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1. Introduction

The stiffness and general behaviour of corrugated plate shear panels, Fig. 1,

has been extensively investigated because of the capability of such panels to
withstand considerably larger shear loads without overall buckling as compared
with plane plate shear panels.

Such panels are usually attached to the supporting frame along the bottom
plate of each corrugation, implying that the shear forces R are applied in the
plane of the bottom plates and not in the plane of the shear centres of the
corrugations. This eccentricity causes the corrugations to deform with a

twisting component as shown at a typical cross-section in Fig. 2 a.
Thus, a generating line along the corrugation length (length will always

denote the dimension parallel to the corrugations) will not remain straight
and parallel to its original position when deformed as in the case of plane
plates, but will twist in plan about its mid-point. The twisted shape of the
line will depend on the boundary conditions at its ends. A line AA at the
mid-width of the top plate will twist to position A' A' as shown by Fig. 4a,
while a line HH at the mid-width of the bottom plate will have the shape H' Hf
as shown by Fig. 4c. A line KK at the mid-point of a side plate deforms into
K' K' as shown by Fig. 4b.

The twisting of the corrugation cross-section, Fig. 2 a, is associated with plate
bending stresses, with the notation of Fig. 5b, the coordinate direction y being
parallel to the corrugations (Fig. 1). The deformation of the generating lines
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AA, HH and KK, Fig. 4, is associated with plate membrane stresses with the
notation of Fig. 5 a.

Theoretical Solutions have been obtained for trapezoidal [1,2] and semi-
circular [5] corrugations. These Solutions are based on the following assumptions:

a) line ^4^4, Fig. 4a, remains straight after deformation; b) line HH,
Fig. 4 c, does not deform and remains parallel to its original position and c) the
stresses which develop in the middle surface of the plate are, referring to
Fig. 5, rxy, ryx and My only. It is shown in the present paper that these assumptions

lead to an overestimate of the stiffness of the panel. Luttrel [4] retains
assumptions (b) and (c) but allows for the fact that lines AA do not remain
straight after deformation. He finds the deformation of these generating lines
to be localised within two regions at the ends of the corrugations, extending
into the panel to a certain length, after which lines AA remain parallel to their
original positions. Within the central region as defined, stresses rxy and ryx
only exist. Luttrell describes the deformed shape of lines AA as a parabola of
the nth degree where n depends on the panel configuration and the spacing
of the end fasteners. The value of n is obtained experimentally.

The method of Solution, presented in the present paper, assumes in-plane
deformation patterns for each of the three plates which form a trapezoidal
corrugation, that is, the top, bottom and two side plates. A general energy
term is then developed and minimized with respect to the coefficients that
exist in the assumed deformation patterns. The deformed shape and the shear
stiffness of a corrugation or a corrugated panel can then be obtained.

2. Definition of Problem

The corrugations consist of top plates of widtK 2 bT, bottom plates of width
2 bB and side plates of symmetrical inclination 6 as shown in Fig. 2 a. The depth
of the corrugations is d and the total length is 2 a (Fig. 1). When the panel of
Fig. 1 is shear loaded, a cross section within the length of an intermediate
corrugation (the dotted line E' B' C D' E' B' as shown by Fig. 1) will twist
to a position EBCDEB as shown by Fig. 2a. The displacements of the
corrugation corners BCDE could be defined with respect to either set of
components, us (in the plane of the side plate) and pT (or pB) (perpendicular
to us) or uT (or uB) (in the plane of the top or bottom plate) and vT (or vB)

(perpendicular to uT or uB) as shown by Fig. 2b.
Bending stresses (My in Fig. 5b) will develop, these being associated with

out of plane deflections wT, ws and wB for the top, side and bottom plate
respectively as shown in Fig. 2 a. These bending stresses will be assumed to
have linear distributions between the corner moments (ME, MB, Mc and MD
in Fig. 2a). This type of bending will be referred to as "portal frame bending".

The twisting of a cross section IF G' J' IF at the end of the corrugation
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(Fig. 3) will be more restricted due to the boundary conditions. Points H (being
the locations of the plate to frame fasteners) are fixed in the X-direction and
in the present Solution will be assumed to be fixed in a direction perpendicular
to the bottom plate.

Due to the difference in the modes of twist between cross sections within
the length (Fig. 2 a) and those at the ends of the corrugation (Fig. 3), the top,
side and bottom plates will adopt the shapes shown by Fig. 4, with in-plane
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deflection funetions uT (with maximum values at the ends), us and uB (with
zero values at the ends) for the top, side and bottom plate respectively. By
symmetry, uT, us and uB will be zero at the mid-length of the corrugations.
Assuming the top, bottom and side plates to be long compared with their
width, these deflections may be regarded as the deflections of the central axes
of these plates considered as "beams" bent in their own planes. The membrane
stresses oy (Fig. 5 a) are then the "bending stresses" of these prismatic "beams",
and as in the usual Bernoulli theory of bending may be assumed to vary
linearly between the edges of the plates.

<*

a)
Fig. 5.

b)

Because of the difference in the in-plane deflection funetions of the different
plates and the existence of the membrane shear stresses (rxy and ryx in Fig. 5 a),
shear strains yT, ys and yB take place in the top, side and bottom plates (Fig. 4).
Finally because of the different "beam bending strains" existing at the edges
of the top and bottom plates, the side plates will, in addition to linearly
varying "beam bending stresses" ay, also contain an additional mean
longitudinal stress oy, with which will be associated an extension function v8 in
the Y direction as indicated in Fig. 4b. Such extension funetions will not
occur in either the top or bottom plates, as may be seen by reversing the
direction of the overall shear force acting on the panel.

Non-linear membrane stresses ay will be induced at large angles of twist
(reference [2]). These are however of significance only for very short panels
and will be ignored. Membrane stresses ox (Fig. 5a) will be neglected because
of the considerable flexibility of the corrugations in this direction. The strain
energy due to bending stresses Mx, and twisting stresses Mxy, Myx (Fig. 5b)

3^ vü 3^ wwill be neglected because of the very small value of ^—5- and ^—^— compared
p2 cx1 excy *-

with ^—-. Confirmation of the small size of energy terms associated with
twisting stresses Mxy has been obtained by considering the twisting of the top,
bottom and side plates treated as prismatic beams [6].

Equilibrium equations relating all the effective stresses of Fig. 5 have been
developed and solved [6, 7]. The present paper is devoted to describing the
energy Solution, the results of which will be compared with the equilibrium
Solution.
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3. Assumptions and Limitations

These are as follows.

1. The material is infinitely elastic.
2. The marginal frame is a hinged parallelogram consisting of rigid members.
3. The plate is pinned to the frame at the mid-width of each end of each

bottom plate, the end corners of each bottom plate (points F and I in
Fig. 3) being prevented from up lifting.

4. No slip takes place due to bearing between the plate and the fasteners.
5. No overall buckling occurs.
6. The panel is very wide, consisting of a large number of corrugations, so

that the effect of any particular boundary conditions on the end
corrugations may be neglected.

7. The effect of large deformations is neglected.

4. Method of Solution

The method is to assume modes of deformations for each of the individual
plates (top, side and bottom plate). These should satisfy the boundary
conditions, the compatibility condition implied by the integrated behaviour of
the plates and any conditions of symmetry or anti-symmetry. The energy
terms due to the assumed deformations are then obtained and the total strain

energy in one corrugation is obtained after minimizing it with respect to each

of the parameters which appear in the assumed modes of deformation. The
internal strain energy is lastly equated with the work done by the applied
loads to obtain the load corresponding to the deformation state.

In calculating the total strain energy, the following terms are introduced:

1. Due to bending stresses:

U1 is the strain energy due to the plate bending stresses My (Fig. 3).

2. Due to membrane stresses:

U2 is the strain energy due to that part of the stresses oy (Fig. 3) which
cause the extension vs in the side plates (Fig. 4b).

U3 is the strain energy due to the linearly varying stresses ay in the top
plate associated with its bending as a "beam" in its own plane.

C74 is the strain energy due to the linearly varying stresses ay in the bottom
plate.

U5 is the strain energy due to the linearly varying stresses ay in the side plates.

U6 is the strain energy due to shear strains yT in the top plate.
U7 is the strain energy due to shear strains yB in the bottom plate.

U8 is the strain energy due to shear strains ys in the side plates.
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5. Modes of Deformation

Denotong by uT, uB and u8 the in-plane deflection of the centre lines of
the top, bottom and side plate respectively at any point along 0 Y (Fig. 4),
expressions for these deflections, consistent with the boundary conditions will
be assumed as follows,

a iry
uT c0y + c1 — sin^^, (1)

tt a

a TTV
uB c2 — sm—, (2)

77 a

a TTV
u<s =c3 — sm-^~> (3)

tt a

where c0, cx, c2 and c3 are constant coefficients and a is half the panel length.
The shear strains yT, yB and ys at any point along 0 Y will be assumed as:

ny
yT ao + ajcos —, (4)

a

ny
yB a2 + a3COS (5)

a

yÄ=a4 + a5cos^ (6)
a

and the extension of the side plate in direction 0 Y as

tfc e(l-cos^j, (7)

where a0, ax, a2, <x3, a4, a5 and e are constant for a particular corrugation.

6. Energy due to Plate Bendmg Stresses

Referring to Fig. 2 a, let bT, bB and bs be half the width of the top, bottom
and side plates respectively; <f>T, <f>B and <f>s the clockwise chord rotation of
the top, bottom and side plates; dE, 0B, dc and 9D the clockwise rotations ät
points E, B, C and D respectively and MB, Mc, MD and ME the clockwise
moments acting on EB, BC, CD and DE respectively at points B, C, D and
E. Let d be the depth of the corrugation, c the projection of the side plate
width on the horizontal and t the uniform thickness of the plate.

Assuming / and F as fixed points (Fig. 3) and making use of the symmetry of
deformation about axes 0 Y through the mid-width of the top and bottom
plate, the following relation exists:

bB^B + c^s + bp^T 0. (8)
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Introducing the term:
C^e^bB^B-bT^T (9)

and solving Eqs. (8) and (9) for <f>B and <f>T,

c c
</>B=Jj)-(<f>e-<l>s) and <t>T -2fe"^e + ^"

Assuming a unit length along 0 Y, the following slope-deflection relations for
the "portal frame bending" of the corrugations may be written:

dc=^(2Mc + MB)+is =±jJ(-2Mc-MD) + tT,
h h

(10)

8J,=^(2MD + Mc) + +T=j£(-2MD-ME) + <1>8,

eE=^(2ME + MD) + 4,s=^{-2ME-MB) + 4>B,

where D 2 _ 2
is the flexural rigidity of the plate, E being Young's

modulus and pu Poisson's ratio.
Due to symmetry of deformations ME — MB and MD — Mc and hence

by rearranging Eqs. (10).

(bB + 2bs)MB + bsMc 32)(^|^^-—^), (11)

bsMB + {bT + 2bs)Mc -3Z>(^|^s + ^e). (12)

The quantities </>8 and </>e may be expressed in terms of the in-plane deflections

uT, uB and us by considering components of deflections at points B
and C (Fig. 2b).

Resolving at point B along the side plate:

us uB sin 9 — vB cos 6 uB sin 9 — <f)B bB cos 9 (13)

and at point C:

us uT sin 9 — vT cos 9 uT sin 9 + <f>TbT cos 0. (14)

Resolving perpendicular to the side plate; at point B:

Pb — ub cos 6 + vb sin # (15)

and at point (7:

^ uT cos 0 + % sin 9. (16)

Since ^_=fc^£, (17)
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then from Eqs. (13) through (16):

uT — uB
9s 2 ' '18'

uT tan 9 — us see 9
*T by ' (19)

<f>B
UBt*n9-ussec6

(2Q)

Substituting from (19) and (20) into (9):

_ uT + uB 2bs
+<

d 2UsH7' (21)

whence, substituting for <f>s and <f>e into (11) and (12):

MB Wf [J {Ut ~us) + g % - Gi (ut+«_»)]. (22)

M° ~WF [Z (Ut-ub)-Hus + H1 (ut + uB)], (23)

where: F =-* bs'\ bs>

ö

T - bs bT c l^bs + bT bsY\J -y[s+bs + 2rs[—by- + b7j\'

_ 26^1-26^ + 6^ 6S]

_ c f26g + 6r 6g]
1 2d[ bB bT\'

c \2b8 + bB bsl
1 2d[ bT bBy

The energy per corrugation due to "portal frame bending" is:

a s

0 0

where the bending stresses My about axes y (Fig. 5) are assumed to very
linearly between the corner points of the corrugation and s is the length along
the perimeter of the corrugation (2bT + 2bB + 4:bs). This leads to:
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a

Ul=2SYD [^(M% + M^Mc + m) +~ (M%) +1 bB Jf*,] dy. (25)

0

Substituting for MB and Mc from Eqs. (22) and (23) into (25):
a

2D C

Ux —p [Piwi + P2w2 + P3ws + <liwi w2 + q2wx ws + q3w2w3]dy, (26)

o

where: wx uT — uB, w2 — us, wz uT + uB (21)

jf+bJL)-2JK + K>(2 + £)
and px —* '- ^ '-,

G»(* + £) + 2*ö + *«(2 + £)
V% i.2

JG(2 +^ + JH-GK-HK{2+^I (28)

<7i =2

g2 2

?8 =2-

J. 2 '

-^l(2+£)-^l+Ql*+^(2+lf)
F2

¦001(2 + ^)-GH1-G1H1-HH1(2 + ^)
F2

Substituting for uT, uB and us from Eqs. (1), (2) and (3) and integrating
Eq. (26):

^i 145^4 (^7r2 + 6c0c1+1.5cf) + 1.52>5ci+1.52>2cl
«* «te

(29)
+ 3p6(2c0ca + c1c2) + 1.5p7c2C3+1.5p8(c1C3 + 2c0c8)],

where, P4 Pi + Pb + ?2> Pö :Pi + P3-?2> P6 Pz-Pi>
\**0)

Pt ?3-?i> ?8 ^i + ^3-

7. Energy due to Membrane Stresses

Energy due to extension in direction 0 Y of side plates (U2):
If vs is the extension function in direction 0 7 of the side plate as given

by Eq. (7), then the total strain energy due to extension of a side plate is

^=^my
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substituting form Eq. (7), this becomes

lUa v*Et^)a*. (32)

Energy due to "beam" bending of the top, bottom and side plates (U3, U\
and U5):

If uT, uB and us are the in-plane deflection funetions of the top, bottom
and side plate respectively, then:

^yyj'my
— a

— a

— a

where —=^- represents the second moment of area of the top plate about the

axis of bending and similarly for the bottom and side plates.
Substituting from Eqs. (1), (2) and (3), Eqs. (33), (34) and (35) lead to:

Energy due to shear strains in the plates (U6, U7 and U8):
If yT, yB and ys are the shear strains in the top, bottom and side plate

respectively, then:

U6 ^(2bTt)fy2Tdy, (39)
— a

U7 ^(2bBt)fyBdy, (40)

iU8 ^-(2bst)fysdy, (41)

where N is the shear modulus of the plate material.
Substituting from Eqs. (4), (5) and (6) into (39), (40) and (41) and putting

N= E
2(1 + »»)
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EtabT (i+f)-
v _EtabB

7 l+/x yi\
i'tt Etab8yi\-

62

Kta.h-.l n,?\
(42)

(43)

and ^..^S^+^j. (44)

8. Compatibility Conditions

The condition is that the total shear displacement as between successive

corrugations in direction 0 Y should be equal to the sum of the deformations
of the different plate element^ in the same direction.

Referring to Fig. 4 and denoting by AT the relative displacement, in direction

0 Y, between the centre of the side plate and that of the top plate and by
AB the relative displacement between the centre of the side plate and that of
the bottom plate, AT and AB may be expressed as follows:

an<* AB bB\^ +y^+bsi^ + y^-Vs.

Substituting from Eqs. (1) through (7):

aiI ny ttv\
AT 6T(c0-{-<?! cos—- + a0-\-a1cos—-I

i / ^V ny\ / 77 y\
+ osic3 cos—^ + a4 + a5cos—^1 -hell —cos-^l

y a a j y a i

and AB fe^l^cos — + a2 + a3cos —— I

i / ny Try\ / -ny\
+ ^(c3cos +a4 + a5cos I —e 11 — cos—— I.

(45)

(46)

Grouping terms which have coefficients of unity and terms which have coefficients

of cos— in both sides of Eqs. (45) and (46), the following relations are

obtained:
AT e + c06T + a06T + a4&£, (47)
0 — e -f cx bT + oc1 bT + c3 bs + a5 bs, (48)

AB -e + <x2bB + oc^bs, (49)
0 e + c2bB + <x3bB + c3bs + oc5bs. (50)

The shear deformation per corrugation is A where A 2 (AT+AB), so by
adding Eqs. (47) and (49) and rearranging:
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y---yr-yfT ^
Eqs. (48) and (50) can be written as follows:

__e_ _ bs__ _H~bT Cl C*bT *5bT'

*3 — ~T C2-"C3I a5jr' (53)

««i-^-Cx-e.^-.A (52)

(Xo

Eqs. (51) through (53) enable the parameters c0, ax and a3 to be calculated in
terms of the other unknown parameters which appear in the right hand side
of the equations.

9. Solution by Minimisation of Total Strain Energy

The total strain energy of one corrugation is obtained by adding the
individual terms (Eqs. (29), (32), (43), (36), (37), (38), (42), (43) and (44)) as follows:

U Ux+ U2 + U3 + £74 + U5 + U6+ U7 + U8. (54)

This energy term (U) is a function of the eleven unknown coefficients -c0, cx,
c2> c3> ao> ai> a2> a3> a4> a5 an(i e> an(l by making use of Eqs. (51) through (53)
the number of unknowns is reduced to eight. Each of the eight unknowns has

a value which minimizes U. The minimisation of Eq. (54) with respect to the
unknowns cl9 c2, c3, e, a0, a2, a4 and a5, results in eight simultaneous linear
equations. These, together with Eqs. (51) through (53), allow the determination

of the eleven deformation parameters giving rise to the shear deflection
A per corrugation.

Eq. (54) is therefore differentiated with respect to the eight independent
unknowns, the Variation of the energy terms with respect to the dependent

unknowns c0, ax and a3 being allowed for by the introduction of terms -^ — 1

(Eq. (51)) etc.
Equating the differentials to zero:

(6p4m)c0 + (32>4m,6|,)c1 + (32>6m)c2 + (1.5p8m)c3+(m,,6T)a1 0, (55)

(ßp6m)c0 + (3pem)c1 + (3p5m + m,b3B)c2 + (l.5p1m)c3-(m,fbB)oc3 0, (56)

(3 p8m) c0 + (1.5 p8m) C-L + (1.5 p7m) c2 + (3 p2m + 2m' b%) c3

- (m" b8) <xx - (m" b8) a3 0,

(6p5m')e + (m")oc1-(m")oL3 0, (58)

(-27r2p4m)c0-(6^4m)c1-(6p6m)c2-(3p8m)c3 + (26Tm,/)a0 0, (59)

(-2.^4m^)Co-(6P4m^c1-(62>6m^)c2-(3p8m^)c3

+ (2bBm")oc2 0,

(57)

(60)
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+ (26Äm")a4 0,
(61)

-ai-a3 + 2a5 0, (62)

2Da3 2 JEt\ „ Etawhere: m m ^rr2\— m =——.97r26| 3 \ a I 1 -h /uc

Eqs. (51), (52) and (53) can be written as:

*+«h&m^ - 4- (64)

All terms between brackets in Eqs. (55) through (65) are constants for given
corrugation length, configuration and material properties and these equations
are sufficient to determine the unknown constants. Putting A 1 in Eq. (64),
the equations are readily solved and the constants derived corresponding to
unit deflection per corrugation. By substituting into Eq. (54) the total strain
energy stored in one corrugation for a unit deflection per corrugation is then
obtained.

If Ex is the energy stored in one corrugation due to unit shear deflection

per corrugation, then the energy U due to shear deflection A per corrugation is

U EXA2.

If a shear deflection per corrugation of A is produced by a shear force F, then
U is also given by

U \FA.

Hence A ^-. (66)

The shear deflection in n corrugations due to shear force is An nA.

10. Modes of Deformation and Relative Importance of the Energy Terms

It is of interest to consider the influence of various factors on the behaviour
of corrugated shear panels. The factors that are here considered are

1. the length of the panel,
2. the configuration of the corrugation,
3. the thickness of the plate.
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The main Variation in the deflected shape may be followed by considering
the deflection of the centre lines of the top, side and bottom plates (uT, u8
and uB in Fig. 4). The relative magnitudes of the energy terms may be
conveniently expressed by quoting the ratios UJU where U is the total energy
and the Ui (i 1 to 8) are the various components already defined.

1. The Effect of Panel Length

Fig. 6 shows the effect of change in length (2 a) of the panel on the contribution

of the different energy terms of Eq. (54) to the total stored energy.
Note that the vertical scale l-j~j is logarithmic.

When the panel is short, the overwhelmingly dominant energy term is that
due to "portal frame bending" (Ux). Eq. (54) is thus effectively reduced to
U=U1. It appears also from Fig. 11, which shows the deflections uT, u8 and
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uB for the same panel for different lengths under a shear load of one ton, that
at relatively short lengths (e. g. 50 ins) uT is almost linear, while uB and u8
are very small compared with uT. The deflection expressions of Eqs. (1), (2)
and (3) may thus be simplified to the form

uT c0y, Ut --u8 0.

Under this condition, this method of Solution agrees with the assumptions
made by Bryan [2] and McKenzie [5].

When the length increases, energy terms due to membrane stresses have
more effect. Fig. 6 shows that energy terms U2, U3, J74 and U5 first increase in
importance with increasing panel length. At the same time (Fig. 11) the top
plate acquires a non-linear shape (see uT for 2 a — 100 in. and 400 in.) and
deflections of the side and bottom plates (u8 and uB) become relatively larger.
For long panels (Fig. 6) the influence of energies U2, U3, £/4 and U5 again
falls due to the decrease in the beam-type bending stiffness of the individual
plates. The effect of ignoring these energies is demonstrated in Fig. 7 which
shows that their contribution reaches a maximum of 12 % of the total energy
for a certain panel length.

SHORT PANEL

INTERMEDIATE PANEL

J
(U| + U6+U7+U8)/u

)/u6' ~7

v. (U2+U3+U44-U5)/U

I * I
Fig. 7.
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When the panel becomes long, the only contributors to the strain energy
thus become the "portal frame bending" and the shear strain, and Eq. (54)

may be reduced to
U= Ui+Us+U.+ Us.

When the length approaches extremely large values, Fig. 6, Ux loses importance

and the panel behaves in a manner similar to that of a plane plate panel.
In summary, the length of a panel has a great effect on its behaviour as a

shear panel. Accordingly, shear panels can be classified, within the practical
ränge, into three different groups depending on their lengths:

1. Short panels, in which the only contribution to their shear deformation is

from the "portal frame bending".
2. Medium length panels, in which all types of stresses included in the analysis

result in deformation which contribute significantly to the flexibility of the

panel.
3. Long panels, in which the "portal frame bending" and direct shear deformation

are the main contributors to panel flexibility.
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Fig. 7 defines, for the particular corrugation, the regions corresponding to
the previous grouping. It is to be mentioned, however, that the ränge of lengths
for each region depends also on the panel configuration and the plate thickness.

2. The Effect of the Configuration of the Corrugation

Fig. 8 shows that any increase in the corrugation depth decreases the effect
of the energies due to shear strain in the plate and increases the relative
contributions of the other energies. Increasing the width of the top plate (Fig. 9)
has a similar effect. In general, any change in configuration that increases

flexibility in "portal frame bending" has the effect of causing a decrease in
the relative importance of direct shear flexibility.
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3. The Effect of Plate Thickness

The effect of an increase in the plate thickness on the relative importance
of energy terms is similar to the effect of increasing the length of the panel
(see Fig. 10).

11. Evaluation of the Analysis

Extensive experimental work has been performed [6] to check the presented
analysis. Fair agreement has been observed between the analysis and the
experimental results for panels of medium lengths. The panels tested having
and conditions similar to those assumed in the analysis.

A comparison between results obtained from an equilibrium method [6, 7]
and the above energy method is given in Figs. 11 and 12. It is seen from Fig. 12

that the energy method predicts the greater flexibility for short panels. This

may be attributed to the neglect of some energy terms among which is the
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energy due to torsion of the side plates; this is likely to have a marked effect
at short lengths [2]. In case of long panels the energy method predicts stiffer
results than the equilibrium method, the reason being that the energy method
restricts the deformation of the different plates to the deformation patterns
it assumes. The actual deformation, as predicted more closely by the finite
difference method (Fig. 11), is in the case of long panels, localized at the ends

of the corrugations and diminishes rapidly within the length of the panel.
For medium length panels, Figs. 11 and 12 show that the two methods are

in reasonable agreement.
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Summary

An energy Solution is given for the shear rigidity of plates with trapezoidal
corrugations retained within rigid edge members connected to the corrugations
on one face only of the panel. Allowance is made for the fact that the
corrugations twist with a non-linear shape. The relative importance of energy
terms due to the various components of membrane and bending stresses is

investigated for corrugations of various proportions.

Resume

On presente une Solution par la methode de l'energie pour la resistance au
cisaillement de töles ä raidisseurs trapezoidales, qui se trouvent entre des

bords rigides et lesquelles sont relies seulement d'un cote du champ avec les

raidisseurs. Les raidisseurs se tordant d'une maniere non-lineaire, il y a une
tolerance. On analyse aussi pour des raidisseurs ä proportions differentes
l'importance relative des conditions d'energie a la suite des differentes compo-
santes dues ä la sollicitation de membrane et de flexion.
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Zusammenfassung

Es wird eine Energielösung für die Schubsteifigkeit von Blechen mit
trapezförmigen Rippen gegeben, die innerhalb starrer Kantenglieder liegt, welche
mit den Rippen nur auf einer Seite des Feldes verbunden sind. Eine Toleranz
besteht infolge der Tatsache, dass sich die Rippen nach einer nichtlinearen
Form verdrehen. Die relative Bedeutung von Energiebedingungen infolge der
verschiedenen Komponenten der Membran- und Biegebeanspruchungen wird
für Rippen verschiedener Ausmasse untersucht.


	An energy solution to the shear deformation of corrugated plates

