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General Instability of Low Framed Buildings

Instabilite generale des constructions formees de portiques ä un etage

Allgemeine Instabilität einstöckiger Rahmentragwerke

John E. Goldberg, Ph. D., Professor of Structural Engineering, Purdue University,
Lafayette, Indiana (U.S.A.)

Introduction

In the design and stability analysis of one-story framed structures such
as industrial buildings, it is usual at most to consider the individual plane
frames or bents as acting independently. Each plane frame is thus usually
required to be stable under its own loadings without dependence upon the
possible support which may be provided by other elements of the structure.
In many cases, however, such support could be, and in fact is, provided by
the horizontal bracing system, the end walls, and perhaps those frames which
are not themselves loaded to their critical limit.

Suppose, for example, that the building has reasonably stiff end walls and,
in the roof or ceiling plane, an adequate horizontal bracing system supported
by the end walls. This system can provide the individual frames with a definite
amount of elastic support against transverse buckling in their respective planes.
Including this additional support in the stability analysis will, of course,
increase the calculated collapse loads for the sidesway mode of collapse.

As a second example, suppose that the critical column loading condition
for the individual frames of a one-story industrial building is due primarily to
a heavy overhead traveling crane. Since the crane can be at only one location
at any time, only one frame will be severely loaded at a given time. The
remaining frames, being less than critically loaded, will have at that time
what may be considered to be an excess of stiffness. Hence if an adequate
horizontal bracing system exists, this excess stiffness together with the stiffness
of the end-walls will be transmitted to the critically loaded frame in the form
of elastic support against lateral buckling. If an analysis is made in which
this elastic support is considered, it may be possible either to reduce the sizes
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of columns in a structure yet to be designed, or, in a structure already designed,
either to justify a materially greater load or to show an increased factor of
safety.

The problems of general instability of complete framed structures usually
are complicated to such a degree that their exact Solution is extremely difficult
and laborious. While it is true that the formulation of such problems is not in
itself difficult, although usually lengthy, the high degree of elastic coupling
and the fact that the axial loads enter the equations in a transcendental form
complicate the problem to such an extent that the rigorous Solution or even
a dependable rational Solution is not attempted.

In the case of the one-story building, however, a rigorous Solution is not
only possible but also practicable. It is the purpose of this paper to present
the theory and demonstrate the procedure for an exact stability analysis of
one-story buildings. This approach is applicable to buildings in which the

upper parts of the frames are either trusses or girders. For simplicity, the
following discussion will be centered about the case of plane frames consisting
of columns and girders. The modifications which become necessary in using
this approach for frames having roof trusses will be obvious.

If the individual plane frames are of the rectilinear, rigidly connected

portal type, the Solution proceeds in the following way:

1. Assume each bent is disconnected from the bracing system, and apply
the design axial loads to the columns of the bents.

2. Taking into account the effect of the axial loads on the various members,
find the shear stiffness or horizontal spring rate of each frame, i.e., the force

required at the level of the bracing system to produce a unit transverse
displacement. This may be done easily by a generalized slope deflection method
or by a generalized moment distribution method, using coefficients which have
been previously1) presented. For frames which are less than critically loaded,
it will be found that the spring rates are positive; for frames which are more
than critically loaded, the spring rates will be negative.

3. Treating the bracing system and its supports as an elastic structure
disconnected from the frames, determine the influence coefficients for
displacements at the locations of the critically loaded frames due to unit forces
at those locations. The frames which are not critically loaded are to be
considered as a part of the elastic support for the bracing system. When only
two non-critically loaded frames exist, or only the two end-walls are available
for supporting the bracing system, and the bracing system is itself statically
determinate, then the computation of the influence coefficients is also simply
the problem of deflections of a statically determinate structure. On the other
hand, if the number of walls plus non-critically loaded frames exceeds two,

x) See "Stiffness Charts for Gusseted Members Under Axial Load", by John E. Gold-
berg, Transactions, American Society of Civil Engineers, Vol. 119 (1954), p. 43.
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the computation of influence coefficients becomes the straightforward problem
of determining the deflections in a statically indeterminate structure.

4. Apply to the bracing system a set of loads proportional to the product
of the shear stiffnesses of the critically loaded frames as determined in (2)
times the corresponding deflections and compute the resulting lateral deflections

of the bracing system. This calculation is made by use of the influence
coefficients determined in (3). It will be seen that the pertinent equations form
a linear, homogeneous, algebraic set and can therefore be treated as an eigen-
value problem, the Solution of which can be obtained by an iterative procedure
as well as by other and more formal methods.

5. For any one critically loaded frame location on the bracing system,
compute from the results of (4) the ratio of applied force to deflection, i.e.,
the spring rate of the bracing system and its supports.

6. Compare the spring rate of the bracing system at this location to the
negative spring rate of the critically loaded frame. If the spring rate of the
bracing system exceeds the negative spring rate of the frame, the entire structure

is stable. Conversely, if the negative spring rate of the frame exceeds the
spring rate of the bracing system, the entire structure is unstable, i.e., a
condition of general instability exists. Note that this comparison can be made
for any frame location and the conclusion regarding stability or instability is
not dependent upon the choice.

7. Alternatively, if the iterative procedure is used at step (4), the stability
or instability of the structure is deduced from the comparison of the initial
values and resulting values of a cycle.

Lateral Stiffness of Frames

The lateral stiffness of each of the individual frames is easily obtained by
any one of several techniques, including a generalized slope deflection method
or a generalized moment distribution method. The slope deflection approach
is here used inasmuch as charts which have previously been prepared by the
author are directly applicable to this technique. However, these charts may
also be used to provide the necessary factors in the event the moment
distribution technique is to be used. The reader is referred to a previous publication

2) which presents a complete set of charts giving constants for various
axial load ratios and for various gusset lengths. Only the first of the charts,
for gussets of zero length, are reproduced at this time as fig. 4. The numerical
values of the coefficients are also listed in table 1.

It may be shown that the bending moment at the end a of a uniform
member ab (see fig. 2) which is subjected to an axial compressive load P, can
be written

2) Loc. dt.
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Mab K(Ada + B6b), (1)
TP T

where K -y-, 6a,0b slopes at ends a and b, respectively, taken positive

in the clockwise direction;

A
sin pL — pL cos p L

__

—=¦ (1 — cos pL) — sin p L

B pL — sin p L

—= (1 — cos p L) — sin p L

p L cosh p L — sinh p L

—Y (1 — cosh p L) + sinh p L

sinh pL — pL
—=• (1 —eoshpL) + sinhpL

P axial compressive load,

A

B

(P positive, compression),

(P positive, compression),

(P negative, tension),

(P negative, tension),

Shear-wall or
braced frame

p ]/ KI

3) Complete building structure >

&/ Bracing System

c) Frames

Fig. 1. Complete Structure and its Components.

£b "^

i^A

Fig. 2. Applied Forces and
Distortion of a Column.
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Thus, the constants A and B in eq. (1) depend only upon the dimensionless
quantity p

p=-p-, since pL ttY\p\. (2)

Per

T.

Fig. 3. Deflected Unstable Frame.

- o

m
ii

PC?

X'LI

EE

-1
<p

0 1 2

Fig. 4 a. Values of A for a/L — 0.
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The previously mentioned charts (see fig. 4) show A and B as functions of p.
In fig. 4, a, b, are lengths of gussets, c is distance between gussets.
If the ends of the member are displaced in the transverse direction by the

relative amount A, as shown in fig. 2, so that the chord of the member is
rotated through a positive angle AjL, eq. (1) becomes

Mab K Ada + Beb-(A + B)^-] (3)

Consider a frame, such as shown in fig. 3. The axial loads, Pab, Pcd, Pef,
on the columns are assumed to be known, and the lateral displacement, A, is
specified arbitrarily. It is required to find the magnitude of the horizontal
force, 8, which is required to produce the displacement, A. Since A may be
taken as small as one wishes, S can be made so small that its effect upon the
flexural stiffness of the girders is negligible. The basic slope deflection constants
therefore apply to the girders, and the moments at the ends of the girders are:

Mae Km(48a + 26e),

Mm Kac(4dc+29a),
Mce=Kce(4dc+26e),
Mee=Kce(46e+2ec).

By eq. (3), the moments at the upper ends of the columns are

W

a
L 0

45 ¦i
7

UO

l
- -tX-

^-- lt _i__
: £::_

: i z
7

35

_ 7
-i- -A -n

3:z_ _:
_i_ P —

B

30

25

20

_e : : / +t

:-{-o1

:± .~f
-T

TI

Fig. 4b. Values of B for a/L 0.
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™ab — Kab Aab 6a — (Aab + Bab) -=

MCd Kcd Acd 6C — (Acd + Bcd) -^

Mef Kef ^Ae, de - (Aef +Bef) A-]
where the A 's and B'ä may be taken from fig. 4 or from similar charts.

At each Joint, the sum of the moments must be zero and therefore

Mca + Mcd + Mce 0,
Mec +Mef =0.

Substituting eqs. (4) and (5) into eqs. (6) yields
A

(5)

(6)

(Aab Kab + 4 Kac) ßa + 2 Kac 6C Kab (Aab + Bab)

(AcdKcd +4^+ 4Kcs) 6C + 2Kacea + 2Kce0e K* (Acd + B«) A_
La

(Aei Ke, + 4 Kce) 6e + 2 Kce dc Kef (Aef + B^Yj-

Taking A as unity, eqs. (7) are to be solved for the 0's. This may be done
either by iteration or by a formal algebraic procedure, e.g., Substitution and
elimination, determinants, etc.

Having the values of the Joint rotations and A, the shears in the columns

may be computed. For this purpose, consider, for example, column ab as a
free body. (See fig. 2.) Taking moments about either end, one obtains

Sab 7— Wab + Mha + PabA)
Lab

The end moments are

Mab ~ Kab

Mba — Kah

Aai> 0a — (Aah + Bah) -

BabQa-(Aab + Bab)-

uab

A

Jab.

Substituting eqs. (9) in eq. (8) yields

Sab =^(da-2-^-) (Aab + Bab) + *f
Lab \ Liah! ^o

P.A.
ab

Similarly

(8)

(9)

(10)

(11)

(12)
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For the complete frame, the external force associated with the linear
displacement, A, clearly is

S Sab + Scd+Sef (13)

and, in view of eqs. (10, (11), and (12), the shear stiffness or spring rate of the
frame may be computed using the specified unit value of A and the computed
values of the Joint rotations.

In this manner, the spring rate of each frame is found when the columns
are subjected to a given set of vertical loads.

It should be noted that the same approach may be used for frames
containing any number of columns. Also, the modifications for conditions other
than that of füll fixity at the bases of the columns are easily deduced. For
example, if the lower end of column a b is pinned

Mba Kab [Aab 6b + Bab 0a - (Aab + Bab) -£-] 0

and Mab Kab ^Aab 6a + Bab 6b - (Aab + Bab) -^-j

By the first of these equations

d (Aab + Bab) A Bab
b —ä x— ~Ä~ a^ab ^ab ^ab

and therefore

Corresponding modifications may be made in eqs. (7) and (10).

Characteristics of the Supporting System

The supporting system comprises the horizontal bracing system together
with the end-walls which carry the bracing system. To these components of
the bracing system we may add those frames which are less than critically
loaded, i.e., those for which SjA is a negative quantity, with S computed by
eq. (13) or its generalization. The bracing system itself may be a truss, generally
but not necessarily lying in a horizontal plane, a roof slab or other roof
construetion, flexural members (for example a set of continuous purlins), or a
combination of such elements.

The supporting system, as defined above, may be treated as an elastic
structure and, by use of the conventional techniques for Computing deflections,
the influence coefficients may be determined for deflections at the location
of each critically loaded bent. These influence coefficients are designated a^
and are defined as the deflection at the i-th point due to a unit load applied
at the ?*-th point.
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In a buckled configuration, the critically loaded frames exert a set of
horizontal forces upon the supporting structure, these forces having the
magnitudes

Sf

Fj Sj Uj, where Sj -p (15)

If the column loads throughout the entire structure are precisely such that
the structure has reached its stability limit, then the structure will be in
equilibrium in the buckled configuration. Defining the buckled configuration
in terms of the displacements of the supporting structure, the condition of
equilibrium is

&=£««*}> i=l,...,r, (16)
; 1

where r is the number of critically loaded frames. Using eq. (15), this may be

written
r
XaijSjyj yi. (17)

The Stability Criterion

Since the shearing stiffnesses, Sj, are functions of the column loads on the
various frames, eqs. (17) define the magnitudes of the column loads for which
the structure is just stable with respect to lateral or sidesway buckling. Thus,
if the magnitudes of the axial loads are not specified a priori, eqs. (17) form
an eigenvalue problem which yields the permissible values of these loads. The
relations between the column loads and the shearing stiffnesses are, however,
so transcendental that the direct determination of the permissible values of
the column loads from eqs. (17) generally is not practical. One may note, in
passing, that if the column loads are specified, eqs. (17) no longer form an
eigenvalue problem but do, in fact, constitute an overdeterminate system.

Fortunately, from an engineering viewpoint, the central question frequently
can be phrased in other ways such that obtaining an answer to the paraphrased
buckling problem may be a much less tedious Operation. If the central question
is whether or not the given structure will buckle laterally under the specified
loads, a modification of eqs. (17) is possible which puts these in the form of
an eigenvalue problem for which the desired Solution may be obtained in a

relatively simple manner.
The central question may be replaced temporarily by the problem of

determining the stiffness of a supporting structure which would prevent
buckling of the loaded bents. In particular, it is desired to find the factor, /x,

by which the stiffness of the existing structure must be multiplied to provide
the required support. If the stiffness is multiplied by this factor, it follows
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that the influence coefficients are reduced in the same ratio. The pertinent
equations now are deduced from eqs. (17) and are written

r

Y~Siyj yi, i l,...,r (18)
7 1 /*

r
or Zaijsjyj Mn i l,...,r. (19)

These are the equations of an eigenvalue problem in which /x is the eigenvalue
to be determined. The relative values of the y's which satisfy eqs. (18) may be
found either by the formal methods for determining an eigenvalue and an
eigenvector or by an iterative procedure. Generally the iterative procedure is
more attractive.

In using the iterative technique, one assumes an initial set of values for
the yS& and Substitutes into eqs. (19). This Operations yields a second, and
ordinarily more correct, set of numbers proportional to the deflections at the
several points. With the initial set and the computed set normalized to unity
at the same point, the sets are compared point for point. If the agreement is
satisfactory, no further iterations will be necessary, and the value of /x may
be computed. If the agreement is not satisfactory, the iterative procedure is
repeated a sufficient number of cycles until satisfactory agreement is obtained.

At this stage, the deflections may be assumed to have converged to their
correct relative values. The value of /x is now computed as the ratio of two
successive values of the deflection at a particular point by the formula

/^%r> (2°)

in which i^w+1) is the computed value of the last cycle before normalizing.
Recalling that /x is the factor by which the stiffness of the supporting

structure must be multiplied to provide precisely the proper support for the
imposed loads, the stability or instability of the actual structure under the
prescribed or assumed pattern of loads now can be deduced from the computed
value of /x since,

for stability /x^ 1,

and, for instability xt > 1.

Example 1

As a simple illustrative example, we consider a structure consisting of four
identical steel frames, with a steel bracing system and masonry end walls as
shown in flg. 5. For the purpose of obtaining a simple example, it is assumed
that all columns are identical and that they carry equal axial loads. The
problem is to determine the magnitude of the column loads at which a lurching
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mode of collapse will occur. The transverse horizontal deflections, ati, of the
bracing system due to unit loads applied in turn at the location of each frame
have been computed by the Maxwell-Mohr Method for trussed Systems and
are listed in the table below. Shear deformation of the masonry end walls is
so small as to be practically negligible, accounting for only 0.1 per cent to 0.3

per cent of the deflection. No diffieulty would be encountered in including the
deformations of less stiff end constructions such as braced frames or metal
covered frames.

Table 2. Numerical Example. Deflections of Bracing System Due to Unit
Loads, or Influence Coefficients, atj

Location of
Unit Load

Influence Coefficients*)

Frame 1 Frame 2 Frame 3 Frame 4

Frame 1

Frame 2

Frame 3

Frame 4

127.266
98.200
67.279
46.180

98.200
194.440
135.584
67.279

67.279
135.584
197.415
117.885

46.180
67.279

117.885
127.885

*) Influence Coefficients, a^, are in units of 10~6 in./lb.

/ § "Round rod, area trou sq.. in.

*4»4*y"Angle, area i.9Usgin.

8"Masonry wall

30'

Plan of oracing system

'

P P
'

p

1'

zu'

a

b

c

d
m

e

f
<—30' <— 30'

Girders-. 8*8-31"^
Area 9.12

I - 109.7

Columns- 8*8-3U.3*H
Area 10.00

I 35.1

Typical frame

Fig. 5. Illustrative Example.
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The Euler load of each column is

P - tll - ^2X30X10°X35.1 _^ - Iß " (288p " 12M°3 lbS'

For a first trial we assume that the axial load on each column is

P 2.2 Pe 275,667 lbs.

Then, for each column, from fig. 4 or from the table,

P 2.2,

A -0.519,
£ 3.901,

A + B= 3.382,

£ 288.

Since db dd df 0, and 0a 0e, the bending moments at the ends of all
members may be written by use of eqs. (4) and (5) as

Mab Mef 3.565 X 10« (- 0.519 0«--~),
Mba Mie 3.666 x 10« 3.90ieo-^|P),

(o 382\
-0.519 ee—-^-j,

(o 382\
3-901Öc~~288~)J

Mac Jf«, 9.142xlO«(4 0a + 2 0c),

^ca ^ce 9.142X1O«(4 0C + 2 0J.
The equilibrium equations at the joints are

Mab + Mac 0,

Mca + Mcd+Mce =0.

Substituting the expressions for the moments as given above yields the pair
of simultaneous equations

34.670 0a + 18.284 0C 0.042933,

36.568 da + 71.238 0C O.O42933.

The Solution of these equations is

0a 1.2621 x IO"3 radians,
dn - 0.04524 x IO-3 radians.

The moments at the ends of the several members are obtained by substituting
these values into the expressions previously listed, and are
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-0.519X1.2621 XlO"3 ^—I -45,328,(o Q82\

3.901X1.2621 XlO"3 ~-I -24,933,(O OQO\
0.519 X 0.04525 XlO-3--^-—- -42,847,288 J

- 3.901 X 0.04524 xlO-3--^-—-) -43,578,

Mac 9.142 XlO6 (4X1.2621 XlO-3-2 X0.04524X10-3) 45,325,

Mca 9.142 XlO6 (4x0.04524 XlO"3+ 2x1.2621 XlO-3) 21,422.

By eq. (8), the column shears are

Sab Sef 1*-(Mab + Mba + PA)
-^ab

W - 45?328 - 24,933 + 275,667) 713 lbs.
288

Scd -i- - 43,578 - 42,847 + 275,667) 657 lbs.
288

For the complete frame under the assumed loads, the shear force is

S Sab + Scd + Sef 2083 lbs.

Since S is positive, the frame is unstable under the assumed loads unless

externally braced.
Eq. (19) for the lateral deflections of the bracing system are

Using the values of a{j previously listed, and the value of $ 2083 lbs. for
each frame, these equations become

0.26510^ + 0.204552/2 + 0.140142/3 + 0.096192/4 pyl9
0.20455^ + 0.406062/2 + 0.278262/3 + 0.140142/4 [ly29

0.14014^ + 0.278262/2 + 0.41122 2/3 + 0.245552/4 \x,yz,

0.096192/1 + 0.140142/2 + 0.245552/3 + 0.266382/4 /xy4.

We now assume an arbitrary set of 2/'s, Substitute these into the left-hand
sides of the above set of equations and compute a corresponding set of pro-
ducts fjuyi. The corresponding set of 2/'s may be normalized, and again substituted

into the left-hand sides of the above equations to obtain a new set of
results. This process may be repeated until an acceptable degree of convergence
is attained. In assuming an initial set of y's, it is naturally advantageous to
select values which have relative magnitudes as close to the final normalized
set as possible. The process will converge, however, regardless of the correct-
ness of the initial set.
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For an initial set, we assume the values

2/x 0.600,

2/2 1.00,

2/3 1.00,

2/4 0.60.

Substituting into the equations we obtain

0.26510 X 0.600 + 0.20455 X 1.000 + 0.14014 x 1.000 + 0.09619 X 0.600 0.5615,
0.20455 X 0.600 + 0.40606 X 1.000 + 0.27826 X 1.000 + 0.14014 X 0.600 0.8911,
0.14014 X 0.600 + 0.27826 X 1.000 + 0.41122 x 1.000 + 0.24555 X 0.600 0.9209,
0.09619 X 0.600 + 0.14014 X 1.000 + 0.24555 X 1.000 + 0.26638 X 0.600 0.6032.

It is convenient to normalize these results, thus obtaining the following set
of 2/'s,

0.5615 „ „„„„ 0.8911
Vi ttk^k 0.6097,

Vz

0.9209

0.9209
0.9209

1.000, 2/4

0.9209

0.6032
0.9209

0.9676,

0.6550.

These values are used to obtain a second calculated set of y's, and the
process is repeated until convergence is obtained. The results of these iterative
Operations are presented in the following table.

The deflections obtained in the fifth cycle evidently have converged to
the correct values. As a matter of fact, it appears that the results of the second
or third cycle would have been sufficiently good for design and analysis
purposes.

Table 3. Example 1. Iterated Values of Deflections

2/i 2/2 2/3 2/4

Trial Values 0.6000 1.0000 1.0000 0.6000

Ist cycle 0.5615 0.8911 0.9209 0.6032
Normalized 0.6097 0.9676 1.0000 0.6550

2nd cycle 0.5627 0.8877 0.9267 0.6113
Normalized 0.6072 0.9579 1.0000 0.6597

3rd cycle 0.5605 0.8839 0.9248 0.6139
Normalized 0.6061 0.9558 1.0000 0.6638

4th cycle 0.5601 0.8834 0.9251 0.6146
Normalized 0.6054 0.9549 1.0000 0.6644

5th cycle 0.5599 0.8830 0.9249 0.6146
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The required stiffness factor for the bracing system is now deduced by
comparing, at any one of the four frame locations, the calculated result and
its last previous value. Thus, using the results of fifth cycle at the third location

_.
0.9249

f*1-1.0000 -°-925-

It may be easily verified that the same value is obtained from the deflections
at the other frames:

^ 0.5599
at Frame 1, /x ——— 0.925,0.6054

0 8830
at Frame 2, ^ —^ 0.925,

at Frame 4, ^ ^^ 0.925.

The results of the second cycle would have furnished a very satisfactory
basis for determining the value of /x with an error of not more than two per-
cent. Calculating /x at the several frames by comparing the results of the
second cycle to the values which were used in that cycle gives:

0 5627
at Frame 1, /x ^^ 0.923,

0 8877
at Frame 2, p ^^ 0.917,

0 9267
at Frame 3, ^ JM^ 0.927,

at Frame 4, zx „' „ 0.933.
O.booO

The correct value of /x will lie3) between the upper and lower limits of
this set and therefore

0.917^/x^0.933.

Since a less stiff bracing system is needed to prevent a lurching collapse
of the complete structure under the assumed pattern of axial loads, it is clear
that our first estimate of 275,667 lbs. on each column is too low. The stiffness
factor /x is 7.5 per cent less than unity. This percentage is certainly an upper
limit to the additional load which the structure will support. For a second

trial, we select a convenient load of 2.4 times the Euler load, or

P 2.4 X 125,303 300,727 lbs.

and we will rely upon subsequent interpolation to obtain the critical loads of
the actual structure.

3) See H. A. Schwarz, "Gesammelte Werke", Vol. 1.
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For each column,
p 2.4,

A =¦-1.300,
B 4.383,

+ B 3.083,

L 288 inches.

When the tops of the frames are displaced a unit distance, the bending
moments at the ends of the several members of each frame are

Mab Mef 3.656X 10« (- 1.3OO0O--^!P)

4.383 0O--^gg-j,

(O AOO\
-1.300 0c--^^j,

Mdc= 3.656X106( 4.383 0C-^),
Mac Mec 9.142 X IO6 (4 ea + 2 0C),

Mca Mce 9.142 x 1O6(4 0C + 2 0J.

The equilibrium equations at the joints are

Mab + Mac 0,

Mca + Mcd+Mce =0,
and become

31.8150a+18.2840c 0.039137,

36.568 0a +68.383 0C 0.039137.

The Solution of this pair of equations is

6a 1.3011 X IO"3 radians,
0C - 0.1234 x IO-3 radians.

The bending moments at the ends of the several members are evaluated
as before by substituting these values of the angular displacements into the
formulas for the moments, thus obtaining

Mab Mcf -45,321 lb.-ins.

Mba Mfc - 18,288 lb.-ins.

Mcd -38,551 lb.-ins.

Mdc -41,114 lb.-ins.

Mac Mec 45,322 lb.-ins.

MM Mn„ 19,276 lb.-ins.
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The shears in the columns are

Sab Sef -i- - 45,321 - 18,288 + 300,727) 823 lbs.

1

2T8'Scd — (-41,114-38,551 + 300,727) 768lbs.

The sum of the column shears is

S 823 + 768 + 823 2414 lbs.

Each frame would, of course, be unstable with axial loads of 300,727 lbs.
on each column unless additional bracing were provided.

Upon multiplying the influence coefficients, aijy by the shear stiffnesses of
the frames, Sj, just computed, eqs. (19) for lateral deflection of the bracing
system may be written,

0.30722 2/i +0.237052/2+ 0.162412/3 + 0.11148 2/4 pyl9
0.237052/x +0.470592/2+ 0.32247 2/3+ 0.162412/4 /xy2,

0.16241^ + 0.32247 2/2 + 0.476562/3 + 0.28457 2/4 [ty*,
0.11148^ + 0.162412/2 + 0.28457 2/3 + 0.308712/4 juy4.

Beginning with an arbitrary set of y 's, the normalized set would be found
to converge to the values already obtained with the first trial values of loads.
This is because all coefficients on the left hand sides of the above group of
equations for the second trial are proportional to those for the first trial. The
ratio of the coefficients of the second group to that of the first group is, in
fact, merely equal to the ratio of the shear stiffness of the frames in the two
cases. Consequently, when all frames are identical and identically loaded, only
one iterative Solution of the equations need be made; and the stiffness factor,

fji2, for any subsequent trial can be obtained by the formula

_ #2

where S2 is the shear stiffness of the frames under the second set of loads, and
S1 is the shear stiffness of the frames under the loads for which /xx was required.

In the present example, therefore,

2414

Since /jl2 is greater than unity, the structure will collapse under column loads
of 300,727 lbs. unless the stiffness of the bracing system is increased by 7.2

per cent.
To determine the loads which the present structure is capable of supporting

without failing in a lurching mode of collapse, it is probably sufficiently accurate
to interpolate between the results obtained from the two trials which have
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been made. The value of the critical load obtained by linear interpolation is

Pcr 288,453 lbs. 2.302Pe.

If desired, a third trial Solution may be made in the neighborhood of p 2.302.

Example 2

As a second illustrative example, we determine the critical magnitude of
the three equal column loads at Frame 3 when the axial loads on the remaining
columns have specified values. Let the specified value of the column loads at
Frames 1, 2 and 4 be 275,667 lbs. per column.

For a first trial, we assume that the axial loads on the columns of Frame 3

are also 275,667 lbs. per column. The shear stiffness of each frame under these
loads has been determined in Example 1 and was found to be 2083 lbs. per
inch. The corresponding characteristic equations were found, in Example 1,

to yield a value for the stiffness factor of

/xx 0.925.

For a second trial, we assume that the axial loads on the columns of Frame 3

are 300,727 lbs. per column. The shear stiffness of the frame under these loads
was found, in Example 1, to be 2414 lbs. per inch. With

$! /S2 $4 2083

and Ss 2414,

eqs. (19) become

0.265102/1 + 0.204552/2 + 0.162412/3 + 0.096192/4 fiy1,
0.20455 2/x+ 0.40606 2/2+ 0.32247 2/3+ 0.14014 2/4 py2,
0.140142/! +0.27826 2/2+ 0.47656 2/3+ 0.24555 2/4 \xyz,
0.09616 2/i + 0.140142/2 + 0.28457 2/3 + 0.26638 2/4 ny*.

It may be noted that the coefficients of yx, y2 and 2/4 on the left hand sides of
these equations are the same as those used in the first trial Solution of Example 1,

while the coefficients of y3 are the same as those used in the second trial Solution
of Example 1.

Results of iterative Solution of these equations are given in the following
table.

Comparison of the normalized values of the fourth cycle with the resulting
values of the fifth cycle yields the magnitude of the stiffness factor,

_
0.5710

_
0.9126

_
0.9797

_
0.6471

^2 " 0.5830 ~ 0.9316 ~ 1.0000 ~ 0.6605 " '

As a matter of fact, using Schwarz' inequalities, the second iteration yields

0.973 S{x2S 0.986
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Table 4. Example 2. Iterated Values of Deflections

2/i 2/2 2/3 2/4

Trial Values 0.60 0.95 1.00 0.66

Ist cycle 0.5793 0.9234 0.9771 0.6512
Normalized 0.5929 0.9450 1.0000 0.6665

2nd cycle 0.5770 0.9209 0.9863 0.6516
Normalized 0.5850 0.9337 1.0000 0.6607

3rd cycle 0.5720 0.9139 0.9806 0.6477
Normalized 0.5833 0.9320 1.0000 0.6605

4th cycle 0.5712 0.9128 0.9798 0.6472
Normalized 0.5830 0.9316 1.0000 0.6605

5th cycle 0.5710 0.9126 0.9797 0.6471

while the third iteration yields

0.978 ^/x2^ 0.981.

This suggests that the required value of \x2 accurate to two significant figures
is 0.98. On this basis, two iterations would have been sufficient for design
purposes.

The critical value of axial loads on the columns of Frame 3 may be obtained
by extrapolation:

/xi 0.925, P3 275,667 lbs.,

^2 0.980, P3 300,727 lbs.,

fi3 1.000, 309,840 lbs.,
2.473 Pe.

A third trial may be made in the neighborhood of p3 2.473.

Conclusion

A method has been presented for determining the critical values of a

lurching collapse of one-story framed structures. The method has been
demonstrated by application to a structure consisting of four rectilinear
continuous frames supported by a horizontal bracing truss lying in the plane of
the upper members of the frames. The method may be applied to structures
which include other types of frames, for example, pin-connected frames and
frames in which the upper portions are roof trusses. Also, the bracing system
need not be a truss, but may, for example, consist of diaphragms or of flexural
members. Frames in the structure need not be identical or identically loaded.
In fact, the method may be applied when some of the frames are less than



General Instability of Low Framed Buildings 35

critically loaded and therefore contribute to the stability of the critically
loaded frames.

In some cases the critical loads may exceed the yield strengths of the
columns. If the material of the columns does not have a sharply defined yield
point, it is suggested that the tangent modulus be used in Computing the
flexural stiffnesses of the corresponding members.

It may be again mentioned that the shear stiffness of the frames can be
determined by other methods in addition to the slope deflection method which
was used in the examples. Those who are most familiär, for example, with the
moment distribution method may prefer to use that approach. It may be
mentioned also, that in the case of regulär frames such as were used in the
illustrative problem, the slope deflection equations and their Solution may be
reduced to a completely tabular scheme for each frame, and that such a
scheme is particularly well suited to office use.

Summary

A theory of general three-dimensional instability of one-story framed
building structures is presented. The individual parallel plane frames of the
structure are assumed to be coupled by an elastic bracing system which, in
turn, is supported by elastic walls or frames.

A lurching mode of general coolapse is investigated by a new method in
which the prediction of stability or instability under a given set of loads is
reduced to a small sequence of computationally simple problems. The
stiffnesses of each frame under its applied loads are first determined by use of a
generalized slope-deflection method or by an equivalent alternate method,
and the deflection influence coefficients of the bracing system are also
computed. These data are used to construct a set of simultaneous, linear, algebraic
equations which may be put in matrix form if desired. Finally, an iterative
process is applied to these equations or to their corresponding matrix to
determine whether or not the structure buckle.

Resume

L'auteur expose une theorie de l'instabilite generale ä trois dimensions des
constructions composees de portiques ä un etage. Chaque portique parallele
est admis relie aux autres par un contreventement qui, de son cote, s'appuie
sur une paroi ou une ossature elastique.

On examine le cas de ruine generale par instabilite laterale a l'aide d'une
nouvelle methode. Le determination du critere de stabilite ou d'instabilite s'y
reduit ä une courte serie de problemes simples ä resoudre. On determine
d'abord ä l'aide d'une methode des deformations generalisee, ou d'une autre
methode equivalente, la rigidite de chaque cadre sous les charges appliquees;
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on calcule egalement les coefficients de deformation du contreventement. Ces

bases servent a l'etablissement d'un Systeme d'equations algebriques lineaires
qui peuvent etre ecrites aussi sous forme de matrice. A l'aide d'un procede
par iteration, applique ä ces equations ou a la matrice correspondante, on
determine enfin si la construetion va flamber ou non.

Zusammenfassung

Es wird eine Theorie der allgemeinen, dreidimensionalen Instabilität
einstöckiger Rahmenkonstruktionen beschrieben. Dabei wird von den einzelnen
parallelen Rahmen angenommen, sie seien unter sich durch einen elastischen
Verband gehalten, der sich seinerzeit auf elastische Wände oder Rahmen
stützt.

Mit einer neuen Methode wird ein Versagen durch seitliches Ausweichen
untersucht, wobei die Beurteilung der Stabilität oder Instabilität unter einer
bestimmten Belastungsanordnung auf eine kleine Folge rechnerisch einfacher
Operationen reduziert wird. Zuerst werden unter Anwendung einer
verallgemeinerten Deformationsmethode oder einer ähnlichen Methode die Steifigkeiten

eines jeden Rahmens unter seiner Nutzlast bestimmt. Ebenso werden
die Formänderungskoeffizienten des querstützenden Verbandes bestimmt.
Diese Ergebnisse werden zur Bildung eines Systems von simultanen, linearen
Gleichungen verwendet, das allenfalls auch in Matrixenform angegeben werden
kann. Durch ein Iterationsverfahren entscheidet man schließlich mit Hilfe
dieser Gleichungen oder der entsprechenden Matrix, ob das Bauwerk stabil
ist oder nicht.
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