworks.

Whenever the matrix technique can be employed, the rationalization of
the computation procedure thereby achieved leads to advantages of a time-
saving systematizing of numerical work, a more definite appraisal of convergence,

or the possibility of an approximate estimation of the sums of all the
remaining corrections.

Summary

The procedure of successive moment-distribution is interpreted by an
infinite matrix series whose definite sum is also given. It is shown that this
sum coincides with the corresponding finite expression deduced without
approximations by the classical theory of elastic structures. It is finally
demonstrated that the matrix series for moment-distribution in stages (as

defined) is asymptotic to geometric series whose common ratio and various
sums can be approximated. The matrix method given is exemplified on an
ordinary frame problem and on a frame-buckling problem.
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Resume

L'auteur traite la methode de la repartition continue des moments ä l'aide
d'une serie matricielle infinie, dont il indique egalement la somme. II montre
que cette somme concorde avec l'expression finie correspondante, qui peut
etre deduite sans approximations de la theorie classique des corps elastiques.
II montre enfin que la serie matricielle correspondant ä la repartition
progressive des moments (suivant definition) presente une allure asymptotique
par rapport a une serie geometrique, dont la Solution generale et les difFe-
rentes sommes peuvent etre determinees approximativement. La methode
matricielle exposee fait l'objet d'exemples portant sur un probleme de cadre
ordinaire et sur un probleme de flambage de cadre.

Zusammenfassung

Die Methode der fortlaufenden Momenten-Verteilung wird mit einer
unendlichen Matrix-Reihe samt deren Summe dargestellt. Der Verfasser zeigt,
daß diese Summe mit dem entsprechenden endlichen Ausdruck übereinstimmt,
der ohne Annäherung von der klassischen Theorie elastischer Körper abgeleitet
wird. Dann weist er nach, wie die Matrix-Reihe für die stufenweise
Momentenverteilung asymptotisch zu einer geometrischen Reihe verläuft, deren
allgemeine Lösung und verschiedene Summen näherungsweise bestimmt werden

können. Die praktische Anwendung ist an einer gewöhnlichen
Rahmenberechnung und an einem Rahmen-Knickproblem ersichtlich.
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