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Ultimate Strength and Design of Reinforced Concrete Beams in Torsion
and Bending

Resistance et dimensionnement des poutres en beton arme soumises ä la torsion
et ä la flexion

Bruchwiderstand und Bemessung von Stahlbetonbalken unter Torsion und Biegung

PAUL LAMPERT BRUNO THÜRLIMANN
Dr. sc. techn. Prof. Dr.

Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH)
Zürich (Switzerland)

1. Introduction

Since about ten years experimental and theoretical research into the
behavior of reinforced and prestressed concrete beams subjected to torsion
and combined torsion-bending-shear has been intensified world wide (see e. g.
[9]). For the past seven years such a program has been under way at the
Institute of Structural Engineering, Swiss Federal Institute of Technology,
Zürich. The aim of the project is to develop a failure model for reinforced and
prestressed concrete beams applicable to general cross sectional shapes
including on one side small solid sections used in buildings, on the other side

large sections such as box sections occurring in prestressed concrete bridges.
Results of the experimental and theoretical studies have been reported in
references [1] to [5].

In the present paper a failure model in the form of a space truss is presented
and applied to the case of combined torsion and bending. Its validity has
been confirmed by an extensive series of tests. Part of the resulting design
provisions have already been accepted in the revision of the CEB-Recom-
mendations (Comite Europeen du Beton) [7]. At present further studies are
made to include in the theoretical approach the influence of shear.
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2. Ultimate Strength

2.1. Failure Model

A general failure model was developed in [5] (see Fig. 1). This space truss
model consists of longitudinal reinforcement considered to be concentrated
into stringers at the corners and intermediate shear walls. In these shear walls
stirrups act as posts and the concrete between the inclined cracks provides
the compression diagonals. The angle of the diagonals with respect to the
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Fig. 1 : Failure Model - Space Truss with Variable Inclination of the Diagonals

beam axis is taken to be constant for each side. The angle is such that in the
walls governing the failure, both the longitudinal and stirrup reinforcement
will reach their yield stresses. For this reason the model is a space truss with
variable inclination of the diagonals.

The model can be applied in the case of St. Venant's torsion to the complete
ränge of interaction between general bending, axial force and torsion. The
limitations of application and the detailing of the reinforcement will be
discussed in Chapter 3. Since a, concrete failure is excluded through the assumption

of an under-reinforced section, the failure is determined by the yield
forces of the longitudinal stringers and the stirrups. Thus it is possible to
investigate the failure model by means of the upper and lower bound theorems
of the Theory of Plasticity. For this purpose an idealized elastic-plastic stress-
strain curve for the reinforcing steel is assumed and equilibrium is formulated
for the undeformed system (first order theory). The application to reetangular
reinforced concrete beams under torsion will be demonstrated next.
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2.2. Reetangular Cross Section in Pure Torsion

2.2.1. Lower Bound Solution

According to the lower bound (or static) theorem (e.g. [6]), any load for
which a stable, statically admissible state of stress exists, will be smaller than
or equal to the collapse load. Hence, the forces in the longitudinal reinforcement,

stirrups and concrete compression diagonals must be in equilibrium
with the applied torque. The forces in the reinforcements cannot exceed the
yield forces (yield condition). It is presupposed that the amount of reinforcement

is such that the concrete compression diagonals will not crush prior to
collapse (under-reinforced members).

Corner-Detail
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Fig 2 Truss Forces in Beam with Reetangular Cross Section

The forces acting in a cross section normal to the beam axis are shown in
Fig. 2. The cross section is considered to be symmetrical about the z-axis. The
stirrup reinforcement is taken to be constant on all sides. In the corner detail
it can be seen by resolving the forces in the ^-direction that the shear flow S

must be constant around the whole perimeter. Equilibrium in the y- and z-
directions gives

B Sstsmoc. (1)

Consider a mechanism produced by yielding of the stirrups. The yield force
of one stirrup is Bf. Because the stirrup reinforcement is constant, the same
angle

tana ^ (2)
b S

occurs on every side. Fig. 2 already shows this inclination and the shear flow
as constant. The three of the six equilibrium conditions remaining are
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ZX =0=2(Zo + Zu)-2^-(b + h), (3)

ZMy 0 2(Zu-Zo)^, (4)

%MX T (Sb)h + (Sh)b 2F0S. (5)

The last Eq. (5) is otherwise known in the form S rt Tj2F0 for hollow,
thin-walled sections. The area F0 is defined as the area enclosed by the line
connecting the longitudinal reinforcement in the corners [4].

If one assumes that the yield force for the bottom longitudinal reinforcement
is larger than for the top longitudinal reinforcement (Zfu^Zfo) then the top
reinforcement will reach its yield stress as a result of the condition given by
Eq. (4). Substituting Zu Zfo from Eq. (4) and u 2(b + h) into Eq. (3) gives
for yielding of the longitudinal reinforcement :

Su
*Zf0~t3^C

substituting for S in Eq. (5)

T(L)=^Zfotanoc. (6)

In the case of yielding of the stirrups Eq. (2) and (5) give the corresponding
•f.r_T»nmotorque

T(5)=i^-^_. (7)
s tana

Equating the two torques T (L) and T (B) results in the condition for the
inclination of the compression diagonals oc:

Combining the Eq. (8) and (6) or (7) yields the ultimate torque in the case of
pure torsion

Because Zfu ^ Zfo and Zu Zfo (Eq. (4)) Zu is always less than or equal to Zfu.
Accordingly the yield condition is not violated. Thus Tu0 as in Eq. (9) is a
lower bound value. Tu0 will be the exact collapse torque, if it can also be shown
that a collapse mechanism will be formed. This will be demonstrated in the
following section.

In the special case of the longitudinal reinforcement being uniformly
distributed on the perimeter (Zfu Zfo) and stirrup and longitudinal
reinforcement being of equal volume (4:Zfos Bfu) the value tana will be 1

(Eq. (8)) and from Eq. (9)
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Ttt0(tana 1) 2F0^L 2fJ^. (10)

A similar expression has been derived by Moersch more than fifty years ago.

2.2.2. Upper Bound Solution

By the upper bound (or kinematic) theorem (e.g. [6]), any load for which
there exists an unstable, kinematically admissible state of motion, will be

larger than or equal to the collapse load. Thus the deformations of the
longitudinal and stirrup reinforcement must be compatible and the rate of work
of the applied torque in the collapse mechanism must be equal to the rate of
dissipation of energy by the yield forces in the reinforcement (La Ld).

(a) Shearing Stram in
Shear Wall due
to Stirrup Strain

h/tan cx

4^

(b) Shearing Strain in

Shear Wall due
to Stnnger Strain

h/tan cx

-V_f.o_:-*i
a

€L h/tan a
€Lh
tana

(c) Shearing Strains for
Reetangular Cross Section

J^

Fig 3 Displacement Diagram for a Reetangular Cross Section

The kinematic conditions in a shear wall are shown by means of the
displacement diagram in Fig. 3. Basically the shearing strain y is composed of
elongations in the longitudinal and transverse reinforcement and a shortening
in the concrete compression diagonals. Since only under-reinforced members
are considered, the compression diagonals do not dissipate any energy at
failure. Therefore the compression diagonals are assumed to be rigid (Ad 0).
The shearing strain due to a stirrup strain is obtained directly from the
diagram in Fig. 3(a):

yB eB tana.

Similarly form Fig. 3(b) the shearing strain due to a stringer strain is seen
to be

7l tana
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Thus the total shearing strain is related to the elongation of the reinforcement
as follows:

7 Yb + Yl «^tana-t- tana' (ii)

The relationship between twist and shearing strain is derived in Fig. 4. The
angle of twist d& is a function of the sum of shearing strains around the
perimeter:

dx 2FJ'
Cut

djf
/¦ dx i-=rT£

ds /
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Flow «,
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in Middle Plane s O rd*
ds

_i_

a d*dw - ——r-ds
dx

Detail :

Shear Flow Produces

Shearing Deformation/

dw yds"T—f-

Condition for Closed Section: Warping Around Perimeter h 0

/dw—gf Iräs+fräs-o ;. -df -^ fräs
2F0

Fig.4 : Relationship Twist - Shearing Strain for a Thin-Walled Closed Cross Section

For the special case of a reetangular cross section (Fig. 3(c)) the angle of
twist & per unit length is

* 2^[(y0+y-)6 + 2y.Ä].

Herein y0, yu and ys stand for the shearing strains in the top, bottom and side
shear walls, the shearing strains on the sides being equal due to symmetry
with respect to the z-axis. In calculating ys with Eq. (11) the stringer strain
Stands for the average from top and bottom walls and hence:

(Yo + Yu) 2Ys-

Thus the above equation can be simplified:

l u
(12)
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By means of Eq. (12) and (11) the rate of work of the applied torque La can
now be expressed as:

Xa=T^ ^(y0 + ^=^(2.Btana +i^). (13)

The rate of dissipation of energy is given by the product of the yield forces in
the reinforcement and the strain rate of the mechanism. It is obtained by
summing the separate components of the rates of dissipation of the yield
forces in the longitudinal reinforcement, Zf0 and Zfu, and in the stirrups Bf:

Ld=2 Zf0 kLo + 2 Zfu kLu + 2Bfhb + h)kB. (14)
s

With the condition that La Ld, combining Eq. (13) and (14) gives

4 -R, 2 Zto eLo + 2 Zfu €Lu + Bf~ Cb)
T=—°^ j : ^~7—_. (15)

"' ^^^7~1u

One needs to select that mechanism which gives the least value of the torque
as given in Eq. (15). Allowing only one strain rate at a time Eq. (15) gives:

2,(6io94 0)=^Z/otan«, (16)
u

T(kLu*0)=-^Zfuta,noc, (17)
u

r<^<» -7=_. <18)

Equating the torque values from Eq. (16) and (18) yields

tan2 oc —-
s 4 V

which agrees with Eq. (8). The ultimate torque corresponding to this mechanism
is therefore obtained from Eq. (9). Indeed for this mechanism (kLo ^0, kB =£0)

the top longitudinal reinforcement and the stirrups yield. The same assumptions

also applied to the derivation of Eq. (9).
The torques from Eq. (16), (17) and (18) are shown graphically in Fig. 5,

plotted for -^- 3 and Bf^-^—s 1. The smaller upper bound for the collapse

torque is found at the intersection A. This mechanism (£Lo ^0, iB #0) is
equivalent to the correct collapse mechanism of the considered model, since the
collapse torque agrees with the lower bound value from Eq. (9). The yield
condition for this case may be checked with Eq. (17). Indeed, for Zfu^Zfo,
Zu is always less or equal to Zfu.
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Fig 5 : Torque as a Function of tan cx for Different Mechanisms

2.3. Reetangular Cross Section in Torsion and Bending

2.3.1. General Interaction

For a reetangular cross section, symmetrical about the z-axis and with
constant stirrup reinforcement (as in Fig. 2), the interaction can be derived
from the equilibrium conditions which were derived in section 2.2.1. If one
considers the moment about the ?/-axis to be My M, then only the left hand
side of Eq. (4), namely 2 My M, is altered. Substituting the expression for T
from Eq. (5) in Eq. (2) to (4), they can be rewritten as

tana

Zn + Zu

%F0Bf
Ts '

Tu
4i^0tana'

-Zo + Zu
M_

h '

(19)

(20)

(21)

Summing Eq. (20) and (21) gives in the case of pure bending (T 0)

M2Z
h

Since for collapse under a positive bending moment the bottom stringers yield
(i. e. Zu Zfu), the ultimate bending moment for pure bending of this model is

Mu0 2Zfuh. (22)
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The ultimate torque in the case of pure torsion was calculated in section
2.2.1, i.e. Eq. (9)

TU0 2F0^^. (23)

In this case the top stringers yield since it is assumed that Zfu 2_. Zf0. Therefore

somewhere in the ränge of combined torsion and bending there must be
a change from yielding of the bottom to yielding of the top reinforcement.
Consequently, these two cases will be considered separately.

For yielding of the bottom reinforcement Zu Zfu. Adding Eq. (20) and (21)
and substituting for tana from Eq. (19) yields

T* us Mu
±F*2B< h

"2z/u y^yy+-
Dividing by 2 Zfu and introducing the ultimate moments for pure bending
and pure torsion from Eq. (22) and (23) the following expression is obtained:

T2 Z M '

It can be rewritten as

(TA^z^I^ma (24)

For yielding of the top reinforcement Zö Zfo. In this case subtracting Eq. (21)
from Eq. (20), and substituting for tana from Eq. (19) gives:

T2 us Mu
10 ±F22Bf h '

Dividing by 2 Zj0 and introducing the ultimate moments from Eq. (22) and
(23) yields

T2 M„ Z<
1 Jfu

iw0 luu0 nfo
I T \2 Z M

otherwise U =1+^^. (25)

On the basis of these two equations interaction curves for ZfJZf0 ^ and 1

are shown in Fig. (6). It is seen that for a section reinforced for bending
(Zfu> Zf0), the torsional strength can be increased by the simultaneous application

of a bending moment. The maximum torsional strength is given by the
intersection A of the two curves representing Eq. (24) and (25), at which all
the reinforcements of the section yield. For a section reinforced for pure torsion
(ZfU Zj0), the maximum torque occurs when the bending moment M 0. In
this case both the top and bottom longitudinal reinforcement and the stirrups
yield. The form of these curves for the interaction between torsion and bending
was confirmed by tests [4], [5].
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Fig 6 Interaction Torsion - Bendmg for a Reetangular Cross Section

2.3.2. Ultimate Strength

The following relationships are derived for the case of yielding of the bottom
stringers. If for a given torque T a bending moment Mu is required Eq. (24)

gives

For the Solution of Eq. (26) one needs the ultimate strength for pure torsion
Tu0 as given by Eq. (9).

In the case of proportional loading defined by the factor k — T/M, addition
of Eq. (20) and (21) leads to

~ ry nr I KU 1\

which with Mu0 from Eq. (22) gives

Mu(k)
M„

1 + k uh
4 Fo tan a

(27)

By substituting for tana from Eq. (19) and writing Tu(k) kMu(k), a
quadratic equation for Mu(k) is obtained:

•^^M2(k) + Mu(k)-Mu0 0.
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Solving for the ultimate flexural strength gives

If k is small, the square root can be expanded into a series

to find the ultimate flexural strength in the vicinity of Mu0:

Mu(*)^ Muo(l-£0±K*). (29)

Similar relationships can be derived in the case of the top longitudinal
reinforcement yielding, as in [5]. Eq. (27) can alternatively be derived from a
kinematic procedure as in section 2.2.2, when the rate of work of the applied
moments as given by Eq. (13) is increased by the amount

Mq> M^Lu~~€Lo)
h

In the case of the bottom reinforcement yielding (kLu =£0) Eq. (13) becomes

Tu kLu M.
a 4 F0 tana "*"

h *Lu

and Eq. (14)
Ld 2Zf

Equating La and Ld and writing T kM yields the same expression for Mu (k)
as Eq. (27).

2.4. General Cross Sections

By means of the Theory of Plasticity the failure model for general cross
sections (Fig. 1) was investigated in [5]. A linear program can be derived from
the equilibrium and the yield conditions. Its maximum value is a lower bound
Solution for the collapse load (lower bound theorem). Similarly, with the
conditions of kinematical compatibility and the equation for the rate of work of
the applied and internal forces, a linear program can be found for which the
minimum value forms an upper bound Solution for the collapse load (upper
bound theorem). Since each program is the dual of the other, they both arrive
at the same optimum value, namely the exact collapse load for this failure
model.

The following basic conclusions have been deduced from this method of
Solution [5]:
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a) A collapse mechanism opens about a straight line connecting two stringers.
As long as this straight line does not intersect the cross section it is a possible
axis of rotation for the mechanism (see Fig. 7).

b) In a collapse mechanism the stirrups yield on all sides of the cross section.

Fig. 7 : Possible Axes of Rotation for Failure Model

Combining these two statements is to say that in a collapse mechanism all
the stirrups and longitudinal reinforcement reach their yield stresses, with the
exception of the two stringers defining the axis of rotation. This statement
forms the basis of the general Solution.

The 6 equations of equilibrium (compare with Fig. 1 and see reference [5])
are

m n
& =ZZi-Z^kOOSak, (30)

1 2

m n
My ^Zizi-^Dkeosockzk, (31)

1 2

m n
Mz -Z^ + ZA-Oosa*^ (32)

1 2

n
T =ZDksin«krk> (33)

2

Dk 8-ß^-, (34)

tanafc ^. ' (35)
a5 Sk

Substituting Eq. (34) and (35) in Eq. (30) to (33) and introducing the constant
shear flow S, gives the four essential equations of equilibrium

n

JV =2Z<-_?"V^*, (36)
1 2 fc
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nm v~n fi Q

M^ZZ^-S^-JT^ (37)

n

Mz=-ZZiyi + S22]-^yk, (38)
1 2 ^
n

T S£akrk 2F0S. (39)
2

Due to the preceding conclusions a) and b), these relationships have as
unknowns, besides the shear flow S and the ultimate moment My (for a given
proportional loading), only the forces in the two stringers defining the axis of
rotation. These two stringers will not yield. For all other Zi and Bk, the yield
forces Zfi and Bfk can be substituted, whereby the Solution is obtained.

In practice, it is advantageous to place the (y, z) coordinate axes so that
the unknown forces in the stringers which do not yield have a zero lever arm.
Thus the ultimate moment My, for example, can be directly calculated from
Eq. (37) substituting S with Eq. (39). The Eq. (36) and (37) are needed only to
check the yield conditions. Similarly the interaction diagram can be derived
by determining the interaction curves corresponding to all the theoretically
possible axes of rotation (Fig. 7). All these curves envelop the actual
interaction for the cross section.

3. Additional Considerations

3.1. Concrete Failure

In section 2.1 it was assumed that only under-reinforced beams would be
considered. In such members the stirrups and longitudinal reinforcement yield
prior to failure of the concrete. Concrete failure before yielding of the
reinforcement can be caused by

a) crushing of the concrete compression diagonals;
b) excessive shearing strains due to a large deviation of the angle a from 45°;
c) crushing of the concrete compression zone.

These types of failure are commented upon in the following section, and
criteria for their avoidance are proposed.

The concrete compression diagonals carry the diagonal forces necessary for
the truss equilibrium in the plane of the reinforcement cage. A beam with a
solid cross section has shown essentially the same failure mode as the
corresponding hollow section (see references [1] and [2]). Since the core offers no
contribution to the torsional strength, it is reasonable to assume an effective
outer shell for solid cross sections in Computing a nominal shear stress. The
thickness of this shell is proposed [4] to be the smaller of the two values
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b
t

5 ' (40)

where b and b0 are the diameters of the largest inscribed circles in the cross
section and the area F0 respectively (Fig. 8). The theory of thin-walled box
sections gives the shear stress as

-2fr (41)

7—= >c

Effective Wall Thickness t b/6 or t=bo/5

Fig. 8: Effective Wall Thickness for Solid Cross Sections

For hollow sections t Stands for the actual wall thickness, as long as this is
smaller than the effective wall thickness according to Eq. (40). Eq. (34) and
(41) give the normal stress in the diagonals as

JD sin oc cos oc
(42)

For a 45°, aD -2t.
Twisting of a beam induces an additional stress into the diagonals. In

reference [1], this was traced to a distortional effect. Through twisting, the
originally plane walls of the section are distorted to hyperbolic paraboloids
(Fig. 9). The curvature assumes at a 45° the maximum value of

K>YV

^f
>oVV

Fig. 9: Distortional Effect
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(J22; iK(n dd" ^x

Consequently additional compressive stresses occur on the outer surface of
the diagonals, which must be added to those obtained from Eq. (42). Therefore,

if one wishes to prevent a crushing failure of the compression diagonals
by limiting the maximum shear stress, this stress has to be lower or at least
not greater than the maximum permissible shear stress due to a shear force
acting on a cross section. This information was used in the revision of the Torsion

Provisions in the CEB-Recommendations [7].
The angle oc, characteristic for the redistribution of forces between

longitudinal reinforcement and stirrups, is subjected to certain limits. The deviation
of oc from 45° depends on the ratio of longitudinal to stirrup reinforcement.
Eq. (11)

y eRtana + -
tan oc

shows that the shear strain will be very large for both small and large values
of tan oc. In such cases a concrete failure through excessive shearing can occur
before both of the reinforcement components have yielded. Based on the inter-
pretations of the tests in [5], Eq. (35)

BkiL
*k

was used to derive the following limiting values

0,5 < tana*. < 2,0. (44)

Crushing of the concrete compression zone before yielding of the tensile
reinforcement can occur by a predominantly flexural loading. However, since a

torque always raise the neutral axis as compared with the case of pure bending,
the balanced reinforcement leading simultaneously to yielding of the steel
and crushing of the concrete in pure bending is at the same time a safe limit
for the combined loading.

3.2. Cross Sectional Shape

The theory so far is applicable to hollow and solid sections with dimensions
of the same order in both directions. Thus the compression diagonals of the
truss can develop on the narrower sides as well.

For open cross sections subjected to warping, this theory is only applicable
to members in which warping is not restrained by the support or type of
loading. In this case the torque is only carried by St. Venant's torsion. In all
other cases the warping torsion can be of the same order as the St. Venants's
torsion. So far there is no Solution for the ultimate strength in this case availa-
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ble. It is to be remembered that once cracking has occured, the torsional stiffness

decreases significantly more than the flexural stiffness [2]. This entails
a greater influence for warping torsion at ultimate load.

For Compound cross sections it must be pointed out that the separate parts
rotate about an axis which generally does not coincide with the axes of the
individual parts. With variable torsional moments and restrained supports
this results in lateral bending of the parts. The corresponding bending moments
increase with increasing thickness of the parts. Especially with thick reinforced
concrete beams, this contribution can become significant.

3.3. Detailing of Reinforcement

In order for the assumed failure model to be applicable, several detailing
requirements must be satisfied. So that a trusslike behavior exists on the
governing sides of the section, every crack should be crossed by at least one

stirrup (Fig. 10). This leads to a minimum stirrup spacing of

s^-, but s^20 cm, (45)

where a is the length of the shortest side. In addition the stirrup reinforcement
must be sufficiently anchored on all sides. For shallow reetangular cross

sections, common in buildings, a more liberal spacing requirement s —^— is

justified, as proposed in the new ACI-Code [8].

f.
r?

'S

jL

y

Anchorage of compression
diagonals at beam end

Longitudinal corner reinforcement
For anchorage of compression diagonals

necessary
For equilibrium other placement possible

tt but s < 20cm

Fig 10 Details of Space Truss

The absolute limitation of the stirrup spacing to s ^ 20 cm is due to the
fact that the stirrups, together with the longitudinal reinforcement in the
corners, must prevent the compression diagonals prematurely breaking out
between two stirrups. For this reason concentrating the longitudinal reinforce-
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ment in the corners of the cross section leads to a favorable deformation
behavior, since the corner bars provide a sound support for the diagonals. But
in order to avoid too large crack openings, it is an advantage to have some
longitudinal reinforcement uniformly distributed over the perimeter. This is
also true for locations where a torque is transmitted to the member, for example
at the end of a beam, where the diagonals need to be held back by a well
anchored and uniformly distributed longitudinal reinforcement (Fig. 10).

It is seen from the corner detail of Fig. 2 and Fig. 10 that for a constant
torque the equilibrium conditions do not require the longitudinal reinforcement

to be in the corners. Within the beam the longitudinal components of
the diagonal forces are seif equilibrating, whereas the transverse components
must be deviated around the corners by the stirrups. Thus longitudinal
reinforcement anywhere in the cross section can be counted on to act as torsional
longitudinal reinforcement as well, since it will resist a lengthening of the
beam whatever its position.

Long, reinforcement

(b)

Long, reinforcement

L_» _» 1-Jt.

Stirrup

(c)

Long, reinforcement

Stirrup Stirrup

Fig. 11; Distribution of Longitudinal Reinforcement

For example, all the beam sections shown in Fig. 11 have the same ultimate
torque, so long as the reinforcement in the corners of 11 (b) and 11 (c) can
anchor the diagonals. The case 11 (b) is typical for post-tensioned beams. It
should be mentioned that for ultimate strength the prestressed steel can be
considered to act as a normal reinforcement [5]. Case 11 (c) shows a box
section, in which the longitudinal reinforcement outside of the stirrups can be
included in the torsional reinforcement as well.

3.4. Shape of Concrete Compression Zone

In Fig. 1 the cross section was idealized so that the longitudinal reinforcement

was concentrated into stringers at the corners. With a predominantly
flexural loading, the stringers on the axis of rotation and the adjacent concrete
would be subjected to compression (see Fig. 12 (a)). If the center Dh of the
concrete compression zone lies inside the assumed axis of rotation the lever
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Fig 12 • Influence of Concrete Compression Zone on Interaction Diagram

arm is reduced and the ultimate moment is less than that for the space truss
model.

Since both compressive forces in the stringers on the axis of rotation are
known, the value of Dh can be calculated and for an assumed stress distribution
in the concrete (e.g. reetangular stress block), the position of the neutral axis
as well [5]. The limiting case is, of course, pure bending, since the addition
of a torque always reduces the amount of Dh.

Fig. 12 (b) shows the effect on an interaction diagram. The actual curve
has an intereept on the abscissa of M^jMuQ, where M& is the ultimate moment
determined by the simple bending theory. At point A, the resultant Db lies

exactly on the axis of rotation, which is the center line of the shear wall. In
reference [5] it was proposed to divide the ultimate flexural moment Mu by
the smaller of the two values M^ and Mu0. The effect of this approximation
is shown in Fig. 12 (b).

4. Design

4.1. Direct Design

The objective is to design the longitudinal and stirrup reinforcement for
a given loading and cross section. In the general case, the equilibrium Eq. (34)
to (39) are not sufficient to determine the unknown tensile forces Zi and Bk
and the angle tana. If in the Eq. (36) to (38) one S is substituted by means
of Eq. (35) the Eq. (34) to (39) read:

Dk =S^ak
smai

Bh — Ssj,ta,nc -ki

(46)

(47)



STRENGTH AND DESIGN OF CONCRETE BEAMS IN TORSION AND BENDING 125

n
m v aiN =ZZi-S) t^—9 (48)
^r l 4-i tan«,.2 tan ock

T 2.F0£. (51)

For assumed values of tan a the stirrup reinforcement can be determined from
Eq. (47). The Eq. (48), (49) and (50) enable three stringer forces to be calculated.

If there are more than three stringers the problem is no longer uniquely
defined and hence different Solutions are possible.

It will be shown that the volume of torsional reinforcement is a minimum
for an angle of tana= 1. The sum of the yield forces in the longitudinal and

stirrup reinforcement per unit length can be taken as a measure of the steel
volume.

m n fJi
Y ZZfi + £B« (52)

1 2 8jc

With Zt Zfi and N 0 for the case of torsion only, Eq. (48) gives
n

m

Substituting Bk Bfk 8 sk tan ock from Eq. (47) in Eq. (52) for the steel
volume gives

n

r ÄY^_ + >sfxtanafc. (53)^ tan cck 2

If all the derivatives of Y with respect to ock vanish then

dY gl ~ak
{

ak \ =0?
dock \sin2 ock cos2 ock]

from which, since S ^0, one deduces that

tanafc(Fm<n) - 1. (54)

It is therefore justified to base the design on a space truss with 45° diagonals.
Fig. 13 shows the general relationship between the steel volume Y and tana
after Eq. (53), for tana constant around the perimeter of the section

Y 1

-5— + tana. (55)
S u tan oc

The Eq. (47) to (50) can now be further simplified by putting tana^ con-
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stant 1 and substituting S from Eq. (51) to

B
2F0>

m rp

2 Zizt My + —=-^akzk,
1 Zlf0 2

ra rp n
Y,ziVi =-Mz + i^rlLakyk-

1 Z^0 2

(56)

(57)

(58)

(59)

These relationships are valid for general cross sections. It is interesting to
note that the stirrup reinforcement is only dependent on the torque.

In the special case of pure torsion Eq. (56) and (57), with Bk aeFB and

^Zi ae^lFL and a constant steel quality, lead to the design relationship

Fb_ZFl T
2*>/ (60)

This equation has been accepted for the CEB recommendations [7].
For a reetangular section in torsion and bending as in Fig. 2 Eq. (59) is

eliminated due to symmetry about the z-axis. If one positions the ^/-axis

through the top stringers, then Eq. (58) leads directly to

2Zuh M + ^r(bh + h*)

or with Zu aeFu the area of the bottom stringers is

F M
2/.er. +

Tu
(61)
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Finally with Z0 aeFo, Eq. (57) or (60) gives the area of the top stringers

M TuF
2 ha, +

8Fo°e
(62)

Eq. (60) to (62) are applicable for a design based on allowable stress or ultimate
strength. In the first case M and T are the allowable moment and torque, ae

the allowable steel stress. In the second case M and T are the ultimate moment
and torque and ae the yield stress of the steel.

Eq. (61) and (62) show that the longitudinal reinforcement is composed of
a flexural and a torsional part. It should be noted that the top longitudinal
torsional reinforcement in Eq. (62) can be reduced by the term arising from
the compressive force due to bending. This superposition of forces is illustrated
in Fig. 14. Whereas in the bottom stringers the flexural term is added to the
torsional tensile force, it counteracts in the top stringers.

*iz0(T) + D0(M)V°(T) •^0(M
VVV

ZU(T)V ZU(M)

V

ZU(T)+ZJM)

Fig. 14 : Superposition of Forces in Longitudinal Reinforcement

The simple procedure of calculating the torsional reinforcement from
Eq. (60) or Eq. (57) for the torque and the necessary flexural reinforcement
for the bending moment separately and superimposing the two is also applicable
to general cross sections. In the tensile zone the two longitudinal steel
components are added, whereas in the flexural compression zone the longitudinal
torsional reinforcement can be reduced by an amount corresponding to the
flexural compressive force. By observing maximum and minimum reinforcement

percentages and by limiting the maximum permissible shear stress, a

premature concrete failure can be prevented. In addition the reinforcement
has to be properly detailed as described in section 3.3.

4.2. Ultimate Strength Check

Instead of a direct design, it is often more expedient to carry out the design
indirectly, by checking the ultimate strength. The procedure suggests itself
for large and in particular prestressed beams. Box sections of bridges, for
example, require a considerable amount of longitudinal and stirrup reinforcement

in the webs, and top and bottom slabs due to bending moments and
shear forces alone. Consequently they already have a considerable ultimate
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torsional strength. The interaction curves, corresponding to Eq. (36) to (38)
and Fig. 6 are particularly suitable for a judgement of the torsional behavior
if different loading cases have to be considered.

Notations

Lengths and Areas

a distance between longitudinal corner bars
b width between longitudinal corner bars
h height between longitudinal corner bars

r distance of shear flow from axis of twist
s stirrup spacing
t wall thickness of (effective) box section

u perimeter of area F0

x coordinate axis in direction of beam axis

y coordinate axis; distance in ^/-direction
z coordinate axis; distance in z-direction
F0 area enelosed by the line connecting the longitudinal reinforcement

in the corners
F0, Fu area of top resp. bottom longitudinal stringer
FB area of one stirrup leg
FL area of one longitudinal stringer
2 FL area of all longitudinal reinforcement

Forces and Moments

B force in one stirrup leg

Bf yield force in one stirrup leg
D resultant force in concrete compression diagonals
La rate of work
Ld rate of dissipation of energy
M bending moment
Mu ultimate bending moment
Mu0 ultimate bending moment for pure bending
M** ultimate moment determined by the bending theory
N axial force
S shear flow
T torque
Tu ultimate torque
Tu0 ultimate torque for pure torsion
Z force in longitudinal reinforcement

Zf yield force in longitudinal reinforcement
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Zö, Zu force in top resp. bottom longitudinal stringer
Zf0, ZfU yield force in top resp. bottom longitudinal stringer

Stresses

oe stress in steel reinforcement
aD stress in concrete diagonal
r shear stress

Deformations, Angles and Parameters

oc angle between concrete diagonal and beam axis

y shearing strain
€ normal strain
6B stirrup strain
€L stringer strain
# angle of twist
99 curvature
k TjM ratio torque/bending moment

Subscripts

b

e

/
i

concrete
steel

yield
number index of corners (i from 1, 3, 5, to m)

k
0

s

number index of walls (k from 2, 4, 6,

top
side

to n)

u bottom. ultimate
x,y,z
B
D

related to x-, y-, z-axis
related to stirrup
related to diagonal

L
0

related to longitudinal stringer
zero; pure bending; pure torsion
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Summary

A theoretical analysis for reinforced concrete beams subjected to combined
torsion and bending has been presented on the basis of a space truss model.
This model consists of the reinforcing cage made up of the longitudinal
reinforcement, the stirrups and the concrete compression diagonals acting in the
plane of the reinforcement. The analysis is based on the upper and lower
bound theorems of the theory of plasticity. In order to insure the formation
of a mechanism by yielding of the reinforcing steel limits have been set on the
nominal shear stress in the effective concrete shell of the cross section. To
avoid local failures the proper detailing of the reinforcement has been indicated.

A comprehensive series of tests ([1] to [4]) has demonstrated the appli-
cability of this analysis to reinforced and prestressed concrete beams with
solid, box and T-sections. Part of the findings have already been included in
the chapter on torsion of the revised CEB-Recommendations [7].

The research program on torsion at the Institute of Structural Engineering,
Swiss Federal Institute of Technology, is financially supported by the Foundation

for Scientific Research of the Society of Swiss Cement Manufacturers. The
authors would like to express their sincere appreciation for this continuing
support.

Resume

La resistance ä la rupture de poutres en beton arme soumises ä la torsion
et ä la flexion a ete analysee sur la base d'un modele de treillis spatial. Ce

modele consiste d'une cage renforcee constituee des armatures en long, des

etriers et des diagonales comprimees en beton qui se forment dans le plan des

armatures. La deduction de la charge de rupture s'appuie sur les theoremes
des limites inferieures et superieures de la theorie de la plasticite. Pour avoir
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la certitude de la formation d'un mecanisme par ecoulement des armatures, il
est propose de limiter les contraintes nominales de cisaillement dans l'enve-
loppe efficace du beton. Le detail de la mise en place des armatures devant
empecher des ruptures locales est egalement indique ici.

Un serie d'essais choisis ([1] ä [4]) a confirme que cette methode etait
applicable ä des poutres en beton arme ou precontraint, ayant des sections
pleines, des sections en caisson ou en T. La methode a ete introduite en partie
dans le chapitre sur la Torsion des Recommandations revisees du CEB [7].

Le programme d'etudes sur la torsion de l'Institut des Ponts et
Charpentes de l'Ecole Polytechnique Federale Zürich, est soutenu financierement

par la Fondation pour des Recherches scientifiques de la Societe Suisse des

Fabricants de Ciments, Chaux et Gypse. Les auteurs tiennent ä remercier tres
sincerement cette fondation pour son soutien continu.

Zusammenfassung

Der Bruchwiderstand von Stahlbetonbalken unter Torsion und Biegung
ist theoretisch auf Grund eines räumlichen Fachwerkmodelles untersucht
worden. Das physikalische Modell setzt sich zusammen aus dem durch die
Längseisen und Bügel gebildeten Armierungskorb und den Betondruckdiagonalen,

welche sich in der Ebene der Armierung ausbilden. Die Herleitung der
Bruchlast wird sowohl mit dem unteren wie mit dem oberen Grenzwertsatz
der Plastizitätstheorie durchgeführt. Um die Ausbildung eines Mechanismus
durch Fliessen der Armierung sicher zu stellen, wird eine Beschränkung der
nominellen Schubspannung in der wirksamen Betonschale des Querschnittes
vorgeschlagen. Die konstruktive Ausbildung der Armierung zur Vermeidung
von lokalen Brüchen ist ebenfalls aufgezeigt.

Eine Serie von ausgewählten Versuchen ([1] bis [4]) hat die Anwendbarkeit
dieser Berechnungsmethode auf Stahlbeton- und Spannbetonbalken mit Voll-,
Kasten- und T-Querschnitt bestätigt. Zum Teil ist die Methode bereits im
Kapitel über Torsion der revidierten CEB-Empfehlungen [7] übernommen
worden.

Das Forschungsprogramm über Torsion des Institutes für Baustatik, Abteilung

Massivbau, Eidgenössische Technische Hochschule Zürich, wird finanziell
durch die Stiftung für wissenschaftliche, systematische Forschungen auf dem
Gebiete des Beton- und Eisenbetonbaues des Vereins Schweizerischer Zement-,
Kalk- und Gips-Fabrikanten unterstützt. Für diese fortlaufende Förderung
möchten die Autoren der Stiftung aufrichtig danken.
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