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On Boundary Conditions in the Bending of Thin Elastic Plates

Sur les conditions aux limites des plaques elastiques minces flechies

Über die Randbedingungen beim Biegen von dünnen elastischen Platten

A. WERFEL
Technion, Israel Institute of Technology, Haifa (Israel)

According to the classical theory all components of stress and strain in the
bending of a thin elastic plate can be expressed in terms of the deflection
w w(x, y) of its middle-surface only. This is due to the Omission of the influence
of the shearing forces on the deflection of the plate. The mathematical expression

for this Omission is the assumption, that in the first approximation one

may put the strain corresponding to the shearing forces

Yx* 7xz (*> y>z) 0; Yyz Yvz (x,y,z) 0 (1)

throughout the region occupied by the plate. The classical theory proved to be

sufficiently exact because in most cases the shearing forces are indeed com-
paratively small and the assumption (1) is justified.

The Solution obtained on the basis of the classical theory can be fitted
along each edge only to two boundary conditions: geometrical, statical or
mixed. The two conventional geometrical boundary conditions are (fig. la):

w w(s) and yn -— yn (s). (2)

But in connection with the statical boundary conditions a contradiction
inherent in the classical theory is found because three physical boundary
conditions (fig. lb):

yn{s) V^{s), H(s) H*{s) and Mn(s) M*(s) (3)

exist along each edge, whereas only two statical boundary conditions can be
taken into consideration. In the conditions (3) the Symbols with the asterisks
denote loads (shearing force, twisting moment and bending moment
respectively), and the Symbols with the bars — inner forces or moments appearing
at the edge.
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Since Kirchhoff this contradiction has been eluded, as known well, by
prescribing for each edge instead of the three physical conditions (3) the two
statical boundary conditions:

3H T7^ 8H
' ds n ^ ds

and Mn Ml (4)

a)

b)

\^'s
'V,

' z

Fig. 1.

According to E. Reissner the reduetion of the boundary conditions from
three to two in the classical theory is due to the Omission of the contribution
of the shearing forces in the expression for the strain energy of the bent plate.
This theory, which considers this contribution, allows for three boundary
conditions (statical, geometrical or mixed) along each edge. Reissner's theory
is doubtless more exact where the shearing forces are comparatively large
and their influence on the deflection cannot be neglected. This occurs for
instance in the vicinity of concentrated loads, in the neighbourhood of holes
the diameter of which is of the order of magnitude of the thickness h of the
plate etc. Apart from such special cases the results obtained from the classical
theory may differ from those given by the much more complicated theory of
Reissner only by negligible quantities. In typical cases in which the shearing
forces are comparatively small the reason for the reduetion of the boundary
conditions cannot therefore be due to the Omission of the strains ynz and ysz,
corresponding to the shearing forces.

It will be proved furtheron that a third physical boundary condition
always can be added to the two boundary conditions prescribed according to
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the classical theory by taking into account a perturbation of stress and strain,
which starts from the edge, and vanishes at a short distance from it. This
perturbation does not affect practically the deflection of the middle-surface
of the plate. This is the reason why the classical theory yields good results
though it does not consider this perturbation.

Considering the perturbation, the above mentioned contradiction can be

eliminated, and a new physical Interpretation for the first of the conditions (4)
obtained. The Interpretation for this boundary condition given hitherto
according to Thomson (Lord Kelvin) and Tait is not entirely correct, as was
shown once upon a time by Love. Love himself gave another Interpretation
which is however, essentially not different from the one he disproved, and
hence not more correct. The new physical Interpretation given hereafter makes
both interpretations unnecessary.

The perturbation can be analysed exactly, and in a simple way in the

case where ^—r- const 4= 0. This model case gives a sufficient hint for the

understanding of the general case, where ~—=- #= const.° ° ends ^0_
In order to find the perturbation of the stresses in the case -^—— const 4= 0,r dnds '

the stresses in the rectangular plate 2ax2b (fig. 2) bent to a hyperbolic
paraboloid w= — 6xy, where 6 denotes a constant (the angle of twist), will be
considered.

Using the classical theory of plates the following stresses will be found:

In the section x const, including the edges x— ±a

rX2 0; Txy ^-2H2£= -^f^Dez 2Gdz; ox 0 (5a)

and in the section y const including the edges y=±b.

Tyz 0; ryx rxy 2G8z; <ry 0 (6a)

where G 7rr-1 denotes the shear modulus, h the thickness of the plate, and
Z (I + v)

D the flexural rigidity of the plate.
Using for the same problem (fig. 2) St. Venant's theory of torsion of a

bar with a rectangular cross-section 2axh, the stresses

tx=0; txv 2Gdz-G0h— —± ^—^cosh-1- —v tt2 J^Q(2m+l)2 h

(2m+l)7TX (2m+l)7TZ A _•cosbn ~j~ sm- j—t—; <^ 0 (5b)

appear in the sections x const. which yields for the edges x ± a
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In the sections y const including the edges y= ±b, act

yz tt2 H 2m+l2 h h h

*na 8V (~l)m A2m+l)7ra ,(2m+l)7rx
t1jt 2 G 9 z —^ ^—r cosh"1 - ^—- cosh- =--

(2ra+l)<7r2

(6b)

•sm-

<t>

\

s^

Fig. 2.

Comparing the expressions (5) and (6), it can be stated that the stresses

corresponding to St. Venant's theory can be obtained from the theory of
plates by adding the perturbations:

77-2 L 2m+l2 h

T (2m+l)7rx (2m+\)TTZ
• cosh -— sm =—h h

(2m+l)TTX (2m+l)TTZ
¦ sinh i— cos -

h h

which start at the edges x + a with the values rxy (x= ±a)= ryx (x= ±a)
-206z and

nar,8 V i~l)m * .{2m+\)ira (2m+l)7rz
T„ rn, -G8h:j 2J/qmJ.n2tanh ä

C°S"^^m+l)* Ä
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Remembering that for thin plates the ratio a\h is comparatively large it may
be concluded that the perturbation starting at one edge does practically not
interfere with that, starting at the opposite edge. Hence each of the edges

x= ±a can be considered independently. Introducing for the edge x a, the
coordinates n x — a, s y, z z (fig. 1), and putting

Gdh =—^— ~—tt- it will be obtained from (7)
h2 ends

48(l-v)D d2w
lh2 s (-i)

dnds m^0(2m+ l)2

T T
48(1 -v)D d*w

'¦h2 E (-1)
Bn8sJriJ2m+ir

(2m+l)TTZ (2m+\)nnsin =- exp =-

(2m+l)77Z (2m+l)-rrn
cos ;—-—exp 7h

The stresses Tns at the edge (n 0) yield the twisting moment

Ä (l-v)D^f -H.dnds

(8)

(9)

The Variation of the additional stresses with z for n 0 is illustrated in (fig. 3)
in terms of

d2w
Tsn\n 0,z -)= p

6 *
—- ffdnds h2

csn

T
<*
+0.696

<l*
40.742

*k
+ß£05

<k

e=o.628h

m

vz

Fig. 3. Fig. 4.

The width c of the edge strip affected by the perturbation does not exceed

practically twice the thickness of the plate because the extreme values of

rsn and rsz become for n< —2h less than 0,0015 w^H1. The resultant of the
stresses rsn and rsz appearing in the section s const can be obtained by
integration. It amounts to

d2w
[Vs] H -H (I-v)D dnds' (10)

and acts (fig. 4) at the distance e 0,628 h inwards from the edge. Its sign is
the same as for the shearing force V8 acting in the sections s const.
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It shall be emphasized that the shearing stresses rsz and their resultant
[Vs], which are quite independent from the deflection of the plate, cannot be

identified with those shearing stresses rsz, which are by means of their resultant

i. e. the shearing force Vs connected with the deflection of the plate. The
shearing stresses rsz (fig. 3) do not vary with z. according to a parabola of
second degree as assumed for the shearing stresses rsz.

By superposition of the perturbation on the stresses corresponding to the
classical theory of plates the outer twisting moment H* H + H H — H
vanishes. This is accompanied by the appearing of the force [Vs] according
to (10) and fig. 4, and by the appearing along the edge and in its nearest

neighbourhood of the shearing strain y8g y8Z(z)=-jT 4=0, according to (8),

but in contrariety to (1). The deflection w of the middle surface is, as seen.
not affected at all by the vanishing of the twisting moment along the edge,
and the shearing strain ysz is not due to shearing forces.

Along each edge of the plate, bent to a hyperbolic paraboloid the extreme
conditions: yss yS2(z) 0 or H* 0, can therefore be prescribed alternatively.
The first of these conditions means that there is no perturbation at this edge
because the distortion in the (s — z)-plane of the filaments which are initially
straight and normal to the surface, is prevented by the external twisting
moment H* =H= —(\—v)D«—^- (l—v)D6. The second alternative i.e.

H* 0, states that along the edge the perturbation with all its consequences
exists.

If for the edge x a (fig. 2) e.g. i?* 0 will be prescribed whereas along
the other edges the ysz equals zero, the latter edges will be subjected to twisting
moments H* (l—v)Dd. Due to the perturbation starting along the edge

x a at the edges y — ± b, in addition to H * the forces [Vs] —H= —(\—v)D8
act at the points x a — 0,628 h. The edge x a will be then free from stresses.

In the case where jff* vanishes along all edges (fig. 2), two forces [Vs] act
near each corner which yield resultants Ä= ± 2[VS]= + 2(1 — v)D6 at the
points x= ±(a-0,314A), y= ±(6-0,314A).

A triangulär part of the plate bounded by two edges meeting at a corner,
and by an arbitrary section has to satisfy the conditions of equilibrium.
Regarding forces acting in the ^-direction equilibrium exists between the force
A and the resultants of the shearing stresses, which appear in the section near
both edges due to the perturbations. Whithout taking into consideration of
these shearing stresses it is impossible to satisfy this condition of equilibrium
because in the particular case w= —dxy (fig. 2), the shearing forces defined
by the theory of bending of plates equal zero in all sections.

NAdai who examined this case experimentally applied the forces A exactly
at the corners of the plate as stipulated by the Interpretation of Thomson
and Tait. This is the main reason why the deflections measured by him are
a little too large in comparison with the theoretical values.
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Apart from the two extreme cases, namely complete constraint (i. e. ysz 0)
and no constraint (i.e. H* 0), there are edges which are partly constrained

as regards the shearing strain yS2 ^-. In such cases only a suitable part of
the perturbation (8) shall be used.

So far only the particular case const 4= 0 has been considered, and

the exact Solution for the perturbation found. Now the general case where

•x—^-4= const along the edge will be analyzed. The statement ysz 0 for an

edge means, as before, that the elements of the edge strip are in identical
d2w

conditions as the elements inside the plate. Accordingly, if 5—ö-=t=0, the
— d2w dnds

external twisting moment H* =H — (1 —v)D^—w- is due to act.ö v ' dnds
Innumerable experiments and measurements of the deformation of plates

in cases where ^—^- 4= const, and no external twisting moments acting along
ones ° o ü

the edges prove that the classical theory is sufficiently exact. This means,
that the vanishing of the external twisting moment must be aecompanied by

d2w
a perturbation starting at the edge along which «—g- 4= 0, and vanishing near

it, and that this perturbation does not practically affect the deflection of the
middle-surface. Hence the perturbation in the general case must be similar
to the one described previously. It cannot be identical with the perturbation
defined by eq. (8), because among other reasons St. Venant's theory of torsion
does not hold any more for a varying angle of twist.

The boundary conditions for thin plates can be established without the
knowledge of the laws according to which rsn and rsz vary since for this
purpose it is sufficient to examine the conditions of equilibrium of the element
hxcxds (fig. 5) of the edge strip.

In connection with this, only the stresses due to the perturbation will be

considered, assuming that their resultant [Vs] acts at a not exactly known yet

^
—1,

At\
1%&

%s€>
31

rz
Ä-*
Fig. 5
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short distance e from the edge, and that the section n — c is free from stresses.

From the condition concerning the rotation about the w-axis it follows:
\Vs\ds — Hds 0, and hence

[Vs] H(s) -H(s) (l-v)D^-. (11)
cncs

Accordingly there acts in the section s const the force [V8], and in the
section (s + d s) the force [Vs] + d [Vs].

The condition concerning the displacement in the z -direction stipulates
the action of a line load Q (fig. 5): Qds + d[Vs] 0, and hence

Q Q(s) - d[Vs]
ds

dH
ds

dH
ds -(!¦ )D

83w
dnds2' (12)

The existence or vanishing of the line load Q implies the case
d2w

dnds
4= const

and the cases const. respectively. Accordingly when ^—w- 4= const and

#* 0, the transversal line load ü* (fig. 6 a) has to be the resultant of
the external shearing force V^ V= —D\r-^ + -z—|^L and the line load Q

acting at a distance e from the edge.

dsw

CS \cw3+(2-
dsw "1

dnds2\ (13)

Along a free edge the perturbation is due to start and hence the following
boundary conditions shall be prescribed:

*.-F„+M o, H* 0 and M* M„ 0. (14)

Since Q does not act upon the plane n 0, some secondary stresses (chiefly
bending stresses in the sections n const) are due to appear.

If the edge is simply supported and ^—^- 4= const, the following conditions

for the extreme two cases can be prescribed:

+—e
' r

t
h

i
V*

T n

< f/5*

b) c)

ün

a)
i 1

Fig. 6.
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w 0, ySz ° and M* Mn 0 (15a)

or w 0, H* 0 and M* Mn 0. (15b)

The first alternative is realized when the edge is connected with a membrane

(fig. 6b), perfectly rigid in its plane, and perfectly flexible transversally.
Due to the rigidity of the membrane in its plane y8Z 0 results. Hence the
membrane acts on the plate with the shearing force, and V^ Vn, and with
the twisting moment H* H. This means that in this case no forces A will
act near the corners of the plate. On the contrary, if according to (15b) the
external twisting moment H* vanishes, the forces A near the corner exist.

Generally an edge as represented in (fig. 6 c) is called simply supported.
In this case not only Jf * and H* vanish but also F* 0 along the edge. This
induces another perturbation which also affects the width of the edge-strip.

Generally the external tractions induced in the edge Vary, as exemplified
in the last instance in a quite different manner than assumed by the theory.
It would therefore be very difficult to assess theoretically which stresses

appear in the edge-strip and how they vary. An exact analysis of the stress
and the strain in the edge-strip due only to the vanishing of the external
twisting moment J?* would be therefore of no practical importance.

d2wIn the particular case where equals zero along the edge, the following
results simultaneously: ysz 0 and H* H 0. This is the reason why the
three physical boundary conditions reduce then automatically to two.
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Summary

Using the classical (i. e. Kirchhoff's) theory of bending of thin elastic plates
a third physical boundary condition can always be added to the two boundary
conditions conventionally prescribed along each edge. This third boundary
condition is derived from a perturbation of stress and strain which starts at
the edge and vanishes ab a short distance from it. This perturbation has no
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noticeable influence on the deflection of the plate. Taking into consideration
this perturbation the contradiction inherent in the classical theory in
connection with the boundary conditions can be eliminated, and a new physical
Interpretation for Kirchhoff's boundary condition is obtained.

Resume

Lorsque l'on utilise la theorie classique (Kirchhoff) des plaques elastiques
minces flechies, il est toujours possible de considerer une troisieme condition
marginale physique en plus des deux conditions marginales conventionnelles.
Cette condition supplementaire provient d'une perturbation du regime de

contrainte et de deformation, perturbation qui part du bord et disparait ä

une petite distance de lui. Cette perturbation marginal n'exerce aueune
influence notable sur le flechissement de la dalle. En la faisant intervenir, il
est possible d'eliminer la contradiction, inherente a la theorie classique, au
sujet des conditions marginales. On peut ainsi obtenir une nouvelle explici-
tation physique pour la condition marginale de Kirchhoff.

Zusammenfassung

Bei Anwendung der klassischen (d. i. der KiRCHHOFFschen) Theorie für die

Biegung von dünnen elastischen Platten kann immer den zwei konventionellen
Randbedingungen eine dritte physikalische Randbedingung hinzugefügt werden.

Diese zusätzliche Randbedingung stammt von einer Störung des Span-

nungs- und Formänderungszustandes, die vom Rand ausgeht und in einer
kleinen Entfernung von ihm verschwindet. Die Randstörung hat keinen
merklichen Einfluß auf die Durchbiegung der Platte. Durch Beachtung dieser

Randstörung kann der der klassischen Theorie inherente und sich auf die

Randbedingungen beziehende Widerspruch beseitigt werden und wird eine neue,
physikalische Erklärung für die KiRCHHOFFsche Randbedingung erhalten.
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