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A Method of Determining the Bückling Stress and the Required Cross-
Sectional Area for Centrally Loaded Straight Columns in Elastic and

Inelastic Range

Methode pour determiner la eontrainte de flambage et la section d'une colonne
rectiligne comprimee par une force centree, dans les domaines elastiques et

inelastiques

Ein Verfahren für die Bestimmung der Knickspannung und der erforderlichen
Querschnittsfläche eines zentrisch belasteten geraden Stabes im elastischen und

unelastischen Bereich

Arvo Ylinen, D. Sc. Techn., Prof., Institute of Technology, Helsinki

1. Stress-Strain Function

In order to investigate the buckling strength of columns loaded in the
inelastic ränge, it is advantageous to approximate the stress-strain diagram
of the uniaxial state of stress occurring in the column with a suitable function
and to deduce the corresponding buckling-stress formula. The function chosen
should contain a sufficient number of free parameters. By choosing them
appropriately, it is possible to make the values of the function coincide with
the experimental values of the stress-strain diagram. In practice the stress
at which the stress-strain diagram with increasing stress for the first time
becomes parallel to the strain axis should be considered the upper limit of
the buckling stress. This limit is either yield point or compressive strength
depending on whether the material has a yield point or not. From this it
appears that, in order to be suitable for this purpose, the so-called stress-
strain function presenting the stress-strain diagram should be valid up to this
stress limit for materials having a pronounced yield point and up to the
compressive strength for other materials. For the sake of simplicity we speak
in the following only of the yield point remembering that it will be replaced
by compressive strength if no yield point exists.

For the approximation of the stress-strain diagram many different func-
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tions have been used1)2). In the following we present a new one which is
meant particularly for elucidating problems in connection with the buckling
phenomenon of columns3). Since not the stress-strain function itself but only
its first derivative with respect to the strain is needed, the simplest way is
to make a suitable assumption with respect to this derivative itself and to
prove that the stress-strain function deduced from it by integration agrees
with the test results. The expression of the derivative should be as simple as

possible and only a function of stress.
We assume in the following that the expression of the derivative of the

stress-strain function has the form

da a — a
Je b-c'a'

Here a is the stress, e the strain and a,b,cf are three free parameters, the values
of which should be determined so that the stress-strain function deduced
from (1) by integration suitably agrees with the stress-strain diagram. Below
the yield point, the elasticity and the strength properties of the material are
determined on the basis of its modulus of elasticity, its proportional limit and
yield point stress. Therefore, we use these quantities for determining
parameters a, b, c'.

For the yield-point stress o vy we have dajd€ 0. By introducing these
values into eq. (1) we obtain

a ay. (2)

When o- 0, we have do\de E, hence, from eq. (1) it follows

*-?-¦?¦ <3>

By introducing the expressions of a and b and a new parameter c c' E
into eq. (1) we obtain

^ E^LZ? (4)
de Gy — Ca

In order to connect the third material constant, the proportional limit ap,
with c, we need function g g (e) itself. Separating the variables the differential
eq. (4) can be written as

(1-C)av

The general Solution of this is

c+- d g.

€ =^tca~(1~c)(72/mK-(7) + c']'

x) R. Mehmke, Z. f. Math. u. Physik. 1897, p. 327.
2) W. Osgood, Journal of Aeron. Sciences. 1946, p. 45.
3) See writer's paper in Teknillinen Aikakauslehti, Vol. 38 (1948), p. 9.
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where G is the constant of integration. Since the stress-strain diagram goes
through the origin of coordinates, the values 6 0, a 0 correspond to each
other. From this condition follows for the constant of integration the expression

C (1 —c)Gy\nGy,

which, introduced into the general Solution, gives as result the stress-strain
function

1

E CG— (1 — C ->K): (5)

With the value e=l this is reduced to Hooke's law.
The nature of the stress-strain curves according to eq. (5) may be seen

from figure 1, where g is plotted against e. To determine the parameter c

the difference 8 between strain (5) and the strain eH GJE corresponding to
Hooke's law is formed and for that the expression

o e-eH - E g + a„ In K)] (6)

is obtained.
When g gp, the corresponding value of S is denoted by 8p. When these

values are introduced into eq. (6), its both sides multiplied by the ratio Ejay
and the equation is solved for c, we obtain

Edp

c= 1+- ay (7)

This formula shows how the parameter c depends on the proportional
limit ap, the yield-point stress ay and the modulus of elasticity E. In addition,
its value is affected by the quantity Sp, which indicates the allowable devia-
tion from Hooke's law at the proportional limit. The usual definition is
8p 0.000 02 to 0.000 2. In table 1 are presented the values of the parameters c

of some materials, calculated from formula (7).

l<5-

Fig. 1. Stress-strain diagram.
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Table 1. E,Gp,Gy and c of some materials

Material E
kg/cm2 kg/cm2 kg/cm2

c

Finnish pine 125 000 160 450 0,875
Magnesium Alloy (Electron) 460 000 500 1000 0,857
Steel St 37 2 100 000 1920 2400 0,977
Steel St 52 2 100 000 2880 3600 0,977
Concrete 250 000 50 280 0

We see that the values c of all other materials are slightly less than unity
except that of concrete, which is zero.

It should be observed that, for determining c, it is not necessary to use the
proportional limit, but any point on the stress-strain diagram between the
proportional limit and the yield point is applicable. The stress-strain function
determined in this manner agrees in general better with the stress-strain dia-

gram than that obtained with the aid of the proportional limit.
In order to get a general idea of the form of the stress-strain diagrams

represented by function (5), we put it into a more suitable form for graphical
representation by multiplying both sides by the ratio E/ay, which gives

^ C^_(1-C)l„(l_^). (8)
ay ay \ Vy!

Compared with (5) this dimensionless form has the advantage that E ejay
is a function only of the ratio g\gv and parameter c. But on the right side of
eq. (5) there are four variable quantities E, a, Gy and c. The stress-strain curves
according to eq. (8) may be seen from figure 2, where g\gv is plotted against
Ee\ay, c as parameter. We see that the greater the value of c is, the smaller
is the deviation of the stress-strain curves from the broken line formed by

-i.u-
G E±_

98^9"C
Cy üfJi^ 0.8°1

#s^s
n

AV c

/V

0/0V...
1 0.2 0.3 0M 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 ~§7 1.5

i i i i i i i i i i i 1 ± 1

Fig. 2. Dimensionless stress-strain diagrams according to eq. (8).
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Hooke's line g\gv E eJGy and the horizontal line g\gv 1 corresponding to the
yield-point stress.

2. Tangent-Modulus Theory of Inelastic Buckling

The buckling force of a straight, centrally compressed, prismatical column
in the elastic ränge is obtained from Euler's buckling formula4)

ILTT^EJE,= P (9)

where E denotes the modulus of elasticity, J the smallest moment of inertia
of the cross-section and l the length of the column. /x is the coefficient of restraint
depending on the manner in which the ends of the column are fixed. The value
of this coefficient varies within the ranges */4 ^ [x S 4. Figure 3 presents the
value of /x in some modes of restraint. The case 2 of a column with hinged
ends is very often encountered in practical applications and is called the
fundamental case of buckling of a prismatical column.

Expressing in eq. (9) the moment of inertia J by the radius of gyration i
and the area A of the cross section in the form J i2A, the formula may be
written in the form FJA =fji7r2 E/(l/i)2. Denoting further the average
compressive stress by FJA gc and the slenderness ratio of the column by l\i A

we obtain for the buckling stress of the column the formula

Gc= ^ ' (10)

The buckling stress is independent pf the shape of the cross section of the
column.

V///X//WA

F

~2.046

^
c,

M^ 1

Fig. 3. Some fixing cases of the
ends of the column.

0 E t
Fig. 4. Stress-strain diagram for

increase and decrease of load.

4) L. Euler, De curvis elasticis. Lausanne and Geneva, 1744. — The Euler formula
was derived in a later paper, Sur la force de colonnes, published 1759 in the Memoires
de VAcademie de Berlin.
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Euler's formulas (9) and (10) are valid only as far as the compressive
stress gc<gp. By introducing the expression of gc from (10) and solving the
inequality for A we obtain as the validity limit of formulas (9) and (10)

W^. (ii)

Let us now examine the determination of the buckling stress of a column
buckling above the proportional limit. If the material is still perfectly elastic
even beyond the proportional limit so that the diminishing stress in figure 4

follows the same stress-strain diagram GBO as obtained with increasing
load, the buckling force and the buckling stress of the columns are, according
to Engesser5), obtained from formulas (9) and (10) by replacing in them
the modulus of elasticity E by the tangent modulus d GJd e of the stress-strain
diagram at the point corresponding to the buckling stress. Denoting this
tangent modulus by

¥.-'• (12>

we obtain Engesser's formulas

F^^il (13)

and ^7T2Et

for determining the buckling force and the buckling stress beyond the
proportional limit. Below the proportional limit Et equals E and formulas (13)
and (14) are changed into Euler's formulas (9) and (10). Consequently,
Engesser's formulas (13) and (14) are valid both above and below the
proportional limit. Both the buckling force and the buckling stress of a perfectly
elastic column are independent of the shape of the cross section of the column.

By introducing the expression of the derivative d ajd e from eq. (4) into
formula (12), the tangent modulus can be expressed in the form

Et E^L^-. (15)l
Gy-CG

Introducing this into Engesser's formula (14) and taking into consideration
that g equals g% when buckling occurs, it follows for the buckling slenderness
ratio of a centrally compressed straight column the formula

\2 ^- **-*'. (16)
Gt Gy-CGt

This is valid when 0^at^ay.

5) F. Engesser, Zeitschrift des Architekten- und Ingenieur-Vereins zu Hannover. 1889,

p. 455.
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When eq. (16) is reduced, we obtain for buckling stress Gt an equation of the
second degree, the roots of which are

fJLTT2 E + Gy\2 .^ /(fJLTT2 E + Gy\2)2-±IJL7T2C E Gy\2
ct<=—2cT2—(±)y 1^ • (i7)

For the square root a negative sign should be chosen, because the buckling
stress must vanish when A -> oo.

In order to get an idea of the buckling stress according to eq. (16) we
represent this equation graphically. For that purpose we first multiply both
sides of the equation by gv\\jl tt"1 E thus giving it the dimensionless form

GyX2
1 - 3.

ay

fJL 772E °t l-c^
(18)

Compared with eq. (16) this form has the advantage that GyA2/fjL7r2E is only
a function of the parameter c and the ratio GtJGy. The variable quantities on
the right side of eq. (16) are Gt, Gy, /jl, E and c.

06

St 37,52><^\

\ 1
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Fig. 5. Buckling stress diagrams in dimensionless form according to formula (17).

In figure 5 the ratio (JtJGy is plotted against the dimensionless quantity
XjirVGylii E. At great values of the slenderness ratio, when the buckling stress
is low, the value of the tangent modulus is constant according to (15) and the
buckling-stress diagrams corresponding to different values of c coincide with
Euler's hyperbola. With decreasing slenderness ratio the buckling stress
increases, the value of the tangent modulus decreases and the buckling stress
diagrams deviate from Euler's hyperbola and approach the yield point stress
of the material. How rapidly this will take place, depends on the value of
parameter c. When A 0, at becomes equal to Gy for any value of c.
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3. Double-Modulus Theory of Inelastic Buckling

Engesser's tangent-modulus theory was severely criticized, first by
Considere6) and later by Jasinsky7), on the account that Engesser had
assumed the material to be perfectly elastic even beyond the proportional
limit and thus had not taken into consideration the effect of permanent
deformations. In fact, when the compressive stress in figure 4 has increased

up to point G above the proportional limit gp and the column bends, the
decreasing stress on the convex side of the column does not under actual
conditions follow the same curve GBO along which the stress has increased,
but decreases from point G along the straight line G E, which has the same
slope as part OB of the stress-strain diagram corresponding to Hooke's law.
Thus the phenomenon is irreversible by its nature. A certain strain e

corresponds to different values of stress depending on whether an increasing or
a decreasing stress is considered. The stress is no more a single-valued function
of the strain.

Engesser now completed his buckling theory by taking into consideration

the effect of permanent deformations8). However, his theory did not
receive the attention and acknowledgement it would have deserved, but was
forgotten. The theory became once more known and its applicability stated
in 1910 through the careful buckling tests made by v. Karman9).

According to Engesser, the effect of permanent deformations in the
inelastic buckling phenomenon can be taken into consideration by replacing
the tangent modulus in formulas (13) and (14) by the so-called "double
modulus", which is also called "reduced modulus". By employing the symbol
Er for it the formulas

Fr <^l (19)

and
fl7T2Er

Gr ~^2 \Z{))

can be written for determining the buckling force and the buckling stress of
a centrally loaded straight column. In the elastic ränge Er equals E, while
in the inelastic ränge Er is variable and depends on Gr Fr\A and on the shape
of the cross section. In the inelastic ränge Er is always greater than Et and,
consequently, the buckling stress will be slightly higher according to the

6) M. Considere, Congres international des procedes de construetion, 1889. Comptes
rendus, Annexe: Resistance des pieces comprimees, p. 381.

7) F. Jasinsky, Annales des ponts et chaussees, 1894, and Schweizerische Bauzeitung,
Vol. 26 (1895), p. 172.

8) F. Engesser, Schweizerische Bauzeitung, Vol. 26 (1895), p. 24.
9) Th. v. Kärmän, Physikalische Zeitschrift, Vol. 9 (1909), p. 136; and Mitteilungen

über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 81, Berlin 1910.
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reduced modulus theory than according to the tangent modulus theory. For
an I-section with infinitely thin web

2EEt
r E + Et

according to v. Kärmän.
By introducing into this the expression of Et from equation (15) we obtain

E=E l + c
(21)

From this it appears that Er-^E when a->0. Er equals E at any value of
g, if c= 1. Comparison between the expression (21) of Er and the expression
(15) of Et reveals in the case of the idealized I-section the interesting peculiarity
that, when employing the stress-strain law (5), its tangent modulus and double
modulus are similar in form except that parameter c of the tangent modulus
has been replaced in expression (21) of the double modulus by (1 + c)/2, which
is greater than c if c < 1.

By replacing the tangent modulus Et in eq. (14) by the double modulus Er
from eq. (21) and by denoting the corresponding buckling stress by Gr, we may
write for the buckling slenderness ratio of a column of idealized I-section the
formula

[Ji7T2 E Gy — GrX2
l+c (22)

This corresponds to formula (16) except that parameter c has been replaced by
(l+c)/2 in formula (22).

r-UOOO-,

3600 SI52 6r \

Shanleys\ fuler--Hyperbola

er^
„

2400 SI37 Gr

Shanley.^\
1200

/fQQ

120 140
I

160 180 X 200

Fig. 6. Buckling stress diagrams for structural steels St 37 and St 52 according to tangent-
modulus, double-modulus and Shanley's theories of inelastic buckling.
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When eq. (22) is reduced, we obtain for the buckling stress ar an equation
of the second degree, the roots of which are

fl TT2 E + Gy A2
+ ^ /(UV* E + 0V\*)2-2IJ.7T2(1+C)ECTV\2

(l+c)A2 - (l+c)2A*
(23)

A negative sign should be chosen for the square root because the buckling
stress must vanish when A->oo.

The lower and upper full-line graphs in figure 6 represent the buckling
stress of structural steels St 37 and St 52 according to formulas (16) and (22)

or (17) and (23) by giving to the material constants the values of table 1.

We see that the buckling stress is somewhat higher according to the double-
modulus theory than according to the tangent-modulus theory. The relative
deviation of the two curves is largest at A *

for steel St 52, both about 7,5%.
96 for steel St 37 and at A ^ 80

4. Shanley's Theory of Inelastic Buckling

After the double-modulus theory of Engesser had become generally known
in 1910 through the investigations of v. Karmän, the scientists had been
accustomed to consider it the final Solution of the problem of inelastic buckling.
Therefore, it was surprising when Shanley10) proved in 1946 that the double-
modulus theory leads to discrepancies which could be removed only by re-
nouncing some of the assumptions made in deriving this theory. In the theory
it is assumed, as in the derivation of Euler's buckling formula for a perfectly
elastic material, that the column remains straight until the buckling force Fr

ucf

Fig. 7. Fig. 8

10) F. R. Shanley, Journ. Aeronaut. Sei., Vol. 13 (1946), p. 678, and Vol. 14 (1947),
p. 261.
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is reached, and then suddenly bends. Shanley proved, however, that the
column begins to bend already immediately after the buckling force Ft
according to the tangent-modulus theory has been reached and the deflection
increases gradually with increasing compressive force. The phenomenon is
illustrated in figure 7, where the curves present schematically the deflection 8

in the middle of the column as a function of the load F according to different
theories. At any value of F < Ft the column remains straight. When F equals
Ft and when the linearized differential equation for the deflection curve is
used, the deflection 8, according to Engesser's tangent-modulus theory,
remains indefinite and, in addition to the straight form of equilibrium, there
are also other equilibrium positions near that of the straight form under the
same load. Thus the load Ft may be defined as the smallest load that can
keep the column in slightly bent shape.

The column behaves in the same manner according to the double-modulus
theory as according to the tangent-modulus theory. At any value of the
compressive force F <Fr, the column remains straight. When F Fr, the equilibrium

of the column is indifferent and, in addition to the straight equilibrium
position, slightly bent equilibrium forms are also possible under the same
load. However, according to Shanley an exactly determined value of the
deflection 8 corresponds to each value of the load F when the load Ft is somewhat
exceeded. The compressive force has a maximum value Fmax, which is greater
than the tangent-modulus load Ft but smaller than the double-modulus load Fr.

Shanley investigated the behaviour of the column in the inelastic ränge
with the aid of a simplified type of column presented in figure 8. This column
represents an infinitely stiff, straight column having in the middle an elastic-
plastic hinge consisting of two small longitudinal elements. With this ex-
tremely simple model Shanley succeeded in elucidating qualitatively the prineipal

properties of a column buckling in the inelastic ränge.
However, for explaining completely the inelastic buckling of a column,

the model shown in figure 8 is not sufficient. In fact, the mathematical theory
of the Shanley phenomenon is very complicated in the general case. When
the column bends, the distribution of the stresses in the cross section will
be nonlinear and is variable along the column. A so-called reversion ränge,
where the contraction decreases with increasing compressive force, is formed
in the middle of the column, on its convex side. When the column bends, the
reversion ränge will gradually extend toward the ends and the inner parts of
the column. Owing to the combined influence of all these facts, the effective
flexural rigidity of the column depends in an unknown way on the load and
the longitudinal coordinate of the column, thus making it difficult to clarify
the phenomenon aecurately.

On the basis of the stress-strain function (5), Larsson11) has investigated

x) H. Larsson, Journ. Aeronaut. Sei., Vol. 23 (1956), pp. 867—873.
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the buckling of a centrally loaded straight column in the inelastic ränge. The
influence of the Shanley effect on the magnitude of the buckling force Fmax
of a column of idealized I-section appears from the diagrams in figure 9.

They show how the quantity (Fmax — Ft)/(FR — Ft) depends on the ratio FJF0
where F0 GyA denotes the compressive force at which yielding of the column
begins. By interpolating between the curves belonging to the parameter
values c 0.96 and c 0.99, the dotted-line curve has been drawn whose
c 0.977. This curve refers to the structural steels St 37 and St 52 given in
table 1. The buckling stress diagrams in figure 6 represented by dotted lines
have been constructed with the aid of this curve. We see that for an I-section,
Gmax is in the inelastic ränge always nearer to the buckling stress Gt than to
the buckling stress Gr. Larsson has also investigated the influence of the
Shanley effect on the buckling stress of a rectangular cross section and found
it to be very little higher than that of an I-section.

Summing up, we can say that the tangent-modulus load Ft does not ac-
curately define the buckling load, but it can be regarded as a lower limit of
the actual buckling force Fmax of the column. The tangent-modulus load Ft
should therefore be considered the critical load Fc of a centrally loaded straight column.
For columns of such material that its stress-strain diagram can be presented
by means of the stress-strain function (5), the critical buckling stress is
obtained from formulas (16) or (17), where we now can write Gt Gc to indicate
that a critical stress is in question.

maxLL
F-Fr • c

C 0.99

0.977

0.96

0.93

0.90

0.85
0.80

0.4

0.2

0.5 0.8 0.9

Fig. 9. Influence of the Shanley effect on the buckling force of a column of idealized
I-section according to Larsson.
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5. Navier-Rankine's Buckling Formula

The validity of Euler's buckling theory was subjected to doubt for a
long time because for short columns it led to too high values of the buckling
stress. Only when Lamarle12) in 1845 had established the proportional limit
as the limit of validity of Euler's formula, it was possible to understand
why this formula could not give correct results in all cases. Therefore, before
Engesser had presented his theory of inelastic buckling, attempts were made
to find empirical buckling formulas suitable for the design of columns. One
of the best known is Navier-Rankine's buckling formula13).

(24)

[M7T2E

In deducing this formula the column is usually assumed to be always
somewhat eccentrically loaded, because it is not possible to produce a
perfectly straight column and to have the force centrally applied with sufficient
accuracy. An investigation of the strength of the column under these conditions

results precisely in Navier-Rankine 's buckling formula (24).
The same formula is simply obtained as a special case of the buckling stress

formula (16) by introducing c 0 or from formula (17) by a limiting process
when c->0. From this it appears that Navier-Rankine's formula can be
applied to the computation of the buckling stress of only those materials
whose tangent modulus decreases approximately linearly with increasing
compressive stress and will be zero when g gv. According to table 1, concrete
is such a material since its c 0.

6. The Required Cross-Sectional Area of the Column

When the column is to be dimensioned with respect to buckling, the
following factors are usually known, the buckling force Fc vF where v is the
factor of safety and F the allowable load, the length of the column Z, the
constants E, Gy and c characterizing the material used, and the coefficient
of restraint [i of the column ends. The required cross-sectional area A of the
column and the moment of inertia J are to be determined. Formulas (16)
and (17), as all other buckling formulas, are inappropriate for this purpose,

12) E. Lamarle, Memoires sur la flexion du bois. Annales des travaux publics de
Belgique, T. IV., p. 1. Brüssels 1846.

13) The formula is known by several different names, such as Navier's, Rankine's,
Schwarz's or Gordon's formula. For its history cf. E. H. Salmon, Columns, Oxford
Technical Publications. London 1921.
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because the slenderness ratio of the column depends on the cross-sectional
area and its moment of inertia, both of which are unknown.

In order to determine directly the required cross-sectional area of the
column, we reduce the fraction in the tangent-modulus formula (15) to higher
terms by the cross-sectional area ^414). Taking into consideration that g gc
when buckling occurs, we obtain

where Agv means the compressive force at which yielding of the column
beging and Fc Agc indicates the buckling force of the column. When the
modulus of elasticity E in Euler's formula (9) is replaced, according to
Engesser, by the tangent modulus (25) we obtain

_Htt2EJ Agv-Fc
l2 Agv-cFc

In order to solve this equation for the area A, the moment of inertia J
should be expressed as a function of A. Therefore, we introduce

A2 kJ, (27)

where k is the so-called section number15). It is a nondimensional quantity
whose value depends only on the shape of the cross section. For geometrically
isomorphic cross sections k is constant. By introducing the expression of J
from (27) into eq. (26) we obtain

kFJ2 AGV-Fn
fM7T2EA2 Agv-cF{c

When the fraction at the left-hand side is reduced to higher terms by the
factor Fc Gy2, the numerator and the denominator of the fraction at the right-
hand side are divided by Fc and the cross-sectional area corresponding to
the pure compression is denoted by Fc\gv A0, it is possible, by using the abbre-
viations16)

A kGy2l2

A0 ~' ^2EF( (28)

14) The method of determining directly the required cross-sectional area of the
column, to be presented in the following, is general and applicable in connection with
any stress-strain function. Cf. author's investigation Die Knickfestigkeit eines zentrisch
gedrückten geraden Stabes im elastischen und unelastischen Bereich. Doctor's thesis. Fin-
land's Institute of Technology, Helsinki 1939, p. 93.

15) In newer German üterature the section number has been denoted by Z. As Z
in the English üterature means the section modulus of the cross section, the older German
symbol k has been used here in order to avoid confusion.

16) The quantity co is identical with the buckling number of the German buckling
specifications. Cf. DIN 4114.
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to write the equation in the form g/co2 (co— l)/(co — c) or

q a>*
OJ — C

(29)

This equation shows how the relative cross-sectional area oi A\A^ depends
on the quantity q that contains all the quantities given in connection with
the problem of dimensioning. In order to get an idea of this relation, the
function (29) has been represented graphically in figure 10 using c as
parameter. When q 0, a> equals 1 at any value of c. With increasing q all curves
approach asymptotically the square parabola co2 q, which corresponds to
the required area of the column according to Euler's buckling formula when
the column is buckling in the elastic ränge. The influence of the parameter c

on the area appears clearly from the slope of the curves. The greater c is,
the smaller is the required area and the faster approaches the corresponding
curve the parabola.

By expressing the quantities in inequality (11) by means of k, l and F,
the inequality may be written in the form

*©'¦ (30)

If this inequality is satisfied, the column buckles elastically and its required
moment of inertia is obtained from Euler's formula (9). If the condition
(30) is not fulfilled, the column buckles in the inelastic ränge and its required
cross-sectional area can be determined with the aid of the nomograms in
figure 9.

If in figure 10 the quantity
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Fig. 10. Required relative cross-sectional area of the column according to formula (29).
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had been used as abscissa, it would have been possible to represent Euler's
formula (9) by a straight line through the origin. With increasing q the oj-

curves would asymptotically approach this line.
By means of the curves in figure 10 it is easy to judge the choice of the

cross section and the suitability of the material for the column.
The quantities on which q depends can be regarded as known in most

cases concerning the design of columns. The value of the nondimensional
quantity q can then be computed and the corresponding ratio ^4/^40 determined.
If this is large, the column will be heavy, its buckling stress small and the
material of the column poorly utilized. In order to improve the column in
this respect, the attempt should be made to decrease the value of q. This
is best done by choosing a section form in which the material is put as far
as possible from the neutral axis. The section number k and, at the same
time, q will decrease. If the result desired is not obtained in this manner,
the change of the material is still possible. The change of material affects
the value A/A0 in two ways since both q and c change, provided the latter
does not happen to be the same for both materials. The conditions at the ends

of the column and thereby the value of /jl can possibly also be changed.
For the use of the nomograms in figure 10 the section number for different

shapes of the cross section must be known. As has already been mentioned
earlier, k is constant for geometrically isomorphic cross sections, such as circle
and square. The use of the nomograms presented in figure 10 leads for such
columns direct to the required cross-sectional area of the column17).

These cross-sectional shapes with constant section number occur, however,
seldom in practice. In order to save weight and material and for constructional
reasons it is attempted to use cross sections whose area is dispersed far from
the neutral axis. The isomorphism of two such cross sections presupposes,
in addition to the isomorphism of the external form, that also the corresponding
ratios between the wall thicknesses and the external dimensions of both
cross sections are the same. The sections used in practice belonging to the
same category but different in size, do not fulfil, in general, this condition.
Consequently, their section number is a variable quantity which is a function
precisely of the ratio between the wall thickness and the external dimensions
of the cross section. The use of the nomograms in figure 10 for such cross
sections does not lead directly, in general, to the required cross-sectional
area of the column. It should be checked by means of eq. (27) that the section
number of the cross section obtained is actually the same as that used in
connection with the diagrams in eq. (27). If that is not the case, the procedure
should be repeated by using the new value k obtained from (27). This iteration
method converges, however, very rapidly and often already the first
determination of the cross section will be the final one.

17) See author's paper in Schweizerische Bauzeitung, Vol. 119 (1942), p. 85.
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Table 2. Section number k of various cross sections
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Section k Section A
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The above table 2 presents the section number k of some shapes of cross
sections. In the cross sections 1 to 11, the influence of the wall thickness has
been left out of consideration. Their k numbers are therefore rough approximate
values only which correspond to average ratios, occurring in practice, between
wall thicknesses and the external dimensions of the cross section.

When the required cross-sectional area of columns made of a certain
material is to be determined, the previous method can still be considerably
simplified in the following way. We introduce into the expression of the
variable q in eq. (28) Fc vF, where v is the factor of safety and F the allowable
compressive force and write as follows

g2 kl2
7T2VE LüF

The first factor indicates the quantities characterizing the properties of the
material and the second the known quantities of design. By selecting for the
latter quantity kl2\\x,F a sequence of suitable values and by multiplying
them by the factor Gy2jir2vE, the magnitude of the variable q is obtained.
The buckling numbers cd corresponding to these values of q can be taken from
the nomogram of the material in question in figure 10. By choosing v 2
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as the factor of safety, the buckling numbers in table 3 are obtained in this
way for structural steel St 37. For the sake of clearness it would also have
been possible to add the slenderness ratios A, but since the knowledge of them
is not necessary in connection with this method of dimensioning, they have
been left out.

Table 3. Buckling numbers of structural steel St 31 when v 2 and allowable
compressive stress Ga gJv 1200 kgjcm2

w kl2

»F CO »F CO

cm2/kg cm2/kg

0 1 7 1,094
1 1,003 8 1,136
2 1,009 9 1,182
3 1,017 10 1,230
4 1,027 11 1,284
5 1,042 11,25 1,295
6 1,064

When o> has been determined from table 3, the required cross-sectional
area of the column is calculated from the formula

F_
'kg

cm" 1200 (31)

After determining the cross-sectional area, the section number used in
calculating the area must be checked with the aid of formula (27) k A2jJ.
If it is not the same as assumed at the beginning of the procedure, the
determination of the cross section should be repeated by starting with this new
section number obtained from formula (27). Because the value of k changes

very slowly with the size of cross section, already the first approximation
of the cross section is often sufficiently accurate.

Introducing the expression of q from eq. (28) and Fc vF into inequality
(30) and solving this for the quantity kl2lfiF we obtain

kl2

^F
>E

(32)

If this condition is fulfilled, the column buckles in the elastic ränge and its
necessary moment of inertia is obtained from Euler's formula (9). If the
condition (32) is not fulfilled, the column buckles in the inelastic ränge.
Table 3 includes only those values of columns that fulfil the condition k Z2//x F ^
g; 11.25 cm2/kg for inelastic buckling.
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As an example of the application of this method we determine the required
cross-sectional area of a column made of steel St 37 when 1^ 270 000 kg
and Z 325cm. The column ends are assumed to be hinged so that /x=l.
As the cross-sectional shape of the column we choose an I-section of wide
flange DIN IP, for which k 4.25 according to table 2. On the basis of the
given quantities we obtain

—— 1.66-j—.fiF kg

Since this is smaller than 11.25 cm2/kg, the column buckles in the inelastic
ränge. According to table 3, the buckling number a> 1.007 corresponds to
the value kl2\\iF 1.66 cm2/kg. From formula (31) we now obtain the required
cross-sectional area of the column

ojF 1.007-270 000
2A T2ÖÖ Cm 12ÖÖ Cm 226'8 Cm '

The cross section next in magnitude is IP 45, whose A 232 cm3, J 12 640 cm4
and k A2IJ 4.26. Since this section number is almost the same as the
assumed & 4.25, the computed cross-sectional area is sufficiently accurate.

Summary

The author presents a new stress-strain function (5), which contains three
parameters E, Gy and c. The first two, the modulus of elasticity E and the
yield point stress Gy, have a quite determined physical meaning. The third
parameter c depends primarily on the proportional limit gp of the material
and some other quantities in the way shown by formula (7). The stress-strain
functions corresponding to different values of c have been presented in a
dimensionless form in figure 2. The first derivative of the stress-strain function
with respect to the strain is very simple, it being a linear fraction of stress.

It follows from the stress-strain function (5) the simple expression (15)
for Engesser's tangent modulus Et. For an I-section with an infinitely thin
web an equal expression (21) for the double modulus is obtained, where the
parameter c is replaced by the value (l+c)/2. Formula (16) is valid for the
buckling stress according to the tangent-modulus theory. The formula is
simplified to Navier-Rankine's buckling formula (24) when c 0. Fig. 5

shows the buckling stress curves of different materials in the dimensionless
form. According to the double-modulus theory, formula (22) is obtained for
the buckling stress of a column of idealized I-section. This formula is exactly
equal to (16) with the only exception that parameter c is replaced by (1 +c)/2.
The influence of the Shanley effect on the buckling stress of a column of
idealized I-section has been presented according to Larsson's investigations.
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The buckling-stress diagrams of structural steels St 37 and St 52 according
to different theories are given in figure 6. The buckling stress according to
Shanley's theory lies slightly higher than that according to the tangent-
modulus theory but is smaller than that according to the double-modulus
theory and always nearer to the former. The buckling stress according to the
tangent-modulus theory should be considered the critical stress of the column.

The investigation presents finally a method of determining the required
cross-sectional area of the column without conventional trial and error. This
new method which is quite general and applicable in connection with any
stress-strain function is based on the fact that the buckling number co of the
column is given as a function of the quantity k l2\\x F. This quantity includes
all the factors known in the given problem of design. The buckling numbers co

for structural steel St 37 appear in table 3. A numerical example illustrates
the application of the method of dimensioning.

Resume

L'auteur presente une nouvelle loi de deformation (5) sous la forme d'une
equation qui comprend trois parametres E, Gy et c. Les deux premiers, le
module d'elasticite E et la limite d'elasticite Gy, ont une signification physique
bien determinee. Le troisieme parametre c depend en premier lieu de la limite
de proportionnalite Gp et de certains autres facteurs, comme le montre la
formule (7). Les fonctions de deformation correspondant aux differentes
valeurs de c sont presentees sous une forme non dimensionnelle sur la figure 2.

La premiere derivee de la fonetion de deformation par rapport a la tension
est une fraction lineaire de cette derniere.

De la fonetion de deformation, peut etre deduite une expression simple
pour le module de la tangente d'ENGESSER (15). Pour une section I dont
l'äme est extremement mince, une expression semblable du module double (21)
est obtenue, dans laquelle le parametre c est remplace par (l+c)/2. D'apres
la theorie du module de la tangente, la formule (16) est valable pour la tension
de flambage. La formule est reduite ä celle de Navier-Rankine (24) quand
on y fait c 0. La figure 5 represente les courbes de la tension de flambage
des differentes matieres, sous une forme non dimensionnelle. Suivant la theorie
du module double, on peut obtenir la formule (22) pour la tension de flambage
d'une section I. Cette formule est identique a (16), la seule exception etant que
le parametre c est alors remplace par (1 +c)/2. L'influence de l'effet de Shanley
sur la tension de flambage d'une section I est presentee d'apres les recherches
de Larsson. La figure 6 represente les courbes de la tension de flambage,
d'apres les differentes theories, pour les aciers speciaux St 37 et St 52 utilises
en construetion. La tension de flambage d'apres la theorie de Shanley est un
peu plus grande que d'apres la theorie du module de la tangente, mais eile
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est plus petite que d'apres la theorie du module double et toujours plus proche
de la precedente. La tension de flambage d'apres la theorie du module de la
tangente doit etre consideree comme la tension critique de la barre.

L'etude expose enfin une methode pour determiner la section a prevoir
pour la barre, sans recourir a une experimentation conventionnelle. Cette
nouvelle methode, qui est tout ä fait generale, est basee sur le fait que le
taux de flambage (10) de la barre est donne sous forme de fonetion de la
quantite kP/fiF. Cette quantite comprend tous les facteurs connus dans le

present probleme de construetion. Les taux de flambage (10) pour l'acier
special St 37 sont indiques dans le tableau 3. Un exemple numerique illustre
l'application de la methode.

Zusammenfassung

Der Verfasser stellt ein neues Formänderungsgesetz (5) mit drei freien
Parametern E, Gy und c dar. Die zwei erstgenannten, der Elastizitätsmodul E
und die Stauchgrenze Gy des Materials, haben eine genaue physikalische
Bedeutung. Der Wert des Parameters c hängt in erster Linie von der
Proportionalitätsgrenze Gp des Materials und von einigen anderen Faktoren ab, wie
genauer aus der Formel (7) hervorgeht. Die den verschiedenen Werten des
Parameters c entsprechenden Druckstauchungsdiagramme sind in Fig. 2

in dimensionsloser Form dargestellt. Die erste Ableitung der Formänderungs-
funktion ist eine lineare gebrochene Funktion.

Von der Formänderungsfunktion (5) folgt für den ENGESSERschen
Tangentenmodul der Ausdruck (15). Für einen I-Querschnitt mit unendlich dünnem
Steg erhält man einen ähnlichen Ausdruck (21) des Knickmoduls, der sich
nur dadurch von Gl. (15) unterscheidet, daß an Stelle des Parameters c in
Formel (21) der Wert (l+c)/2 steht. Für die Knickspannung nach der ersten
ENGESSERschen Knicktheorie gilt die Formel (16). Wenn c 0, vereinfacht
sich diese Formel zu der Knickformel (24) von Navier-Rankine. Die Knick-
spannungsdiagramme von verschiedenen Materialien sind in Fig. 5 in
dimensionsloser Form dargestellt. Für die Knickspannung eines Stabes mit
idealisiertem I-Querschnitt erhält man nach der ENGESSER-KÄRMÄNschen
Knicktheorie die Formel (22), die dieselbe mathematische Form hat wie
Gl. (16), nur mit dem Unterschied, daß in Gl. (22) der Parameter c durch den
Wert (l+c)/2 ersetzt ist. Die Wirkung des Shanley-Effektes auf die
Knickspannung des idealisierten I-Querschnittes ist nach den Untersuchungen von
Larsson dargestellt. Die Knickspannungsdiagramme der Baustähle St 37 und
St 52 sind in Fig. 6 nach den verschiedenen Knicktheorien wiedergegeben.
Die Knickspannung nach der Knicktheorie von Shanley liegt etwas höher
als die ENGESSERsche Knickspannung, ist aber immer kleiner als die Engesser-
KÄRMANSche Knickspannung. Als kritische Spannung soll die ENGESSERsche

Knickspannung betrachtet werden.
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Am Ende des Aufsatzes wird ein Verfahren für die direkte Bestimmung
des erforderlichen Querschnittes des Stabes dargestellt. Das Verfahren, das

ganz allgemeingültig und in Zusammenhang mit jedem Formänderungsgesetz
anwendbar ist, gründet sich darauf, daß die Knickzahl co als Funktion der
Größe kl2\[iF dargestellt wird. Diese Größe enthält alle Faktoren, die bei
den auf die Knickstäbe bezüglichen Konstruktionsaufgaben als bekannt
angesehen werden können. Die Knickzahlen co für den Baustahl St 37 sind in
der Tabelle 3 gegeben. Als Beispiel für die Anwendung dieses Verfahrens
wird die erforderliche Querschnittsfläche eines Knickstabes bestimmt.
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