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Abstract

The general method of solution for the maximum carrying capacity of
columns containing residual stresses is first presented. Application is then made
to a specific example of an H-column. The influence of an asymmetric residual
stress distribution is considered and the results are presented in the usual
forms as column curves for axially and eccentrically applied loads. Next,
approximate solutions are presented for beam-columns having an idealized
elastic-plastic stress-strain relationship and which contain residual stresses
whose patterns have at least one axis of symmetry. The results of these studies
are also shown in the form of column curves. Finally, the theory is compared
with test results which have been reported in various publications.

I. Introduction

It is known that residual stresses are set up in beams and columns due to
non-uniform cooling, cold straightening and other manufacturing processes.
The influence of these initial stresses may be considerable for axially loaded
steel columns depending on the geometry of the section and the residual
stress distribution [1, 2].
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KerreEr, KamMINsKY and BEEDLE [3] and GarLamMBOS and KETTER [7] are
the first, to the authors’ knowledge, who have studied the influence of residual
stress on the behavior of beam-columns. They have shown how the thrust-
moment-curvature relationships of wide-flange members are influenced by
a symmetrical, “‘cooling’’ type residual stress pattern. Having this information,
it is possible to determine the ultimate carrying capacity of eccentrically
loaded members, which contain such residuals, along the lines of the classical
inelastic column theory [4].

This paper is concerned with the determination of the influence of residual
stress on the strength of columns of equal end eccentricities. These end eccen-
tricities are assumed to lie on the same side of the member and result in a
single curvature type of deformation. In addition, it will be presupposed that
the member contains a residual stress distribution having at least one axis
of symmetry.

In the presentation of the analytical solution to the problem, there is first
discussed a general method suitable for any material. This rigorous treatment
is applicable to axially loaded columns as well as the eccentrically loaded ones.
The approximate solutions which are considered later, however, are only
applicable when the material has a stress-strain curve which closely approxi-
mates the idealized elastic-fully plastic case, as is typical of mild structural
steel.

II. General Method of Solution

If loads are applied eccentrically to a member or if, on the other hand,
residual stresses do not have axial symmetry and a thrust is applied axially;
a simple solution to the problem of determining the ultimate carrying capacity
of the given member is not possible. It is first necessary to assume deflections
and by successive adjustment to arrive at the correct deformation for a given
loading. In general such a procedure is very similar to the classical method of
solution as outlined by KarmAN [4]. Approximate solutions, on the other
hand may be obtained by working with assumed deflection curves, as did
JEZEK [4] and others. Such procedures will be presented and materially reduces
the amount of numerical work that is required to obtain an answer to a given
problem.

At first no stipulation will be made as to the shape of the cross-section nor
to the stress-strain relationship of the material. It will be assumed, however,
that the deflections are symmetric with respect to the center of the member
and that the ends are pinned. Furthermore, it will be assumed that the residual
stresses have at least one axis of symmetry and are uniform throughout the
length. The possibilities of lateral-torsional or local instability are specifically
excluded. Instability (maximum load) will be considered as a condition of
excessive bending in the plane of the applied moments.
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Consider the eccentrically loaded column shown in fig. 1a. For any section
along the length of the member, strains can be described in terms of the com-
pressive strain, ¢,, and the bending strain (i.e. curvature), ¢,, at that section
(see fig. 1¢). Knowing the stress-strain relationship of the material in question
(e.g. fig. 1b), it is possible to compute the internal force, P, and moment, M,
for various assumed values of ¢, and ¢,. The results of such calculations can
be plotted as u versus ¢ and P versus ¢ curves for constant values of the
parameter €,. u is the deflection plus the eccentricity at the section in question.
Typical curves showing the relationships to be expected are given in figs. 1d
and le. Eliminating ¢, from these two series of curves, the three variables
u, P and ¢ can be combined into one graph as shown in fig. 1f.

To determine the critical length for a column subjected to a given thrust,
P, applied at an eccentricity, e; a deflected shape, u (x), must be assumed
(see fig. 1g). Entering fig. 1f with the value u, a value of ¢, is obtained for

-
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Fig. 1. Procedure for the Solution of Eccentrically Loaded Columns.
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the given load P (fig. 1h). Double integration of ¢, yields another deflection,
Uy, that contains the length, L, as a parameter. This process can be repeated
until u, =u, ., from which L is obtained.

In determining the critical length, L., it is necessary to vary the magni-
tude of the center deflection, u,, and go through the same process as described
above until a maximum value of the length has been realized [4].

Residual stresses influence the u-P-¢ relationship and thereby influence
the carrying capacity of a member containing such stresses. The procedure
for determining the critical length when the magnitude of the load and residual
stresses are given may be summarized as follows:

Determine P and M for various values of ¢, and ¢. Calculate u=%.
Plot P —¢ and M — ¢ graphs, where ¢, is a parameter for both relationships.
Combine the two graphs into one u-P-¢ graph by the elimination of e,.
Assume a deflected shape of the column ().

From the u-P-¢ graph of step 3, determine ¢ for the given P value.

U o o A

Numerically integrate to obtain a new deflection (u,) and continue until

Up = Upt1-

7. Determine the critical length by varying the magnitude of the center
deflection. The maximum length obtained by this process is the critical
length.

III. Application of the General Method of Solution to Axially and Eccentrically
Loaded H-Columns :

The general method outlined in the previous section will now be applied
to the specific solution of an H-column which contains a coldbending type of
residual stress pattern in the flanges. Since sections of this type usually fail
by combined bending and twist, when bending is imposed about the major
axis of the cross-section, only weak axis loading and instability will be con-
sidered. It should be noted that the residual stress pattern for cold bending
being asymmetric would tend to increase this possibility of lateral-torsional
instability.

The column to be investigated has a cross-section as shown in fig. 2a. The
flanges are assumed to contain the residual stress distribution shown in fig. 2b.
The initial stresses are further presupposed to be constant along the length
of the column. The material properties and stress-strain curve are as given in
fig. 2c.

Firstly, it is necessary to calculate the axial thrust and the bending moment
corresponding to various assumed values of the compressive strain, ¢,, and
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curvature, ¢ (see fig. 2d). The limiting curves of applied strain, shown by the
light solid lines in fig. 2d, correspond to that condition of yield point stress
minus the initial residual stress. For a large number of combinations of these
two parameters the following can be written after integrating and simplifying:

P 3 2x e, ¢b
?—4[0656———1)—4—1375—-}—(—— )(b+05)

b2 2
’ $b x2 1 b ’ W
ec _
T 2, (O 25_ﬁ)+_(§ 2€y)]
and
w M 3P & b at
R [o 1335—b2 +0.9170°2 7 - (g_zey) (0 1250—5—[)2) o

¢’b (b3 +0. 1250)]

-
3750y 11 x, % s
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v/l yoOr Y Lo b ]

b/h Gy=l0 ksi ry=b/h X .
E =30,000 ksi &
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o

3
/ey
(d)
Fig. 2. Residual Stress and Applied Stress in Steel Column.
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(-4
where % = - fbey (3)
2.75 + .

€y

is a measure of the distance from the flange center to the yield zone created
due to the applied loading. Egs. (1), (2) and (3) are valid in the range.

150250 and 2®<2.581.
b €,

The results of the calculations using these equations are given in fig. 3
where ratios of the three parameters », P and ¢ are plotted for constant
values of the variable ¢/e,. Eliminating ¢,/e, as indicated by the dashed lines
in fig. 3, the direct relationship between » and ¢ with P as the variable is
obtained as shown in fig. 4.

With this information the numerical procedure outlined in the preceeding
section can be applied. A sample calculation is shown in fig. 5.

The final results of these calculations can be presented in the conventional
form as column curves with the eccentricity ratio, ec/r?, as the variable. These
have been shown in fig. 6. It should be noted that they are valid only for the
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assumed residual stress distribution. Also shown on this figure as dashed
curves, are the corresponding elastic solutions of the second order stress
problem (secant solution) with the outer fiber at the yield point stress (no
residual stress). In addition, certain approximate solutions and test points
are shown that will be discussed later in this paper.

Even with the u-¢-P relationship of fig. 4 given, the numerical work
required to obtain a sufficient number of values of (L/r), is formidable. An
approximate solution which requires much less work can be realized by
assuming a deflected shape of the member. It is then only necessary to vary
the magnitude of the center-line deflection to obtain the critical slenderness
ratio.

Assuming a sine curve for the approximate deflected shape of the member,
the curvature at the centerline section is given by the expression

w2

bo = (g ——e)ﬁ (4)
from which
S &
0.k
0.3 Z/ /
oA
R / o3 /
// / 0.5/?

J / o.7//
//412.9é
/ ,,,_,0.95\\

0.0 1.0 1.5 2.0
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or in terms of non-dimensional variables

Substituting in eq. (6) corresponding values of u, and ¢, (from fig. 4) for
constant values of the axial thrust, P, L, may be obtained within a few
trials. The results of this approximation are shown in fig. 6 for particular
values of P/P, by the open circles.

In spite of the simplification obtained by assuming a particular type of
deflected shape, the work required is still considerable. This is especially true
if the influence of several different residual stress patterns is desired. This
follows from the fact that for each pattern a new set of curves similar to
those shown in fig. 4 (for u-¢- P) would be required. In the following, a relatively
simple solution to the problem will be obtained which is applicable to beam-
columns of both rectangular and simplified H-shape cross-sections.

PARABOLA >/’—’F’"—_T"
| W, -1 W, Wn+1

| | ! A r
[
] I
$o-1! Pt Fos ] ‘
n-'l nI nL+1 n-1 n © n+l
e A
W = Ry (# + 10 @, + )
n - 12 n-1 n+l
£ -o0.8 - = 0.0125
P b
¥
L N -
A= § = 1r?, €5=( 3)(207)

POINT 0 1 2 3 & FACTOR
up-e/b 0 0.0273 | 0.0L98 | 0.0647 { 0.0700 1.0
uy/b 0.0125 | 0.0398 | 0.0623 0.0772 0.0825 1.0

? 0.240 0.805 1.310 1.770 1.930 €y/b

W 9.600 15.675 20.9L0 11.420 ey/leb

VAN 'S

SHEAR 57.635  L8.035 32.360 11.420 Gy/l2b

1IN 7|\ »

u,-e/b 0 57.635 |105.670 [138.030 |1L9.450 ey2/12b
CHECK 0 0.0270 | 0.0L95 0.06L6 0.0700 1.0

Eyn” Ly? 0
0.07 = 1U9.45 Sy (D = 007 555 (16) = (66.4)2
1213 r 1L9.45 (6= KBsetid

Fig. 5. Example of Numerical Deflection Calculation.
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[J COLUMN TEST RESULT
O SINE CURVE
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Fig. 6. Axial and Eccentric Column Curves — Cold Bending Residual Stresses.

IV. Approximate Solutions
Bending About the Strong Axis

An idealized section is assumed which is composed of two rectangular
flanges and a shear resisting web of negligible area. For a particular wide-
flange shape the properties of the idealized section (marked with the subscript ¢)
can be computed as follows:

A=4, I=L=4r, r=r=5% 25— iz_izl‘
(See fig. 7.)

The residual stress distribution is assumed to be piecewise linear and
constant along the length. The deflection curve is assumed to be a sine curve
with the maximum deflection, u,, at the center of the member. Furthermore,
the moment diagram is symmetric with respect to the center, where the
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moment has the value M,= P u;+m,. The other suppositions are the same
as those listed earlier.

The equilibrium equations at the center of the member can be written in
the following form 1): '

P:P1(€170'r)+P2(€1’¢) (7)

d.
and M0=Pu0+m0=?1[P1(€1>0'r)_P2(€1:¢)]a ' (8)

where P, and P, are the forces taken by the flanges. The curvature at the
centerline section is
7.’.2

¢y = 72 Yo- (9)
Combining eqs. (7), (8) and (9) an expression of the following form is obtained:
F =F(P,uy, L,o,,m). (10)

To determine the critical load corresponding to a given situation, the maximum
value of
P=P(u0,L’OT,m0) (11)

must be ascertained. For a given length, L, residual stresses, o,, and moment,
m,, the maximum value is determined from

ar_
duy

E
£ ¢ Residual Stress
G‘r'c}:__ Distribution in
Flanges
//\
/ N
Cre E¢ Stress Distri-
! G., pbution in
Sp l Y

t
W
Compression
L ® I

0. (12)

N\

Flange

2
I=I3=A _’l- . . .
L e EMMMM Stress Distribution
d: 2 in Tension Flange
= = 1
4 r PR g
T2
ec ed
— = 2
r? dilz

Fig. 7. Actual and Idealized Section with Stress Distribution.

1) A detailed derivation of these expressions is given in the appendix.
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Using the implicit form of the function F
dF oF dP o¢F

Rt e ey

du, JP du0+8u0

or

—=0. 1
or Pug 0 (13)

Eq. (13) then defines the critical value of u,, which when substituted into
eqgs. (10) and (11) gives
F =F(P,L,o,,m)

s Upos

(14)
or P =P(L,o,,m,).

To obtain the critical length, L,,, of a column subjected to a given loading,
P, residual stress, o,, and moment, m,, the maximum value of

L=L(u0,P,0r,m0) (15)
must be determined. The condition for a maximum is

ar_
du,

dF eF dL oF _

0 (16)

el 17
and dug ~ 3L dug T oug 0 (17)
or as in the previous case
dr
— = 0. 18
Tu. (18)

Thereby the proof is given that L, = L,,.
For a linear variation of residual stresses between the flange edges and
the flange center the analytical evaluation corresponding to eq. (14) becomes

(19)

l‘_ 1 Ocr ﬂ“
I 4m !

| o 0
2 Egb o +Adi |
o _ T E 1— OF “
i
|

cr (%)2 (2—?)2‘1 2
¢ \ E
\‘ Z(O'p—O'cr)"‘E(pb '—ﬁr—r ‘
L (2-2) |
where o, is the pseudo-proportional limit; that is, ¢, —o,, (see fig. 7), and op
is the stress corresponding to the Euler load.

For the case where 0,=0, p=0 and ¢,=0,, eq. (19) takes a form that is
expressable as the quadratic equation (see also eq. (m), Appendix)

L [ R
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When (%) =0 the stability problem reduces to a stress equilibrium problem

and the influence of residual stress, which is in equilibrium within itself, is
wiped out for full yielding of the cross-section. For an H-section the simple
plastic theory gives for bending about the strong axis:

2 4 4 2
(01) +Tw%—%[bt(d—t)+w(g—t)]=0 (21)
Y v
o _w(d—2t)
fOI' ;;éT
o \? a\[/bd 4b m, 2bd _
and () +2 () (5 ) v e [P -] = =5
o _ w(d—2t)

Yy

Bending About the Weak Axis

The idealized section may in this case be assumed to consist of a single
rectangle made up of the two flanges. The derivation follows closely the pre-
vious one.

Two basic type stress distributions are possible. Due to axial thrust and
bending moment the general pattern will be either of the cases shown in
fig. 8. In case I (fig. 8b) it is assumed that yielding is only in compression;
whereas, in case II (fig. 8¢) yielding occurs in both tension and compression.
The rate of change of the residual stress at the outer fiber is given as before
by the angle ¢.

It is possible from the internal stress distribution to express the correspond-
ing forces and moments as follows 2):

Case I Case 11
P = P(¢y,%,0,) P = P (g, %1,%,,0) (23)
My = My (¢, 2y,0,) My = My (g, %y,%s,0,) (24)
2
$o =73 bo = 73U (25)

(a)
Fig. 8. Approximate Analysis — Rectangular Column.

. 2) SBee Appendix (b).
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where x; and x, are measures of the distance tfrom the center of the section to
the beginning of the plastic zones (see fig. 8). The zero subscript refers to the
section at the middle of the member.

For both cases I and II the expressions can be reduced by combining
eqgs. (23), (24), and (25). There results

F = F (P,uy, L,o,,m). (26)

It should be noted that this equation has the same form as eq. (10). Therefore,
the critical centerline deflection and the solution of the function, F', are obtained
in the same manner as that given earlier. The resulting analytical expressions
for critical stress are

Eob ob ( L\?2 12meo |3
2 K —o—cr—_?(?) Pb
er = (5)2 - {3E’¢>b+6op}_6
r Gor
L\2
(F)
(O'p_l—%E(Pb){W}
and o, =

or 3op+3Eeb 4mo Oer ob (L\23
{( 3 oer )_ Pb (ap+%E<pb)+3w2(r)f
" where as before o, is the pseudo-proportional limit, ¢, —o,.. Egs. (27) and (28)

are the solutions to the problem. They must be solved by trial and error.
If no residual stresses are present ¢ =0, ¢, =0, and the equations become

ag

(Case 1) (27)

(Case IT), (28)

2 2mo
O, = {Z% — (Zfi‘; (Case I) (29)
r oer
for (ZP”ZO = 1)
L2
and = 2[%;)2_]2
e e (Case II) (30)
e =5 = 2]
for (2%% > 1)

After rewriting in a slightly different form, eqs. (29) and (30) are identical to
the solutions given by JEZEK [4].

A simple limit for the range of applicability of eqs. (27) and (28) cannot
be given because of their complexity. The following, however, will aid in the
estimation of that limit. If case I applies, but eq. (28) for case Il was used,
the actual critical slenderness ratio and critical stress will be larger than the com-
puted values. If on the other hand case II applies, but case I was used, the
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actual critical slenderness ratio and critical stress will be smaller than the
computed values.

For short columns (where L/r is less than about 50) eqgs. (27) and (28) do
not hold since the developed stress: distribution at the centerline section will
be different from that assumed. However, for the limiting case of L/r=0 the
section becomes fully yielded, the stability problem reduces to one of a stress
consideration and correspondingly the influence of residual stress vanishes.
For the H-profile the simple plastic theory for weak axis bending becomes

) () ()

Interpolation between the results of eqgs. (27) or (28) and eq. (31) for critical
stresses in short columns (O < % < 50) can be done without appreciable error.

Of particular interest is the application of this approximate solution to the
problem solved previously by the more exact methods. The results of these
calculations are shown in fig. 6. The approximate solution (filled circles) is in
very good agreement with the “‘exact’’ solution.

li! COLUMN TEST RESULT
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—— EXACT SOLUTION
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Fig. 9. Eccentric Column Curves [3] — Comparison with Approximate Solution and Tests.
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V. Discussion

The rigorous development for the carrying capacity of axially and eccen-
trically loaded columns forced to bend about their weak axis is given by the
solid lines in fig. 6. The solution to the second order stress problem (secant

solution) is shown by the dashed line for corresponding values of j—zc (0.1, 0.5
and 1.0). For an eccentricity ratio i—: =0.1 and slenderness values 60 =< -f:i <130

the secant solution (neglecting any initial imperfections) would be unsafe as
shown by the cross-hatched area; whereas, for slenderness ratios below 60
it is too conservative ). Fig. 6 also shows that the assumption of a sine curve
for the deflected shape of the column gives good results (open circles).
Because of the large amount of time required to obtain the rigorous solu-
tion, the approximate methods were developed to afford a rapid study of the
influence of various residual stress distributions. It is necessary, however, to
first determine how closely these approximate solutions are to the rigorous
solution. Good agreement is demonstrated for several residual stress distributions

O COIUMN TEST RESULT
— o‘r = O

--—- APPROXIMATE THEORY
re = -12.5 Kg/mmaj

1.0 Ego- 5L Xg mm®

\ I
EULER _/ EULER
WEAK AXIS \\ STRONG AXTS
\

0.8 L-

Hio

\

0.5__.4)\()\

20 Lo 60 80 1o|o (L/r)x

0 Lo 80 120 16(') (L/r)y

Fig. 10. Eccentric Column Curves and Tests [5].

3) It should be emphasized that these statements hold for the one particular pattern
of residual stress assumed. Other distributions, however, would show similar results.
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and axes of bending (figs. 6, 9 and 12). In each of these figures the approximate
values have been shown as filled circles. For L/r =0 the values were calculated
for the actual cross-sectional shape by the simple plastic theory. For all cases
shown, the approximate solutions were in close agreement with the more
exact ones. (The rigorous solutions of figs. 9 and 12 were taken from Reference 3
where a slightly different method was used.)

The effects of varying the initial residual stress distribution in the flange
of an idealized H-shape are shown in figs. 11 and 13 for bending about the

strong and weak axes respectively. A constant value of the eccentricity ratios

;:0.5 and i—zc= 0.5 was assumed. The value of K ¢b is varied while the com-

pressive residual stress at the flange tips is assumed to be 20ks¢ and the
yield point stress is 40 ksi. A value of E ¢b=60 would result in a residual
stress distribution that would not be unlike those observed in typical wide-
flange shapes [2]. It should be noted by comparison of the column curves
corresponding to E¢b=60 (shown by the heavy solid line) and o¢,=0, that
case which neglects residual stress, the influence of residual stress is still
pronounced (see figs. 11 and 13). Fig. 10 shows the diminishing effect of residual
stress on eccentric column strength as the eccentricity is increased.

In addition to the theoretical conclusions discussed above it is possible to

1.0
EY
Strong Axis Bending
b
0.8- £ =0.5 Ef
r }: ’loz
T..=20 S
c
i )
—— Egb &
0.6 ™~ !
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- 80 FLANGE STRESSES (ksi)
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0.2

-
—

Lo 80 120 160 200
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r

Fig. 11. Influence of Residual Stresses on Eccentric Column Curve.
L (Strong Axis Bending.)
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compare predicted strengths as presented in this report to column test results
that have been reported in the literature and for which residual stress measure-
ments were made.

Although the residual stress patterns correspond only roughly to the
assumed pattern of fig. 6, the result of two cold straightened axial column
tests (L/r="70 and 79.5) [6] have been shown on fig. 6 by the open squares.
The latter column (L/r=79.5) was straightened in the laboratory under a
loading which subjected the members to uniform moment. The measured
values of maximum residual stress were 8 and 6 ksi which is about one half
of the value assumed in the rigorous solution. As would be expected, the
column test result lies above the theoretical solution. The other column
(L/r="10) was also cold-straightened in the laboratory but by a single con-
centrated load at the center of the member. For such a condition of loading,
the residual stress pattern along the member will not be uniform. Furthermore,
a higher residual stress will result at the center-line section of the column. The
column test result is shown in fig. 6.

The result of an additional column test is shown in fig. 9. This test was
part of a separate investigation on ‘“Welded Continuous Frames and Their

li] COLUMN TEST RESULT
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Fig. 12. Eccentric Column Curves — Comparison with Approximate Solution and Tests.
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Components’’ currently being carried out at Fritz Engineering Laboratory.
Interpolation shows good agreement with the theory.

The results of the column tests reported in Reference [5] are shown in
fig. 10. These tests cover relatively low slenderness ratios due to the fact that
the end supports were also pin-ended in the weak direction. Although these
tests fall in slenderness and eccentricity ratios which do not demonstrate the
full significance of residual stress, and even though the members failed by
lateral-torsional buckling, there is reasonable agreement with the theory. The
possibility of differences between the residual stresses measured on one piece
of the material as opposed to those present in the various columns is also a
condition that would tend to alter the test correlation [1].

For an eccentricity normal to the plane of the web one test result is available
for comparison. This test is also due to the previously cited study being carried
out at Fritz Laboratory on “Welded Continuous Frames’’. Here again, inter-
polation shows good agreement with the theory (fig. 12).

One variable that has not as yet been stressed in this report, but which
is also very important, is the yield point stress. The eccentric column curves
for ¢ =0 in figs. 11 and 13 could also be interpreted as column curves for a
yield point of 20 ksi, where residual stresses are zero and the reference stress,
g, is taken as 40 ksi.
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Fig. 13. Influence of Residual Stresses on Eccentric Column Curve.
(Weak Axis Bending.)
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VIII. Nomenclature

Cross-sectional area.

Flange width or width of rectangle.
Depth of H-section or rectangle.
Eccentricity of loads.

Young’s modulus of elasticity.
Moment of inertia.

Total length of a pin-ended column.

r Slenderness ratio.

Moment.
Moment due to lateral loads on column.
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P Load on a column.

P, Critical or maximum load on a column.

P, Euler buckling load for a pin-ended column.
P, Axial load corresponding to yield point stress across entire section.
r Radius of gyration in the plane of bending.

t Flange thickness.

u Deflection in z-direction.

x,, %, Distances from the center of the cross-section to the beginning of the
yielded area (see figs. 2d and 8).

Unit strain.

Maximum compressive strain.:

y  Strain corresponding to the yield point.

o Normal stress.

o, Proportional limit stress.

o, Critical applied average stress on a column.

o  Euler buckling stress.

Residual stress.

€
€

o

€

0-1'

o,, Residual stress at flange edges.

o,, Residual stress at flange centers.

o, Yield stress level; average stress in the plastic range.

@ Rate of residual stress variation (see fig. 7 or 8).
¢ Curvature.

IX. Appendix: Derivation of Approximate Solutions

In this Appendix the derivations are given for the approximate solutions
for the idealized H and rectangular section discussed in Section IV. The
assumptions and limitation are listed in the earlier section and will not be
repeated here.

a) Bending About the Strong Axis of an H-Shape

Referring to fig. 7, the higher stressed flange of the idealized section is
assumed to carry a load P; which is a function of the strain ¢; and the linear
residual stress pattern.

A
Pi= gy Ba(Beb)—(Ba)+2(Be)o, —o}] (a)

The load carried by the other flange is given by

Py= A [Be—Bdy). (b)
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The stress in this less highly stressed flange will, for all intents and purposes,
remain elastic.

The total axial thrust on the column is then given by the sum of eqgs. (a)
and (b). That is,

A
or P= g5 2Ea,+ Eeb)—(Ba)—o}—(Bgb) (Edyd)).  (©)

The corresponding internal moment at the centerline section is

d.
M0=Pu0+m0=—él(P1—P2) (d)
r My =A% (Bob) (Bdyd)+2E Ee)?—(a,)]  (e)
0 0_4E(pb ( P (;SO 610 ( € (Gp ¥

From eq. (¢), E ¢, can be expressed as follows:

Ee, = (Egb+a,) —l/(E<pb)2+(E<pb) (2%—E¢Odi—27fj), (f)
2
where by = 7z %o- (g)

Writing eq. (e) in implicit form F and performing a partial differentiation
with respect to u,, the following is obtained:

0= P- g (Bt 4260, Be) T2, (h)
From eq. (f)
o(Be) _ (E<Pb)E72di )
0% 21/ (Egb)+(Eob) (20, E ¢y d, %f)
which when substituted into eq. (h) gives
0=P—PE[2— Heb _ ] @G)
(Epb)2+ Bgb (2 gr%ur?ﬁf)

The Euler load, Py, for the idealized section is given by:

m B Ad}

b=
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From eq. (j) u, is obtained.

2 2P Eopb
u0=W|:qub+20p—A —(2—£)2]. (1)
Pg
Substituting u, into eq. (d)
N e T
b, £/ ey = 20, K, 202/(2—-;)2 4; b, P,
E
+PE[%+ Eqb Eob ] 0 (m)
P lo, Py Py~
Vo 25) a(2-7)

Solving this pseudo-quadratic equation and rearranging terms gives finally
eq. (19). Setting ¢, =0, and ¢ =0 eq. (20), which is the approximate solution
when no residual stresses are present in the column, is obtained.

b) Bending About the Weak Axis of an H-Shape

Case I. Yielding only in Compression

Axial equilibrium requires that at the center of the column the following
equation must be satisfied:

P _ fTO'p-i-Eq) (—g—x)] dx+f[ap+£2$é—Ex1(<p+¢o)+Eq50xJ dx. (n)

a
x; s

When integrated and corresponding terms combined, this becomes

Zopb—l-E(pbz] _b§+_2_£[ 1 ]
E (¢ + ) 4  FEalp+dy

Solving for x,,

2P

B —'_9+l/2%b+wbz_7f ()
1773 Elp+da P

Moment equilibrium at the center section requires that

b/2
M, P m Egqb
2=t = (55 e - Bewt]as

Ty

[ [+ 22 B ) 4 Bt

—b/2



The Influence of Residual Stress and Eccentrically Loaded Columns 59

After integrating and combining terms, the following expression can be written:

3 b3 6Pu, 6m
F:x%((%’-i-‘l-"o)“zﬁbz(q)+¢0)+z‘(¢’*¢o)+_ﬁ+ EaOEO’ (r)
2
where ¢0=Z?uo

follows from the assumed sine deflection curve. The partial derivation of ¥
with respect to u, gives

2P
20'pb+E(Pbg——7 12PL2

b\3
() = | Bpstw) | B ©

Expressing u, from eq. (s) and substituting its value into eq. (r) the following
is obtained:

1 P L mo
0— [12})1’2]1/’— A ER A

————p , (t)
anz zo_pb_'_E(Pb2__2,alj

from which eq. (27) was directly obtained.

Case II. Yielding in Tension and Compression

As in the preceeding case the equations for axial thrust and moment
equilibrium at the column center are as follows:

b/2 *
1
5 = f [Gp+E(P(§b—x)]dx+f [Up+§E(pb~—Ex1 ((P-{-q()o)-i-E(]Sox} dx
Xy s —Zs (u)
b
[l
—b/2
, 2P V
from which 0= % (p + o) 23 + (@ + o) 3. (v)

However, x; and x, are related by geometry (see fig. 8c).

1

—E—(Qcp“"‘E‘Pb)=x1(¢+¢o)+x2(¢+¢o)- (W)
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Solving eqgs. (v) and (w) simultaneously:

v = |:Gp+‘%‘E(pb_ P ]
1" | Blprd)  Zo,arEgab)’ "
o = [op-I—%E(pb_ P ]
> | E(p+¢y) 20,a+Eq@ab]’

The moment at the center of the column equals

b/2

M P m 1
.—&i’ — ;uo-{——a—o = f[(ap+§E¢b)x—E¢x2]dx
wl_ l
1
+f (O'p+§Eng—Ex1(q>+¢o))x+E¢0w2]dx (y)

— Xy

—Xy

=

1
+ f (ap+§qub)x—E<px2]dx,

—b/2
from which
F=22 (0,41 Bob) — Lobr—st(p+d0) —adig+d0)
“5E0p+§ PO) =3¢ 21 (@ + @) —Z3 (@ + P
6P 6m, _ )
Ea® Ea

As before F' is a linear function of w,. The partial derivative of Fjgives:

o 3
72 \3 2(%+%btp)
((p-l—z?uo) = ~—3p Iz (a:a')
Ea =
Expressing %, from eq. (aa) and substituting into eq. (z).
3 s
2(24+1pb
0 — (E+299 ) §b2 ﬂ.'.lb _ b3_6m0
= 3P L2 ) g T2°¢ 2P Ea
Ea =2 | b
- (bb)
Vo, 43 Beb | TEa _G(Eﬁb‘? ’

from which eq. (28) can be directly obtained.
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Summary

A general method, applicable to both eccentrically and axially loaded
columns was developed along the lines of the classical inelastic column theory.
In the development it was assumed that the residual stress distribution had
at least one axis of symmetry which was further assumed to be normal to the
plane of bending.

Approximate solutions, based on the same concepts as Jezek’s solution for
beam-columns, were then presented for the rectangular and idealized H-section
of elasto-plastic material.

Results compare well with the rigorous solutions and also with test results.
It was shown that the influence of residual stress decreased with increasing

eccentricities. Up to a value of the eccentricity ratio of about %:-: 1.0, the

influence of residual stress in determining the carrying capacity of the member
may be considerable.

Résumé

Un procédé de validité générale, applicable aux barres comprimées chargées
aussi bien excentriquement que centriquement, a été mis au point sur les bases
de la théorie classique des barres dans le domaine inélastique. Il a été supposé
que la répartition des contraintes propres présente tout au moins un axe de
symétrie, que 'on a en outre considéré comme perpendiculaire au plan du
moment fléchissant.

Des solutions approchées, reposant sur les mémes hypothéses que la solution
de Jezek pour les barres fléchies sous pression axiale, ont été indiquées pour
des piliers constitués par des matériaux plasto-élastiques, avec section rectan-
gulaire et section idealisée en H.

La comparaison des résultats obtenus avec des solutions rigoureuses et des
résultats expérimentaux est trés satisfaisante. Il a été indiqué que 'influence
des contraintes propres diminue lorsque I’excentricité augmente. Jusqu’a une
excentricité ec/r?=1,0, 'influence des contraintes propres sur la capacité por-
tante de la barre peut étre considérable.

Zusammenfassung

Ein allgemeingiiltiges Verfahren, anwendbar sowohl auf auBermittig als
auch auf zentrisch belastete Druckstibe, wurde nach den Grundlinien der
klassischen Theorie fiir Stdbe im unelastischen Bereich entwickelt. In der
Ableitung wurde vorausgesetzt, dal die Eigenspannungsverteilung mindestens
eine Symmetrieachse aufweist, die ferner als senkrecht zur Ebene des Biege-
momentes angenommen wurde.
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Néherungslosungen, fuBlend auf denselben Voraussetzungen wie Jezeks
Losung fiir Biegestibe mit Axialdruck, wurden dann fiir Stiitzen aus elastisch-
plastischem Material mit Rechteck- und idealisiertem H-Querschnitt gegeben.

Der Vergleich der Ergebnisse mit strengen Lésungen und Versuchsresul-
taten ist sehr zufriedenstellend. Es wurde gezeigt, daB der EinfluB der Eigen-

spannungen mit zunehmender Auflermittigkeit abnimmt. Bis zu einer Exzen-

ec

trizitdt von —-=1.0 kann der Einflu der Eigenspannungen auf die Trag-
r

fahigkeit des Stabes betrichtlich sein.
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