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Dynamic Analysis of Floor Systems
Calcul dynamique des planchers

Schwingungsberechnung von Decken

S. MACKEY K. T. YING
Prof., M. E., B. Sc., Ph. D., F.I.C.E., M. Se. (Eng.)
F. I. Struct. E.
Introduction

In this paper a method is presented for analysis of floor systems based on a
similar technique by SAIBEL and D’AppoLoN1A [3] for the treatment of continu-
ous beams. The problem is considered as a two-dimensional plate problem with
the slab of the floor system resting on supporting columns, and solution of a
fourth order partial differential equation complying with the necessary boundary
condition is involved. For solution of the equation the normal mode method is
employed together with some properties of orthogonal functions.

A simple frequency equation is derived in terms of the number of ‘“‘symmet-
rically situated’’ columns supporting a floor system. Numerical solutions for
the equation, which is of cubic form, are obtained by trial and error methods for
a few cases and from the data obtained an approximate formula is derived.
A general frequency equation is also derived in terms of the stiffness number for
floor system with elastic interior columns. Finally, a brief analysis of mode
shape due to free and forced vibrations of floor system is included.

An ideal elastic structure is one in which no internal damping forces exist.
Such a structure may vibrate for an infinitely long period of time without the
application of external forces, other than those required to initiate the motion.
The vibration can occur in any one of several natural modes in which each
point in the structure executes harmonic motion about a position of static
equilibrium, every point passing through its position of equilibrium at the same
instant and reaching its peak position at the same instant. Thus the frequency
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of oscillation is the same at every point and this is the natural frequency of the
system in the particular mode involved, which is conveniently expressed in
terms of the deflected configuration of the structure in the extreme position.

The equilibrium of a dynamical system may be conveniently expressed by
application of any one of the following basic principles: 1. Newton’s laws of
equilibrium; 2. D’Alembert’s principle and the associated principle of virtual
work; 3. Hamilton’s principle and the associated equations of Lagrange. Since
physical structures are always more or less continuous, exact governing equations
must be in the form of differential or integral equations in which the independent
space variables may vary continuously. However, in all but exceptional cases,
solution of these equations is not possible unless approximations are made with
respect to the actual boundary conditions and to the mode of solution of the
equations. The validity of the results obtained will depend directly on how well
the assumed mathematical model portrays the actual structure. In this respect
structural damping of the real structure plays a dominant role and hence
confirmation of theoretical concepts by actual structural records is necessary.

Existing Methods of Analysis for Floor Systems

The most notable contributions to analysis of floor-systems have been made
by BLEICH [1] and RoGERs [2]. Bleich’s method, essentially, is to reduce the
complex structural system to a number of simpler structures, the natural
frequency of which can be easily found. The simpler structures are termed
complementary systems. ‘

Consider the simplified beam and girder floor system shown in Fig. 1. If the
moment of inertia of the main girder is assumed to be infinitely great, (I,= c0),
the problem resolves itself into a system of independently vibrating floor beams
which may be termed System A. The normal shapes and frequencies of each
of the floor beams can be readily determined. On the other hand if it is assumed
that all the floor beams are infinitely rigid, (Iz=00), and the main girder
remains flexible, a complementary system, (System B), is formed. The normal
mode shapes and frequencies of this system must also be determined before
the whole system can be analysed.

For the complementary system Bleich has shown that

X = XA + X B> (l)
where X = shape function of the entire structure,

X 4, = shape function of system 4,
X 5 = shape function of system B.

Eq. (1) holds true regardless of the actual nature of the loads as long as the
members forming the structure can be considered elastic. By expressing the
shape functions of the complementary systems X , and X ; in terms of a series
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expansion of the normal functions, and making use of the general theories of
oscillation and properties of orthogonal functions the following set of equations
is obtained [1, 2]:

0, [1 p1A+Z Bir ]+02AZ___2EUC—B‘N€_+... =0,

(PR p/P?) —1 (% 5/P?) —1 )
Blkﬁzk pzA lgzk .
IAZ (P slP +02A +Z (P BlIP =0

Eq. (2) is comprised of a set of + homogeneous, algebraic equations in the
unknowns (., and non-trivial solutions will exist only if the determinant of
coefficients vanishes. This determinant is the frequency equation for the struc-
ture. For more general types of statically indeterminate structures application
of the above method becomes highly complicated.
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Fig. 1. Simplified floor-system. Fig. 2. Grid floor-system.

For the type of structure shown in Fig. 1. Rogers considers the dynamic
shear at the end of each floor beam as a dynamic load on the main girder. By a
simple approximation these concentrated loads are converted into an equivalent
uniformly distributed load represented by:

3
w(x',t) = Eg)\”(cot/\nL—coth)\n L)y, (x',t). (3)

The problem is then solved for a forced vibration of the main girder as in
Eq. (3). The governing equation is

o & ,
E IOa ?,/g +w, 8ty2°=w(x,t). (4)

After consideration of the boundary conditions of the main girder the
frequency equation is given by:
3

% (cot A, L—cothA, L), (5)

E1A
2 — pnd2
pn np0+ woe

where n designates the particular mode.
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A more general case of a grid-floor system with beams running in the x and y
directions, as shown in Fig. 2., has also been investigated by Rogers. If, in
any given direction the beams are assumed to have the same flexural rigidity,
E I;the same spacing, ¢; and the same mass per unit length, w; the free vibration
of the grid is expressed, approximately, by the equation:

E 1,6 0"y E,I, "y &2y
w,e, 0xt +wyey oyt = ot

=0. (6)

For the grid shown in Fig. 2 with simply-supported edges, its fundamental
frequency is given by:
, D, 7t D,
P = 16 b*w, * 16 atw,

(7)

and the mode by.
y = CcosAzcosA’ y (Asinp,,t+ Bcospyt). (8)

Conventional analysis treats a floor-system as a set of vibrating beams, the
mass of the floor slab being either neglected completely or distributed on to
the beams. Thus the system is left vibrating as a free body and the effects of
interior supporting columns are neglected. But the interior columns and the .
floor slab mass have significant effects, particularly, on the natural periods and
mode shapes of the floor system. These effects are considered in the following
sections.

Floor Systems on Rigid Columns

Consider the floor system shown in Fig. 3, consisting of a rectangular slab
A BCD of constant thickness, ~; modulus of elasticity, E; Poisson’s ratio, u;
deflexion Z; mass per unit area, W; and lengths a and b along the x and y axes
respectively. It is internally supported by any arbitrary number, N, of rigid
columns.

Taking A as the origin the various columns are located by the coordinates

(c1,d4), (¢a,ds), .. (e, dy).
For dynamic analysis of the floor system the following assumptions are made:

1. No deformation occurs in the middle plane of the slab. This plane remains
central during bending.

2. Points of the slab lying initially on the normal to its middle plane remain
so after bending.

3. The normal stresses perpendicular to the plane of the slab can be neglected.

4. The material of the slab is isotropic.

5. The floor system is taken as a flat slab.

6. The edges of the floor system are assumed simply-supported and the
contact surface of the slab with each interior supporting column is taken as a
single point.
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Assumptions (1), (2), (3) and (4) are those usually adopted in the theory of
thin plates. Assumption (5) is reasonable because most of the stiffening power
comes from the interior columns. Assumption (6) ignores the rotational
resistance but not the translationary resistance of the boundary walls and
columns on the grounds that the flexural resistance offered by these members
is relatively small. The assumption of point contact at the interior columns is
also reasonable unless dropheads are used and it simplifies the analysis consider-
ably.

If the system is considered equivalent to a simply-supported rectangular
slab having the same dimensions and distribution of elastic properties as the
actual system, and subjected to time-dependent concentrated loads, where the
interior columns occur, the governing differential equation is given by:

27
ot?

DV2p2(Z)+ W = f(x,y,t). (9)

The term f (x,y,t) represents the applied load which, in this instance, is the
reaction offered by the interior columns. If this term becomes zero then Eq. 9
becomes the governing equation of free vibration for a similar slab simply-
supported at the boundaries and having no columns.

Since the whole system is vibrating freely the column reactions must depend
upon the frequency of the system. If R, represents the amplitude of the time-
dependent column reaction F;, acting at the point ¢;, d; then:

P, = R,cos (wt—0), (10)
where w = frequency of the system
and § = phase angle of the motion

and values of P, and 6 should be determined through the initial time conditions.
The concentrated column reaction, P, can be expressed as an equivalent
distributed load in terms of the normal functions (3) by:

N _ -
f(x,y,1) ='ZIRiGOS (wt—e)ZZ W Z,, (2, Y) Zyy, (c;:dy), (11)
1= m n
where i =1, 2, 3,... N depending on the number of interior columns.
Substituting Eq. 11 into Eq. 9 the solution will take the form
Z(@.9:8) = 2 X Zuun (@ Y) G (), (12)

which leads to

S 2 W B Lo (@ Y) G O+ W Z, (@) Gn (D] =

N _ _ (13)
Z RiCOS (wt_e)zz WZm'n(xs y) Zmn(ci7di)'
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If the coefficients of Zmn (x,y) are matched to get the equation on the time
function ¢,,, (), then:

N —
Q'mn (t) + p?nn an (t) = Z Rz Cos (w t— 0) Zmn (ci ’ d@) . (14)

The solution of Eq. 14 takes the form:

an(t) =DmnCOS(a)t—-0), (15)
N —
where D,, =- o (16)

Since the deflexion at each point of column support must equal zero, then

for a column support at (c;,d;)

Z(¢; d;,t) = 23 Zpy (¢;,d;) D,y cOS (wt—0) = 0 (17)
2R, Zmn (€i38;) Zippn (€5, ;)

or ZZ : T =0. (18)

There will be as many equations of type (18) as there are interior supports,
each containing as many terms as there are interior supports, and all these
equations are linear and homogeneous in the constants, R. By setting the
determinant equal to zero the frequencies of the floor system can be obtained,
the least value giving the fundamental natural frequency.

L a I | a o
_Af ) . __Fﬁ 1
;]"_“—D_ (mn (2)
o Ty

—_ ab, 2ab
t?—— (3) (4)
b—-—p L[ $2sd
b & Fig. 3. Fig. 4.
Y

Actual solution of Eq. 18, may become intractable if more than four interior
columns are considered, or more than two terms of the series. But if the columns
are symmetrically spaced about the centrelines of the floor system the amount
of computation is greatly reduced.

Consider, for example, the floor system with four symmetrically placed
interior columns shown in Fig. 4. For brevity, the column positions are numbered
(1), (2), (3) and (4) respectively.
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Due to the symmetry of the system, the frequency equation, is given by

Eq. 19.
L e ey Y e e
R Zmn(l)zmn(?’) R, Z n (1 )_mn(4) B
+;; Thh— o +;; Do —?)

Yy & Zny () Zn (1) , 5§ B Zp (2) L (2

(P — %) 75 (D~ @)
RN IR
R
RS leszfs;"@) I x Z];;fg Lo,

By Loy, mn(2)
(PR

) Z (pmn_w Zn(4) _

m

(
ZZR Zmn

Since the relative positions of the columns are known the corresponding
normal functions can be written as

J

mar n & . 2mm . nw
Zipon (1) = C’sm»g—sm 3 Zipn (2) = Csin 5 sin—o-,
= . . 2 = . 2 .2
i (3) = C’sm-w?sm ;”T, Zpn (4) = Csin ?Wsm ?;,77

Because of the rapid convergence of the series in Eq. 18 it is sufficient to
consider values of m and n < 6.

It can be shown that all of the interior column reactions, R, have the same
absolute value and differ only in sign. The following possibilities exist:

.R,= R,= Ry;= R,,
1=—Ry=—Ry;= R,
= R,=—-R;=-R,,
1=—Ry= Ry=-R,.

(20)

SR

Using the four possible arrangements of R-values shown in Eq. 20 four
corresponding frequency equations can be obtained:
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l%11A2+l%5i)\2+l§1i>\2+zgsi>\z =0, (21)

lézi)\2+l§4i>\2+l§2i/\2+zg4i)\2 =0, (22)

l%zikz+l%4ihz+l§2i)\2_l§4i)\2 =0, (23)

lgliﬂ * lg;m + l}l-l-)\z + zgsi)\z =0, (24)
where 2, =m>o?—n??, K2= bl‘:l#’ 2. = K22

= gide ratio, A = % = Frequency number.

The least value of the solution is given by Eq. 22 which determines the
fundamental frequency of the floor system.

For the general case of a floor system with mn symmetrically located,
infinitely rigid columns, with m columns in each row parallel to the z-axis and
n columns per row, parallel to the y-axis (i.e. ¢=m, j=n), the frequency
equation may be written as:

1 1 1 1
= 0. 24
Bon X By X N B .
Eq. 24 has as its parameters, K, «, m and n. For definite values of m and »,
the equation, after expansion, becomes a cubic equation in the square of the
frequency number, A%. It can be written as:
4 (A2)3 -3 ()‘2)2 [lrzn,n + lr2n, n+2 + lrzn—i—2, n + Z72n~!-2, n+2]
+2 (A2) [l72n,n ?n, n+2 + l72n,n l72n+2, n + l12n, n l?n+2, n+2

2 2 2 2 2 2
=+ lm, n+2 lm+2, n + lm, n+2 lm+2, n+2 + lm+2, n lm+2, 'n+2]

(25)
72 2 2 2 2 2 2 2 2
[lm, n lm,n+2 lm+2,n + lm, n lm, n+2 Zm+2, n+2 + lm, n+2 lm+2, 7 lm+2, n+2
2 2 2 —
+ ZM, n lm+2, n Zm+1,n—i—1] = 0.

Eq. 25 has been solved, by trial and error process, for different values of «,
m and n to obtain the frequency numbers, A, which are shown in Table 1. The
relation between A and the side-ratio, «, is shown in Fig. 5.

Table 1. Frequency number with change of side ratio (for rigid columns)

m n a=1.0 a=1.1 a=1.2 oa=1.3 a=1.4 a=1.5
1 1 5.81 6.34 6.79 7.18 7.54 7.89
1 2 9.07 9.80 10.55 11.24 11.85 12.39
2 2 12.94 14.20 15.42 16.60 17.85 19.10
2 3 18.27 19.74 21.23 22.69 24.10 25.55
3 3 22.90 26.40 28.74 31.43 33.92 36.90
3 4 31.42 34.06 36.74 39.43 42.32 45.24




DYNAMIC ANALYSIS OF FLOOR SYSTEMS 41

Actual numerical solution of the general frequency equation when applied to
a particular case is tedious. For this reason an approximate expression has been
worked out from the data given earlier in the paper. This is given below:

A= 5.623 (mxn)®82 (c—1)+5.689 (mxn)05E, (26)

By comparison with the results obtained from Eq. 25, the frequency values
err, on the average, by 6.69, for a-values ranging from 1.0 to 1.4. If & is 1.5
then the error is 129%,. But Eq. 26 is limited in its application, to differences
in value between m and n not greater than one:ie. 0= (n—m)=1.

48 I
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Fig. 5.
SIDE RATIO, &

Floor System on Elastic Columns

When the interior supporting columns are elastic and have different spring
constants, k, analysis can be performed using techniques similar to those shown
in the preceding section.

Let the column at point z;, y, have a spring constant k. The column reaction
P, is represented by:

F=k;Z(x;,y;,1). (27)

Hence it can be shown that the column reaction is given by:
Rz‘ = k@ZZZmn (xi7yi)Dmn (28)
m n
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or for support at j
A7

Z Rz Zmn (x'b i yz) Zmn (xj > y])
Ry=k;) ) - e — . (29)

m n

Again, a set of equations of type 29, and linear and homogeneous with
respect to R, results. The spring constant will vary from zero for a fully flexible
column to infinity for a perfectly rigid column. The two limiting cases have
already been defined. For intermediate cases, either all the interior columns
have the same degree of elasticity or different values of k. Where k is constant
the analysis is considerably simplified, but if k£ varies, some approximations must
be made in order to achieve a solution.

Dealing first with the case where k is constant, it has a dimension of length/
force and should have a negative sine in order to ensure that a positive deflexion
relates to an upward, or negative load.

(m+1)(n+1)

Denoting k WabK2

=@, (30)

where G can be termed the stiffness number of the floor system, the frequency
equation may be written as:

1 1 1 1
o ¢ [l?n,n_hz + lrzn,n+2_)\2 + l?)@+2,nr — A2 + l%'z+2,n+2_)‘2] =90 (31)
Eq. 31 has been solved for floor systems having 1, 2, 4, 6, 9 and 12 symmet-
rically located interior columns and values of ¢ equal to 1, 10, 102, 103, 10% and
oo respectively. The results are grouped in Tables 2 to 7 and show that the
frequency number, A, is linearly related to the side ratio, «, for any particular
floor system having a particular value of stiffness number, . The main varia-
tion of frequency number with stiffness number lies within the range, G'=10
to G =10°% and as far as dynamic analysis is concerned, interior columns with
G-values greater than 103 can be regarded as infinitely rigid, in the analysis.
It should be noted, however, that the value of the stiffness number depends
on the value of the column spring constant and on the column numbers, m and
n. Hence, in order to compare different floor systems with interior columns
having the same spring constant, the stiffness number, ¢, must be divided by
the corresponding number (m + 1) (n+1).
Where the spring constant, k;, differs for every interior column the labour
involved in solving Eq. 29 becomes prohibitive. Some simplification can be

Zﬁ’ and this seems reasonable
providing [,,, > A, where A can be estimated from the general equation 24. But
the remaining equation may, even then, remain too laborious for solution.
Besides no practical advantage seems to be gained by treating the interior

columns as having differing spring constants.

achieved by neglecting some of the terms
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Table 2. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=1, n=1
o
Log &

1.0 1.1 t 1.2 ‘ 1.3 1 1.4 1.5
0 2.23 2.42 2.63 2.87 3.12 3.40
1 3.46 3.62 3.80 3.98 4.19 4.41
2 5.32 5.72 6.07 6.38 6.67 6.98
3 5.75 6.27 6.70 7.09 7.45 7.79
4 5.80 6.33 6.78 7.17 7.53 7.87
o) 5.80 6.34 6.79 7.18 7.54 7.89

Table 3. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=1, n=2

x
Log ¢
1.0 1.1 1.2 1.3 1.4 1.5
0 5.09 5.30 5.53 5.77 6.04 6.34
1 5.74 6.01 6.23 6.45 6.80 6.96
2 8.03 8.45 8.85 9.22 9.55 9.90
3 8.95 9.63 10.33 10.97 11.53 12.05
4 9.06 9.78 10.53 11.21 11.80 12.36
o) 9.07 9.80 10.55 11.24 11.85 12.39

Table 4. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=2, n=2
o
Log ¢
1.0 1.1 1.2 1.3 1.4 1.5
0 8.08 8.90 9.80 10.80 11.90 13.20
1 8.55 9.35 10.23 11.17 12.23 13.37
2 10.90 11.73 12.60 13.50 14.50 15.52
3 12.60 13.80 14.95 16.10 17.32 18.52
4 12.88 14.13 15.37 16.55 17.80 19.07
o0 12.94 14.20 15.42 16.60 17.85 19.10

Table 5. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=2, n=3
(¢ 4
Log G
1.0 1.1 1.2 1.3 1.4 1.5
0 13.04 13.88 14.80 15.80 16.60 18.09
1 13.36 14.19 15.10 16.07 17.08 18.44
2 15.36 16.21 17.11 18.05 19.03 20.14
3 17.75 19.08 20.40 21.70 23.05 24.23
4 18.17 19.67 21.18 22.60 24.00 25.41
o0 18.27 19.74 21.23 22.69 24.10 25.55
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Table 6. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=3, n=3
o4
Log @
1.0 1.1 1.2 1.3 1.4 1.5
0 18.20 19.92 22.00 24.18 26.63 29.20
1 18.28 20.06 22.20 24.40 26.80 29.50
2 20.02 21.80 23.80 25.90 28.30 30.34
3 22.43 25.30 27.60 29.90 32.40 34.94
4 22.85 26.30 28.70 31.30 33.90 36.40
o 22.90 26.40 28.74 31.43 33.92 36.90

Table 7. Influence of stiffness number and side ratio on frequency number

Floor System with Column Numbers: m=3, n=4
[04
Log G
1.0 1.1 l 1.2 ‘ 1.3 ‘ 14 1.5
0 25.05 26.46 28.96 31.69 33.41 36.29
1 25.12 26.58 29.07 31.97 33.80 36.60
2 26.65 28.38 30.42 33.27 35.10 37.42
3 30.08 32.37 34.67 37.42 39.60 42.16
4 31.31 34.00 36.62 39.31 42.25 45.16
o0 31.42 34.06 36.74 39.43 42.32 45.24

Mode Shapes

The mode shapes of the floor system for free vibrations can be determined
once the frequencies are known. The column reactions, R, are first determined
within an arbitrary limit and these, when substituted into Eq. 12, give the
following expression for the mode shape of the system:

_ 2Ry Z (0 )
Z(x,y,t)=ZZZmn(x,y) i T (Acoswt—Bsinwt). (32)

The arbitrary constants 4 and B in Eq. 32, should be evaluated using the
initial time conditions.

If the floor system is subjected to forced vibration the general analytical
principles involved can be illustrated by reference to the simple case of a
single concentrated sinusoidal force, F.

If the force is

F = Fsinft, v (33)



DYNAMIC ANALYSIS OF FLOOR SYSTEMS 45

where f=frequency of the applied load, the distributed load has the form:
@, y.t) = Bysin ft 35 W 2y, (@) Zopa (0, 9)- (34)

(u,v) being the point of application of the concentrated force.

The distributed load in Eq. 34 is added to the r.h.s. of Eq. 9 to form the
new governing differential equation. Its solution consists of a homogeneous
part given by Eq. 32 and a particular solution to be determined. The particular
solution is investigated by using Eq. 9, which yields the following:

N

Solution of Eq. 35 for a steady-state forced vibration will be of the form:

with force P, given by

Substituting from Eqs. 36, and 37 into Eq. 35 gives:

N _
Z R, Z,,(c;.d;)+ F Z,, (u,v)

D, = . 38
(P2 — 12 (38)

By using the conditions of constraint at the interior supports
Z(c;,d;,t) =0, (39)
or L (€:,d:) D, = 0 (40)

(RNt}

the values of the coefficients R; may be found from the equation:

N _
_ Z Rz Zmn (ci’di)_i'E)Zmn (uav)
2 2 2 (055 ;) : s = 0. (41)

N being the number of interior supports. This yields a set of N linear but non-
homogeneous equations which can be solved explicitly for the R coefficients.
With the R-values known, the constant D,,, can be found and, finally, the
particular solution for the deflexion, Z, where:

N

>R cl,d)+FZ (u,v)

Zm%n=§§2mw,? G sinft.  (42)
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Nomenclature
a,2a = length of slab in z-direction
b, 2b = length of slab in y-direction
e = spacing
E = modulus of elasticity
B, 1, = flexural rigidity of main girder
E, 1, = flexural rigidity of beam in z-direction
E, I, = flexural rigidity of beam in y-direction
€rs €y = spacing of beams in z and y directions respectively
F = applied sinusoidal force
f = frequency of applied load
f(x,y,t) = force function on slab
G = stiffness number
h = constant thickness of slab
k = gspring constants of interior supporting columns
L = span length of secondary beams
L, = span length of main girder
N = number of columns supporting the slab
P, = reaction of column s
P, = frequency of main girder in the nth mode
P.. = natural frequency of slab ,
GQnn = generalised coordinate, function of time ¢ only
R, = amplitude of column reaction
W, = mass per unit length of main girder
W,, W, = mass per unit length of beams in x, y direction respectively
w = mass per unit area of slab
X = shape function of entire structure
X ,, Xz = shape function of system A4, B respectively
Yo = vertical deflexion of main girder
Z o (x, y) = shape function of slab in the (m, »)th mode
2z = deflexion of slab
w = frequency of floor system
0 = phase angle of vibration
w = Poisson’s Ratio
A, = frequency number
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Summary

This paper presents a method for analysis of floor-systems considered as
plates resting on supporting columns. The fourth-order partial differential
equation involved is solved by the normal mode method. A simple frequency
equation in terms of the number of ‘“symmetrically situated’” columns is
derived and some typical cases are solved numerically. The stiffness of the
floor system on elastic interior columns is also considered and mode shapes
due to free and forced vibrations briefly dealt with.

Résumé

Cet article présente une méthode de calcul des (systémes de) planchers
appuyés sur des colonnes. Les équations différentielles partielles du 4¢ ordre
utilisées sont résolues par la méthode de la surface élastique.

Une équation d’oscillation simple en fonction du nombre de colonnes
situées «symétriquement» est établie et quelques exemples typiques ont été
résolus. En outre, on considere la rigidité du plancher appuyé sur des colonnes
intérieures élastiques et on étudie briévement la surface élastique due tant
a une oscillation libre qu’a une oscillation entretenue.

Zusammenfassung

Dieser Beitrag zeigt die Berechnung von Decken, die auf Stiitzen ruhen.
Die zugrunde liegende partielle Differentialgleichung vierter Ordnung ist
durch die normale Biegefliche-Methode gelost worden. Ebenso wird eine ein-
fache Schwingungsgleichung in Abhingigkeit der Anzahl symmetrisch ange-
ordneter Stiitzen hergeleitet und einige typische Félle werden numerisch
gelost. Weiterhin wird die Steifigkeit der Decke auf elastischen Innenstiitzen,
sowie die Biegefliche infolge freier und erzwungener Schwingungen beriick-
sichtigt.
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