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1. Introduction

In contrast to the design of steel frames the limit design of reinforced
concrete frames requires special consideration due to the inelastic behaviour
of the members under various stages of loading, the limited ductility of the
member sections and the serviceability requirements under working loads.
Special methods have, therefore, been proposed (1 to 8) for the limit design
of reinforced concrete frames. With the development of mathematical pro-
gramming techniques and the availability of large Computing facilities there
has been growing interest in the field of optimum limit design of reinforced
concrete frames. Com* and Geierson [9,10,11] proposed two formulations
for optimal design. One is a linear programming formulation [9,10] with the
limit equilibrium of the governing collapse mechanisms and serviceability
criteria as the main constraints and the compatibility condition is to be checked
separately. The other formulation [11] has constraints associated with
compatibility, limited ductility, limit equilibrium of the governing collapse
mechanisms and serviceability criteria. This formulation leads, to a highly
nonlinear programming problem of considerable complexity. However only simple
linearised examples were solved.

The present authors [12] have proposed a linear programming model for
the optimal design of reinforced concrete frames with compatibility, limited
ductility, equilibrium and serviceability criteria as governing constraints. The
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objective function to be minimised was the total volume of steel reinforcement.
The location of plastic hinges was restricted to critical sections in beams.

The present paper extends the linear programming formulation to the more
general case where there are no such restrictions. A Computer program which
formulates and solves the optimal frame design problem is described with
the aid of a flow chart. The computational aspects of the problem are also

given along with the input and output details of the program.
Practical design examples of multi-storey concrete frames have been pre-

sented to illustrate the use of the optimal design program described here. The
economical merits of the optimal design compared to the ultimate strength
design based on elastic analysis for factored loads is discussed for different
cases of hinge pattern.

2. Basic Principles

2.1. Definition of Design Moment

Consider a reinforced concrete frame subjected to a given system of service
dead, live and wind loads. When these loads are increased by their over load
factors and the structure thus subjected to ultimate load stage, plastic hinges
develop at critical sections resulting in a redistribution of bending moments.
The design bending moment Md at a critical section of the frame under
ultimate load can be expressed in the following form [7,10,12]:

Mid XjMi, (1)

where Xj is called the yield safety parameter [7].
The optimal design problem is to determine the values of Xj, knowing the

values of MJU from an elastic analysis for factored loads, that satisfies the
desired design objective and other criteria.

2.2. Objective Function and Optimality Criterion

The optimality criterion is expressed through either a maximisation or a

minimisation of an objective function of the design variables x$. The objective
function may, for example, represent the area of the moment diagram, cost
of concrete and steel or the volume of steel reinforcement [10]. In this formulation

the selected optimality criterion is minimisation of the total volume of
reinforcement for the frame.

From the design charts [13] the area of reinforcement for the beam and
column sections may be expressed as a linear function,

Aj=D1 + D2xj, (2)

where Dx, D2 are constants.
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Assuming the reinforcement for a critical section is extended over an
equivalent length, lj} [10] the volume of reinforcement with respect to a

critical section is given by,

or

Vj (D1 + D2xj)lj
Vj =D{+D{xj.

The objective function, V, representing the total volume of reinforcement
for the frame is, therefore, given by,

V ZDi+Dixj.
?=i

(3)

2.3. Compatibility and Limited Ductility Criteria

Fig. 1 shows two types of moment releases for a frame which is a times
indeterminate. The selected hinge releases will be termed "basic hinges" and
the other critical sections will be termed "non-basic hinges". The compatibility
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equation relating the angular discontinuities at the basic and non-basic hinges
is given by [6,14],

1=1 #=a+l
+ fl$=0 (t l,2,...,a),

where 0^ and d\ are as shown in Fig. 2.

C«**
Positive moment Positive rotation

Fig. 2. Sign Conventions.

(4)

In order that all stress resultants shall correspond to strain resultants the
following parity rule can be applied to all plastic hinges:

mr6r^0 {r l,2,...,c). (5)
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Substituting for mr from Eq. (1) the above rule can be stated as

Mruxr6r^0 (r l,2,...,c). (6)

Noting that xr would be restricted to take only positive values Eq. (6) becomes

M'J'^O (r l,2,...,c). (7)

For the discussion to follow, it was found convenient to express 9r as

9r 8r\0r\, (8)

where Sr will be termed the "parity delta". According to the parity rule
expressed by Eq. (7) the value of Sr will be as follows:

Sr +1 for Mru>0,
8r -l for Mru<0.

(9)

Substituting Eqs. (1) and (8) into Eq. (4), yields

ZgijMixj + vi0+ 2 MÄ+WI =° (i l,2,...,a). (10)
j=\ g=a+l

The value of Sr is determined from the sense of moment Mru, known from
elastic analysis for factored loads, through Eq. (9).

The inelastic rotation 6r in Eq. (10) can be expressed in terms of the per-
missible rotation, 6rp, as

\^\ K\-yc+r, (ii)
where yc+r is a slack variable and is subjected to the following restrictions:

(I) Vc+r^O- (12)

This condition will ensure satisfaction of the limited ductility criterion i. e., the
inelastic rotation at section r shall not exceed the allowable rotation 6p. The
lower bound value yc+r 0 will make \0r\ \9rp\. The Simplex algorithm treats
both design and slack variables as non-negative. Hence Eq. (12) need not be
stated explicitly.

(II) yc+r^p\. (13)

This constraint ensures both the sense invariance of 6r and the satisfaction of
the parity rule. The upper bound value yc^r=\9rp\ indicates zero inelastic
rotation and the section, therefore, remains elastic.

Substituting from Eq. (11) into Eq. (10) yields:

£giiMLzJ + vi0+ 2 hq^m\-yc+q} + 8i{\dp\-yc+i} o (14)
1 q=oc+l

(t l,2,...,a).
Eqs. (13) and (14) jointly express the compatibility and limited ductility
requirements for the frame.
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The rotational capacity of reinforced concrete sections can be expressed
as a linear function of moment mr in the following form:

6rp B\+Bl\mr\. (15)

Noting that mr Mruxr the Eq. (15) may be expressed as

dp B\+Bl\Mru\xr. (16)

Substituting from Eq. (16) into Eqs. (13) and (14) and after rearrangement
the following constraints are obtained.

2^i^ + ^0 + 2 M*{(^+^M^)-W
• *'"*> (17)

+ 8i{(B\+Bl\Ml\xi)-yc+i} 0 (i 1,2,. .,«),
* '

yc+r^B[+Bl\Ml\xr (r l,2,...,c). (18)

The Eqs. (17) and (18) are the compatibility and limited ductility criteria
for the frame.

2.4. Equilibrium Criteria

The moments at the non-basic hinge sections can be determined from the
moment and force equilibrium for the frame and is expressed by,

2>^m'+mg m« (q a +1,. .,c), (19)
i

where hqj kjq from contragredience [6]. Substituting for mr from Eq. (1) into
Eq. (19),

2 h^Mixj + ml M«xq (g a+ 1,. .,c). (20)
?=i

Eq. (20) is the equilibrium criteria for the frame.

2.5. Serviceability Criteria

The optimal design must satisfy the desired serviceability conditions for
the behaviour of the members under working loads. It is assumed that the
serviceability requirements depend on the yield moment of the critical sections
and hence can be specified by stipulating a suitable value of A^ The serviceability

criteria is, therefore, satisfied if

^ Kr. > —

i.e. x^Lj. (21)
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2.6. Other Criteria

It should be noted that the final detailing ensures satisfaction of the yield
criterion and, in conjunction with the equilibrium criteria of section 2.4, the
procedure can be considered to be "safe" from the plastic limit analysis point
of view. Thus it is not possible for a plastic collapse mechanism to form for
a load inferior to the ultimate load. However, it is also necessary to exclude
inadmissible mechanism deformations from the elasto-plastic compatibility
equations (18). In addition, it will be frequently necessary to impose other
more arbitrary kinematic conditions such as those introduced previously (12)
to partially satisfy certain stability conditions.

These additional kinematic conditions may be treated by judicious use of
a device termed the plastic hinge indicator which controls the formation of
plastic hinges in the optimal design program. It should be emphasised however
that the basic hinge set is, as its name implies, the basis for the analysis but
that plastic hinges may form wherever permitted by the plastic hinge indicator
and are not confined to members of the basic set.

3. Linear Programming Formulation

The optimal frame design problem with the compatibility and limited
ductility, equilibrium and serviceability criteria as the governing constraints
can be stated as follows: Minimise:

Objective function, V 2 D{ + D2 Xj. (22)
7 1

Subject to: Compatibility and limited ductility constraint:

+ 8,{(,Bi +Bi\Mi\Xi)-yc+i} 0 (i l,2,...,a), l ö)

yc+r^B\+Bl\Ml\xr (r 1,2,. .,c). (24)

Equilibrium constraint:

2 hqjM{x^m% M%xq (q a+ 1,. .,c). (25)
i

Serviceability constraint:

xj^Lj 0*=l,2,...,e). (26)

This is a linear programming problem which can be solved by using the
Standard Simplex algorithm [15].
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Lower Bound Restrictions

If the following Substitution is made for the design variable Xj, the lower
bound restriction of Eq. (26) may be replaced by the non-negativeness of the
transformed variables.

x^Lj+Um l,2,...,c). (27)

The constant Uj introduced in the above equation will, by suitable stipulation,
enable to control the bending moment value at a section with respect to the
elastic moment for factored loads.

Substituting for Xj into the Eqs. (23) to (26) and introducing slack variables,
the problem can be expressed in the Standard form of a linear program:

Min. z cTy. (28)

Subjectto Ay b (29)

and y^O, (30)

where the cost, structural coefncients and the stipulations are given in Appendix

I.

3.1. Additional Design Constraints

It may be necessary from practical considerations to introduce additional
design constraints as described below.

It may be desirable to restrict the value of the bending moment with
respect to the elastic moment value for factored loads. For example the
moments at the ends of the beams may be restricted not to exceed the equi-
valent elastic value. This may be achieved by assigning Uj l — Lj and
introducing a constraint,

yj^l. (31)

Sometimes it may be found desirable to keep symmetry in design and
hence may be necessary to restrict the moment at a section not to exceed the
value at a corresponding symmetrical section. This may easily be included by
incorporating the necessary symmetry constraint. With this type of constraint
the cost coefficient, c;-, may correspondingly be weighted to keep the symmetry
in design.

The design constraints, some of them discussed above, must form a con-
sistent set with the governing constraint equations.

3.2. Change in Sign of Moment

During the process of calculation of optimal Solution for the frame witk
the inelastic rotations at critical sections, the bending moment at some of the
sections may change from positive to negative or vice versa with reference to
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the elastic Solution. This may be treated in a similar fashion to the
nonnegative constraint of a linear programming problem [16]. The design variable
y$ is expressed as a difference of two positive variables noting that in the
Simplex algorithm the value of the variables are positive, thus

yi=y'i-y'i- (32)

It can be shown that no more than one of the complementary variables
(y'j and y]) can be non-zero.

It becomes difficult to include an inelastic rotation at the section, where
the moment changes in sign, into the compatibility equation satisfying the

parity rule as well. However in practical designs, such sections may be treated
as having zero rotations (i.e. remained elastic), without significant error from
the practical point of view.

4. Computer Program for Optimal Design

4.1. Flexibility Matrix

The release System chosen for the computation of flexibility matrix is shown
in Fig. 3. This release System is advantageous in plotting the moment dia-

grams (mg and hgj) for loads and for unit actions at the releases as shown in
Fig. 3. The flexibility matrix, G, is automatically generated in the Computer
program through a set of subroutines, programmed to compute the coefficients

using the expressions given in Reference [1], with the modification of a directed
graph sign Convention [14]. Though the program is written for this particular
release System it will be shown later that this can be used for any other release

System through a suitable transformation.

4.2. Static and Kinematic Matrices

It has been previously stated that elements of the static and kinematic
matrices are related contragrediently. Consequently the coefficients (kjq) of
the kinematic matrix are obtained directly from the previously calculated
coefficients (hqj) of the static matrix.

kjq hqj.

A sub-routine of the program generates these coefficients and assembles the
two matrices.

4.3. Transformation of Basis

It may be desired in the analysis for optimal Solution to have a different
release System. The transformation to another basis (i.e. release System) is
done using the procedure explained in Reference [17]. The following is a brief
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summary of the expressions used in connection with the transformation of
basis.

The redundant actions mB at the releases of the system B can be expressed
in terms of the actions mA at the releases of the System A as,

m£ <?ntf, (33)

where Q is called the release transformation matrix of the order a X a.
The flexibility matrix, GB, the displacement vector vB, the static matrix

HB and the particular Solution due to loads mB for the release system B are
given by the following expressions:

GB (Q-Y GA Q *, (34)

vB {Q^)TvA-GBmAB, (35)

HB =HAQ~1, (36)

mB mA-HBmAB, (37)

where mAB would be the values of mA at the positions of the redundant
actions mB.

The expressions (34) to (37) show that for a complete transformation from
release system A to system B, only the release transformation matrix Q and
vector mAB are required. The coefficients of Q and mAB are easily calculated
from hqj and rag diagrams for system A.

A subroutine that will form the matrix Q for transformation to a release

system shown in Fig. lb has been included in the Computer program.

4.4. Objective Function and Permissible Rotations

From the design charts given in Reference [13] (for CEB Recommendations
[18]) suitable piece-wise linear expressions of the type of Eq. (2) are derived
for the calculation of area of reinforcement for beam and column sections.
A section of the Program uses these expressions to compute the coefficients
D{ and D{ of the objective function. If it is, however, desired to use a linear
approximation to some other design charts this section of the Program could
easily be replaced.

These design charts facilitate computation of the neutral axis depth. This
in turn permits derivation of linear expressions for the permissible rotations
through use of the appropriate graphs in Reference [13].

4.5. Flow Chart, Input and Output Details

A Computer program has been developed [19] for the formulation and
Solution of the optimal design of R.C. frames based on the theory described
here. The program deals with two loading conditions: (I) Wind + dead + live
load and (II) dead -f live load. The flow chart indicating the main aspects of
the program is shown in Fig. 4.
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READ Input data — Phase I
!'

PRINT Input data — Phase I

CALL Subroutmes to compute flexibility coefficients,
g,,, and assemble Matrix G.

Subroutme for displacement vector v0

CALL Subroutmes to compute Q and K

COMPUTE G,H,K for transformed basis

CALL Subroutme for matrix Inversion (G)

SOLVE Moments, M^ at all sections for factored
loads under two loadmg conditions

PRINT Results of Elastic Analysis

JL
READ Input data - Phase E

CALL Subroutme to formulate the constraint equations
and arrange them in a Standard form for Simplex
algorithm

FORMULATE Objective function

CALL Simplex Subroutme and solve the

linear programming problem

CALCULATE Moments, M^ ,at all critical sections
and percentage economy

PRINT Results of optimal design

Check

STOP

Fig 4 Flow Chart
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Input data: The input data to be supplied for the program are as follows:

Phase I
(I) Number of storeys and number of bays.

(II) Design strengths of concrete and steel.

(III) Beam properties and Loads:

a) Beam Number, length, effective depth, width of flange near mid span,
EI value, equivalent length of steel at mid span and end sections.

(W L\
—— I due to dead and live load.

(IV) Column properties:
Column Number, height, breadth, effective depth, total depth and

EI value.

(V) Wind load:
Total wind load shear at each storey level.

Phase II
The following set of data is required for each of the two loading conditions:

(I) a) Lower bound values, Lj, for the basic hinges.
b) Lower bound values, Ljy for the non-basic hinges.

(II) a) Upper bound values, Uj, for the basic hinges.
b) Upper bound values, Uj, for the non-basic hinges.

(III) a) Plastic Hinge Indicator for the basic hinges.
b) Plastic Hinge Indicator for the non-basic hinges.

(1 for plastic hinge, 0 for no plastic hinge.)

(IV) a) Moment Change Indicator for the basic hinges.
b) Moment Change Indicator for the non-basic hinges.

(1 for possible change in sign of moment, 0 for no such change.)

Fig. lb indicates the numbering system required for the preparation of
input data.

Output: The Output of the program is listed below:

(I) Frame and member properties as given in the data.

(II) Results of elastic analysis for factored loads under two loading conditions
(printed separately).
For each storey -
Beams - Moments at the left end, mid span and right end.
Columns - Moments at the top and bottom ends, and axial load.
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(III) Results of optimal Solution for two loading conditions (printed separately):
a) For each storey -

Beams - Moments at the left end, mid span and right end.
Columns - Moments at the top and bottom ends, and axial load.

b) Volume of steel for elastic analysis.
d) Percentage economy for optimal design compared to ultimate strength

design for elastic analysis for factored loads.

5, Optimal Design Examples

5.1. General Description and Cases Analysed

Six reinforced concrete multi-storey frames, shown in Fig. 5, have been
designed using the Optimal Design Program presented here. The loading and
other details of the frames are given in Table 1.

* ****** * * * *

H t M t

+ ?*** **??*?

t M M,M i t H

litt»
t I t

i II tl

*??*??

Loading condition I
XC(W + D +L)

Loading condition II
(XDD+XLL)

Fig. 5a. Loading conditions.

777 6m ^6m

Case 1 Cases 2 and 3

Loading condition I

Cases 1 and 2 Case 3

Loading condition II
Fig. 5b. Example 1.
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Fig. 5e. Example 4.
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Fig. 5f. Example 5.

Table 1. Loading, Serviceability and Strength Details of Frames

Optimal Design Example

1 2 3 4 5 6

Loadings:
Live load, kN/m2
Dead load, kN/m2
Wind load, kN/m2

3.75
5.0
1.0

5.0
6.25
1.0

5.0
6.0
1.2

6.0
11.0

2.5
4.5
0.7

3.0
5.0
0.7

Beams:
Live load per metre run, kN/m
Dead load per metre run, kN/m

15.0
20.0

20.0
25.0

25.0
30.0

36.0
66.0

9.4
19.5

12.0
20.0

Wind force:
Top floor level, kN
Other floor levels, kN

20.0 10.0
20.0

15.0
30.0

— 8.4
16.8

5.6
11.2

Load factors:
xD
XL
Xc

1.4
1.6
1.25

1.4
1.6
1.25

1.4
1.6
1.25

1.4
1.6

1.4
1.6
1.25

1.4
1.6
1.25

Serviceability factor: A^*

Loading Condition I
Loading Condition II

1.05
1.10

1.05
1.10

1.05
1.10 1.10

1.05
1.10

1.05
1.10

Design strengths:
Concrete, ob, N/mm2
Steel, aai, N/mm2

16.0
415.0

16.0
415.0

16.0
415.0

24.0
415.0

17.0
415.0

16.0
415.0
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Fig. 5g. Example 6.

The frames have been analysed for optimal Solution under two loading
conditions: I - XC(W + D + L) and II - (\DD + \LL). In order to study the
merits of economy for certain of the specific design requirements, explained
below, the following three cases of hinge pattern have been considered for
each of the loading conditions.

Case 1: Hinges at ends of beams only.

A recent investigation [20] has shown that for frames which require con-
sideration of instability effects under ultimate load it would be desirable to
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avoid hinges in columns. Hence in the case of loading condition I the plastic
hinges are allowed to form only at the leeward end of the beams and for loading
condition II the plastic hinges are allowed to form at both ends of the beams.
The hinges at the mid span sections of the beams may be avoided as discussed
below.

Case 2: Beam and column hinges but no hinge at mid span sections of beams.

For satisfactory serviceability conditions under working load, especially to
avoid excessive deflection, it has been recommended by Baker [1] that hinges
at mid span sections of beams may be avoided. Hence in this case assuming
that there are no serious stability problems, beam and column hinges are
allowed to form but the hinges at the mid span sections of beams are avoided.

Case 3: No restriction of hinges.

For the cases of frames that satisfy the above two requirements no restriction

is placed on the location of hinges and plastic hinges are allowed to form
at all the critical sections.

The analysis for the above three cases can be carried out by assigning the
corresponding values for the Plastic Hinge Indicator, required for the Input
data explained earlier.

Fig. 5 shows the position of plastic hinges as obtained for optimal Solution,
for the three cases under two loading conditions for the six frames described
here.

It should be noted that the minimum weight design of steel frames cor-
responds to multi-degree of freedom (Foulkes) collapse mechanisms [21]. This
result must be modified for the case of reinforced concrete frames whose positive

and negative plastic moments of resistance are of different magnitudes
[22]. However, the above properties of frames of unlimited ductility are further
modified by the inclusion of limited ductility constraints.

5.2. Merits of Economy

Table 2 gives the percentage economy of optimal design for the six frames
for the three cases under two loading conditions. The percentage economy is
calculated with respect to the steel requirement for the ultimate strength
design of sections for actions obtained from the elastic analysis for factored
loads. It has been observed that the percentage economy depends on the
geometry, loading condition and choice of hinge pattern. Savings of steel of
up to 20% have been recorded.

In general it has been noticed that the savings of steel for loading
condition II are higher than that for loading condition I. The area of steel, hence
the volume, for the sections is proportional to the bending moment at the
corresponding sections. In the loading condition I with the development of
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Table 2. Comparison of Ultimate Strength and Optimal Designs

Example Loading
Condition Case

Vol. of Steel (Ultimate

Strength Design)
cm3

Vol. of Steel
(Optimal Design)

cm3

Percentage
economy

1

I

II

1

2
3

1

2

19,390
19,390
19,390

11,138
11,138

18,162
17,096
17,096

9,785
9,785

6.34
11.83
11.83

12.14
12.14

2
I

II

1

2
3

1

2

40,504
40,504
40,504

28,752
28,752

37,709
36,656
36,614

24,703
24,703

6.90
9.50
9.60

14.08
14.08

3
I

II

1

2
3

1

2

64,860
64,860
64,860

703,933
703,933

61,635
59,517
58,873

59,403
59,403

4.97
8.24
9.23

20.16
20.16

4 II 1

2
74,401
74,401

618,652
618,652

12.12
12.12

5
I

II

1

2
3

1

2

76,774
76,774
76,774

67,210
67,210

71,914
70,038
69,225

56,137
56,137

6.33
8.77
9.83

16.48
16.48

6
I

II

1

2
3

1

2

129,821
129,821
129,821

78,129
78,129

120,778
117,457
116,804

64,671
64,671

6.97
9.52

10.03

17.23
17.23

plastic hinges a reduction in the value of moment is found at the ends of beams
but this cannot be said of column sections. But for loading condition II, for
symmetrical frames, there is an overall redistribution of moments resulting
in a reduction of moment for beam ends and also column sections. Hence in
the latter case the steel requirements also become less. Also in the case of
loading condition II there is no difference in optimal Solution due to different
choice of hinge pattern for the three cases.

6. Conclusions

1. The linear programming formulation of optimal design based on
compatibility, limited ductility, equilibrium and serviceability criteria as the
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governing constraints, presents a rational unified method for the limit design
of reinforced concrete frames.

2. The formulation lends itself to Computer programming and such an
Optimal Design Program presented here offers the following advantages:

a) Any Code specification for the design of concrete sections, which could
be approximated to piece-wise linear relationships may be incorporated in the

program.
b) Different choice of plastic hinge pattern to satisfy specific design requirements

can be analysed by suitable use of the Plastic Hinge Indicator.
c) Running of the program is economical as judged from the six design

examples and promises its wider use in practice. Typical frames of the type
described in this paper occupied 25-145 seconds of Computing time in the
University of London CDC 6600.

3. Practical design examples presented here show significant savings in steel
reinforcement which encourages the use of the optimal design method proposed
in this paper.

Notation

Aj Area of reinforcement for section /
c Total number of critical sections

EI Flexural rigidity of the member

G Flexibility matrix for the frame gtj -~y ds

hj Bending moment distribution due to unit action at a basic hinge j
hqj Value of bending moment at q due to unit action at a basic hinge j
kjq Angular discontinuity at a basic hinge j due to unit rotation at q

(kjq hqj)

lj Equivalent length of reinforcement for section j
X i

La Lower bound value of x, for section j ~J J Au

m? Moment at a section j
m% Moment at a section q in the reduced structure due to loads

mb Column vector {m1, m2,. ma}

m0 Column vector {mg+1, mg+2,..., m%)

Mj Moment at section j under working load
Mjd Design moment at section j under ultimate load
M3y Yield moment for section j
Mju Factored elastic moment at section /
vi0 Angular discontinuity at a basic hinge section i due to loads

Chi m0
}lsTds

v0 Column vector {v10, v20,. ,va0}
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Vj Volume of reinforcement for section j
V Total volume of reinforcement for the frame

Xj Yield safety parameter for section / y-
A^' Yield moment factor for j section j -^j-
AJr),AjL,Ac Partial load factors for dead, live and combined loads
Xu Ultimate load factor
a Indeterminacy number for a frame
d% Inelastic rotation at a basic hinge i
6^ Inelastic rotation at a non-basic hinge q

drp Permissible rotation at a hinge r
aal Design strength of steel

ab Design strength of concrete
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Appendix I

The cost coefficients (c;-), structural coefficients (a^) and the stipulations,
bi, of the L.P. problem expressed by Eqs. (28) to (30) are given below:

Z-V-ZDi+DiLj,
7 1

cj D{Uj (j l,2,...,c).
For i 1,2,. .,<x

aü 9ijMl UJ (1 *> 2> • • •><*)> ?=M>

«« =giiMiUi + 8iBi\Mi\Ui,
a4i kyhjBi |Jfi| Vi (j a+ 1,.. .,c),
ai(c+i) ~~°i>

ai(c+j) ~ hj h a + 1, c)

f>i =-vi0-Z9iJMiLj-8iBi

-S.BilMHL,- f kMBi + BUMilL;}.
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For i a + l,a + 2,. .,c

aij hijMiUj (j= 1,2,...,a), j=M,

aii hiiMiüi-MiUi,
bt =MiLi-mi-ZhijMiLj.

For i c+l9c + 2, ...,2c
a,(,_c) -^rc)|Jf2-c)|DVc)?
«« !>

6, =^-) + ^-)|if^)|L(,_c).
The coefficients not defined by the above equations would be zero.
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Summary

A linear programming model for the optimal design of reinforced concrete
frames is presented. This formulation has constraints associated with
compatibility, limited ductility, equilibrium and serviceability criteria as the governing
constraints, and may or may not place restrictions on the location of plastic
hinges. A Computer programme that formulates and solves the optimal design
problem is described. Practical design examples of six multi-storey reinforced
concrete frames have been worked out. The economic merits of these examples
are discussed for different cases of hinge patterns.

It is concluded that the proposed linear programming formulation presents
an unified approach to the limit design of reinforced concrete frames and the
method offers savings in the requirement of steel reinforcement.

Resume

On presente un modele de programmation lineaire pour le projet optimal
de charpentes en beton arme. Cette formulation a des contraintes associees

aux criteres de la compatibilite, de la ductilite limitee, des equilibres et de

l'utilite. Elle peut donner lieu ä des restrictions quant au placement d'arti-
culations flexibles. On decrit un programme d'ordinateur formulant et resol-
vant le probleme optimal du projet.

Des exemples pratiques de six charpentes ä plusieurs etages ont ete elabores.
Les avantages economiques de ces exemples sont discutes pour differents cas
d'articulation. On en tirela conclusion que la formulation proposee du programme
lineaire presente une approche unifiee au projet limite de charpentes en beton
arme et la methode offre des economies dans la quantite en acier d'armature.
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Zusammenfassung

Es wird ein Modell zur linearen Programmierung für den optimalen
Entwurf von Tragwerken aus Stahlbeton vorgelegt. Diese Formulierung bedingt
eine Zwangsläufigkeit, die an die Kriterien von Verträglichkeit, Dehnbarkeitsgrenzen,

Gleichgewicht und Nützlichkeit gebunden ist. Sie kann Anlass zur
Beschränkung bei der Verwendung nachgiebiger Gelenke geben. Es wird ein
Computerprogramm zur Formulierung und Lösung zum optimalen Entwurfsproblem

beschrieben.
Es wurden praktische Beispiele von 6 mehrstöckigen Tragwerken ausgearbeitet.

Die wirtschaftlichen Vorteile werden an diesen Beispielen für verschiedene
Fälle von Gelenken diskutiert. Daraus wird geschlossen, dass die vorgeschlagene

lineare Programmierungs-Formulierung eine vereinheitlichte Näherung
zum Grenzentwurf für Tragwerke aus Stahlbeton bietet und Ersparnisse an
Armierung liefert.
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