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Analysis of Composite Walls With and Without Openings
Analyse de parois en construction composite avec et sans ouvertures

Analyse von Verbundwinden mit und ohne Offnungen
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Lecturer in Civil Engineering, D.Sc., Re- Professor, Fac. of Civil Engineering Tech-
search Fellow, Structural Dept. Building nion — Israel Institute of Technology

Research Station, Technion — Israel Insti-
tute of Technology

Introduction

Since some 20 years much research work has been devoted to the analysis
of masonry walls with stiffening elements, which commonly occur in con-
struction as load-bearing walls or shear walls.

A group of researchers chose an essentially experimental approach to
investigate some specific aspects of the problem: the infilled frame [14]; the
grade beam underneath the load-bearing wall [15]; the influence of openings,
differential support settlements in continuous walls on heavy soils [1, 12].

Various analytical studies (occasionally in conjunction with experiments)
based on the Finite-Elements-method appeared in the last decade [2, 7].

In spite of the obvious advantages of the Finite-Element method, a number
of researchers preferred the analysis based on the Airy-stress function, which
is particularly suitable for homogeneous walls without openings with given
edge loadings. But in the authors’ opinion their formulation of the compadti-
bility conditions along the contact faces between plate and stiffening elements
and of those required for walls with openings was not adequate. Therefore,
the numerical solutions were obtained at the expense of tedious calculation
of a basic system with too many degrees of freedom [4, 10, 15] or of neglecting
the flexural rigidity of the stiffening elements [11].

The authors believe that their research study reported in [13] consolidated
the elastic analysis of the composite wall. The main points of the proposed
analysis as well as some conclusions resulting from particular cases solved
numerically are given in the following.
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Outline of the Analysis

The problem is essentially a boundary value problem in plane-stress elasti-
city and it is treated on the assumption that the masonry is isotropic and that
the stiffeners obey the elementary beam theory; both are assumed to be
linearly elastic, and considering its small effect, Poisson’s ratio is neglected
— v=0 (in [9] orthotropy parameters for concrete hollow block masonry were
experimentally investigated and were found to justify the above assumptions).
For further simplification, the flexural rigidity of intermediate stiffeners is
neglected (owing to the absence of external loading perpendicular to their
axes) while that of the edge elements is allowed for in full.

The basic differential equation of the isotropic plate (with constant volume

forces) is:
P o *D

= 1
3x4+28x28y2+8y4 0, (1)
the plate stresses being: _
_ 20 _ >0 2D )
VT2 Ty TT Tozoy

In Fig. 1 a plate edge of arbitrary shape and a stiffening element along
part of it are shown. The external and the contact forces acting on the stiffener
are also indicated. For an initial section (z;,y;) the values of the stress function

. . : oD od
@, and of its derivatives (-—) , (——) are known.
? dx i’ \oy /i

At a location (s) on the unstiffened edge they are obtained from the known
edge forces as follows:

S 8
0 L xan(29), 2o [y (1) -
t oy /; t i
Si S

ox ox

ay

Fig. 1. Edge element
and adjoining wall.
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At the stiffened edges compatibility conditions expressing the equality of
deformation of plate and stiffening element in both the tangential and per-
pendicular directions are set up. At a location(s) the inner forces of the stiffener
due to external load and contact forces are found to be [13]:

22 M- M —t(ig

N = No— on

oD ) (4)

N, and M, can readily be determined from the external loading, the stress
function and its derivatives at an initial section (s=s;), (which usually can
be set equal to zero), and the edge geometry. They can be expressed as follows:

_dy [, [e® : dx [ (0D :
o L R R R U R R

_ dy oD dx oD
M=t [(dw%‘%) (5, * (¢ +# (%)ﬁ@] %)

+IS[X (Ys~y)+ Y (v —x,) +m,]ds.

The tangential compatibility condition is u,=wu,, or

OU,  O0U, .
= == — 1T —n 7] — ﬂ § y
o3 75’ with v, = v, = 0 leads to
Te _ gy L
B, E, with o, = T t3 and considering (4),
we obtain
od E,I *d 1
d5+d( dz) +Ewtd3n2 = (M +N, d) (6)
The perpendicular compatibility conditions is v,=v,, or Z;;c = aal;“’, this can

be expressed [13] as follows:

od E,I
¢+d8n B E’wt(

B 93@)* M

e e
8n3+ on os2 t (7)

As for internal stiffener (Fig. 2) the axial force is defined by:

(- T | "
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The tangential compatibility conditions for either side of the stiffener are:
0P oD E A (82 Q‘)) N,
onl, \on|, E,t\on%], t’ 0

(@ " oP + E A 82@) _ N, ®)

on), \on), ' E,t\on2),  t°

As the flexural rigidity is neglected, the bending moment vanishes, i.e.:

h; 8D h; 8D
w =t (5 o) + (5 7o) | =0

or with ~; ~ 0 D, =9,. (10)

Q

Eq. (10) implies that normal stresses at both sides of air internal stiffener
are equal.

The perpendicular compatibility condition at the internal stiffener —
(vp)1 = (v,), yield, analogously to (7)

PO, PO\ __(BD PO
ond " “onaost), \om® ' “onds?,

(11)

Statically Indeterminate Composite Walls

As the proposed method belongs to the category of the Flexibility Methods
of the Theory of Structures, statical indeterminacy has to be dealt with in
certain cases. In this paper such cases as walls continuous over more than
two supports or infilled frames shall not be discussed in detail. Detailed
treatment can be found in [13]. It may suffice to remark here that fixing a
statically determinate substructure — by removing geometrical constraints at
the perimeter and/or by cutting the enclosing frame — and defining the redun-

dant forces are analogous to the treatment of framed structures by the Force
Method.
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For walls with openings which represent multiply-connected regions, the
basic plate equation and the given external forces along the edges are not
sufficient for the complete mathematical definition of the problem. For the
wall shown in Fig. 3 the boundary conditions along the external contour are

ARBITRARY L OADINGP

S
—— T TR v S— e (A
T 7:-t-<>->
Ec lorAg.Tp: do M
— 4 —- 4+ Tho
CINTEL' O
i Ho ho Hg
] T
H
b
Li-Lo Lo [ Lo © LT, L
) o — [ SR I G
Fig. 3. Wall Wlth single NN 7 b
window opening. r

y

the same as for the solid walls. Along the internal contour, in the absence of
loads there, one has:

— for the two vertical and the lower horizontal edges:
o,=17=0,

which by integration yield (Fig. 4);

oD oD
- = Ay, - =4, O=A4,+4,(y—H)+ Az (12)
ay ox
UNDEFINED UNDE FINED UNDEFINED
A-AsL Aq*AsLo AJWmmﬂmTA3 A, I'"
LINTEL - LINTEL H - LINTEL —
® = 2 B = L —
- dx - — oy —
= = — —]
AragL) A AL ot A LLLIIITITII T A, A, ”Lu”“”“[ Ay
+A2H' +AgHy
oD od .
Fig. 4. &, — and — along inner perimeter.
g pym 2y g p

— for the stiffened upper edge, the boundary conditions are anlogous to (6)
and (7) in which:

S
oy Lo, H,

oD oD
0

=t4,,
(13)
] =t[dy A+ A, +A5x].

)Lo,Ht

Thus it can be seen that for the formulation of the boundary conditions the
values of three generalized redundant forces 4, (:=1, 2, 3) are required.
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If the wall is imagined to be cut through below the opening, the two cut
edges undergo relative displacements as shown in Fig. 5. Castigliano’s theorem
yields the following relations between the strain energy U and the displacement
components:

oU o U aU
_ — _ R 4
74, = foy, Ey =t (uyg—ay H,), 5 £V, (14)

3

which equalled to zero yield the redundants 4.

(OPENING

}WALL

Fig. 5. Displacement
components of edges.

In the analysis of statically indeterminate walls of any class one has to
find a number of stress functions, namely for the external loading and for the
unit values of the redundants, as indicated in the following table:

Symbol External load Value of redundants  Stress function
0 P (as given) all zero D,
1 Zero X,=1X,,.,=0 D,
2 zZero Xo=1; X;4,=0 D,
n zero X,=1; X;4,=0 D,

n

The actual stress function is then @ =@, + ) X, P, .
i=1

The equations for computing the redundants are:

?
0X,

UP,X,,X,,...X,)=0, j=12...n. (14)

Without giving here the details of deduction, the integrals F; related to the
unit values of the redundants and to the external loading are defined as follows:

f

o RO, 0D, (B0, . Bd,
E’J‘“’EZ;‘”M% on —(3n3 +23n88)¢’]d8

(15)

C m
1 1 .
+E—c[;;1—-’_1:f(MiMej"-r’%NiNei)ds‘f‘;lA—ka@-Ne,-ds

f, I, m denote the number of unstiffened edges, external and internal stiffeners,
respectively.



COMPOSITE WALLS WITH AND WITHOUT OPENINGS 149

For j=0, F;, is the displacement vector {u} due to external loads, and for
j+0 F; provides the flexibility matrix [F] of the structure.

After calculating all values F;; (taking advantage of the symmetry with
respect to the matrix diagonal) the solution of the set of equations

(u}+[F1{X} =0 ' (16)

yields the redundants X;.

Numerical Solution and Computer Program

The numerical solution is based on the Finite Differences method. The
different stages — transcription of the plate equation and of the boundary
conditions into central finite differences for points of a grid, solution of the
equations to obtain the stress function, determination of the stresses in the
plate and of the internal forces in the stiffening elements by numerical differen-
tiation of the stress function — do not contain any novel features and, there-
fore, are not detailed here. A computer program for one-storey walls with
and without openings, with stiffening element in any position, and for any
type of loading was written in Algol for an Elliott 503 computer [13].

A few representative examples of solution obtained are shown in Figs. 6-8.

Approximate Analysis

In the following the influence of certain parameters are discussed, and
consequently, with the aid of the results obtained by numerical analysis, some
formulae for approximate analysis are suggested. The proposed approximations
regard mainly the most heavily stressed regions of solid walls in the vicinity
of concentrated loads, including support reactions. The parameters discussed
are: rigidity of the components (plate and stiffeners), wall height, continuity
over intermediate supports, openings.

Rigidity of the components. The numerical solutions bring into relief the
following findings (which could largely have been anticipated):

Stiffening post (external or internal) causes a drastic reduction of com-
pression (o,) in the plate and of the bending moment in the bottom beam,
because an essential part of the load is transferred directly by the post.

Between post and plate arise shear stresses which reduce the axial force
in the post gradually from bottom to top.

Three different cases regarding the location of the external loads with
respect to the stiffening elements shall be distinguished:
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a) Load Acting Perpendicularly to the Stiffener

A parameter K, can be identified, which has preponderant influence on the
contact stresses, and shall be defined as such depth of plate which replacing
the edge beam will leave the contact stresses ¢, unaltered (Fig. 9).

/v
plate E,, ,t ,
. 1 2’ R
O‘y'max'_O:;‘%(%ti)/a m
stiffener  E¢l
1 “
R

e

Fig. 9. Equivalent depth K, .

K, is obtained by equating the maximal pressure exerted by a force R on
the half-plane through a beam [3].

R (E t\13
O',y’max = "'0.317( w )

B, I

with that of a homogeneous half-plane at a depth K,

2 R
O.y’max - w tK1’
E, \1B
so that K, = Q(E’wt) . (17)

On the basis of the numerical results obtained for walls with bottom beams
typical graphs were constructed for the non-dimensional statical values:

K, t N
R - R

G = N (18)
Such graphs, which are valid for reasonably long edges (2 L =8 K,) are shown
in Fig. 11 for loads acting near the corners and in Fig. 12 loads removed from

the corners.

dox

plate

X

Ti
1. K

X

x|
i
i

~<I
"
Xix

=_ stifener  F,

-
L

A
R
(near corner)

@

I

(far from corner)

Fig. 10. Load perpendicular to edge beam.
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Fig. 11. Contact stresses and internal forces of beam due to load near corner (K_ = 0.17) .
1

Closed expressions approximating the above graphs were derived from the
known stress formulae for the quarter-plane and the half-plane at a depth K,

(Fig. 10):

a

for 0<—<1
1
_ K.t 4 2z—7m  2a(1-372)
G, = 0, = — + — 5
o Y R 7?2 —4 (24 1)2 (x2+1)3 19)
Kt 4 2B—n%  4aF(1-7)
TTTR T 24 (@@tlp @E+1p
a
for 4 ——<
K,
2 1 2z
S — e 20
T T @+ T T T @)y (20)

By integration of the stresses, given by the above formulae, the internal
forces of the edge beam are obtained:

for OgKilgl
FoN_ 4 (m 2r—m N 2aE
TR w—2\2 2@+ YO T @y -
— M _ 4 T _ o a — d
M = RE, —x+w2_4 [(l—i——z—x)a,rctanx—x] + 532+1+NK1’
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Fig. 12. Contact stresses and internal forces of beam due to load removed from corner (Ki R 4) .
1

a
for 4<—<
K,

— 1 — . — d
=11 M:;[l-{-x(arctanx—?)] —l—NE. (22)

N1
ar

The agreement between the exactly calculated graphs and the approximating
expressions is reasonably good, the maximal values differing within the limits
of between 8 and 20 percent. The extremal values of the contact stresses and
beam forces are summarized in Table 1.
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for Perpendicular Load

Table 1. Extremal Values of Contact Stresses and Internal Forces of Beam

a-o a 4Ky
Extremal Its Location [Extremal Valueflts Location
Value X X
Gy -21 0 -065 0
't;gf 038 05 0.21 05
g 040 2 -0.28 0
émm -010 10 016 0

b) Load Acting in Line with the Axis of the Stiffening Element (Fig. 13)

The numerical solutions show bending moments of the stiffening element
in such cases to be negligible, which implies also the neglect of the perpen-
dicular contact stresses. So the problem is reduced to that of finding the shear
stress along the contact face and the axial force N in the stiffening element.

/1/
late Ew,t - X em_
P 1)1 f= %"= —&2
L L R;-antimetrical load
X Ro-symmetrical load
B — = = > o
R, Ry “Stiffener Ee, A K> Rs R2

Fig. 13. Load acting in line with stiffener axis.

It may be assumed that these depend mainly on a parameter K,, which
expresses the relative axial rigidity.
E A
E, t

K, = . (23)

For the derivation of approximate expressions for = and N a wall of infinite
height is considered which is bordered by a horizontal edge element with an
axial load R. The following derivation makes use of the variational method
of L. V. KanTorovIcH [5]. It will be performed separately for an antimetric
and a symmetric load case.

Antimetry. The axial force in the edge element is:

oD
N=tl5) 24/
Y| z0 ad
The boundary conditions along the vertical (unstiffened) edges are
oD oD R R ,
(%—)iL,y - (-@)iL,y T Pty = =g - el
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The compatibility conditions along the contact face (in the absence of perpen-
dicular external loads) yield

0D 2P ,
oy =R, =0 @ra=o )
Using the non-dimensional variables
_ & Y _ =
TR CELCTE (27)
- K,t - N
@ (.DRK 5 g = O'——R—, N = 7{,
the expressions (24), (25) and (26) read
F=(), - (24)
N/7¢0
0P o =
= =0, - =+1, D)., ., =n, 25
(af)inn n)in,n ( ):t & 7 ( )
od 2P .
- =0, 1)) = 0. 26

- _Ii_g_t 3 (€ n T T f da
TTTR T oa\ne ntm\2n%2n T dE) -
<= N _1({, ¢ & n mé
N=%= 5(3;—7@—3) e (“Wﬁ“‘f))’
in which
a(é)=C &+ 0,
(O = i)+ O o8)
d—§~=(02)\ —C1 ) b3 () +(C1AL+C1A) ¢4
the functions ¢, + ¢, are defined as follows
¢y §)=Sh)‘1§‘305)‘2§> bq f)=ChA1§SinAzf>
B3 (&) =shA €sinA, €, ¢y (&) =chA Ecos A, €, (29)
_1= y+1 12 1= 'y—l 12 8n 1/2
The values of C; in (28) are determined from the boundary conditions
da
a(n) =-—1, — =0,
") (%), .
which lead to the following pair of equations.

C1[0 Py (n) =23 D3 (n)] + O3 [A; Dy (n) + A, P, (n)] = 0.
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Symmetry. The boundary conditions (in non-dimensional formulation) are:

od oD _
— = [— = (D =0,
(3{“ ):i:n,'r) (an)in,n ( ):E:n,n

0D 2P -
(=) =71 o=

(31)

The following approximate formulae can be written for the symmetrical case

. Kyt 0.6504 72 omE__n da
TTTR T Tt 2mn+1.3406m) " m 42w dE’ .
¥ _ N _ 134967 0.6504 77 TEL e (32)
TR T n+134067 (nt2m)(n+1.34967) > n T nt2m o)
in which
=C +C,
€)= Cuby(©)+ ¢ .
dE = (C1 A5+ C3A)) b3 (£) +(C1 A, —CuAy) 4 (€
The functions ¢, +~ ¢, are defined as follows:
$1(£) = shA €sin A, €, ¢y = chA;£cos Ay €,
_m(y+l 12 _w(y—1 1/2 _ [4n )1/2
Al—n(—‘—"-—2 ) 9 Az—n -—2—— . Y = —7:’.—‘*'5 .
The values of C; in (33) are determined from the boundary conditions
da
an)=1, 5 =0,
) (7),..
which lead to the following pair of equations
C )+C n) =1,
161 (n 2 P2 () (35)

C1[A1 84 (1) + A3 3 (n) + Ca (A; 3 (1) — Ay g (n)] = 0.

The graphs in Fig. 14a show the contact shear stresses and the axial force due
to an antimetric force for n=1.4.

In the case of eccentricity of line of action the solutlon can be obtained
by the superposition of the results for axial action and for the eccentricity
moment — Re — whose effect can approximately be expressed by the terms
containing (@) in formulae (19), (21).

Fig. 14b shows the contact shear and the axial force for the case of the
external force acting at the level of the free edge of the stiffener ¢/K,=0.10;
full lines show the approximations, dotted lines those obtained by full numeri-
cal analysis. Except for some discrepancy in the vicinity of the point of appli-
cation of the external force, which seems to be mainly due to the above
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indicated treatment of the eccentricity, the agreement appears to be satis-
factory.

It should be noted that with increasing K, and decreasing n, i.e. for
increasing axial rigidity of the stiffening element, the graph of the contact
shear stress becomes parabolic similar to the shear stress in ordinary slender
beams, whereas with decreasing rigidity it flattens out.

¢) Loads Acting at Frame Corners

The main problem here is to determine that part of the concentrated load
which is transferred into the column (N,;). The column shall be assumed to
receive axial loads only. N, is applied at the faces of an imaginary cut (see
Fig. 15), and its value will be obtained from the equation of vertical strains

of wall ¢, and column e,,.

4/

c C o
5< <
S < plate Ew.t |3
I =
Neol ¥ 4y Neot ¥ &Y
4 T_:qx | M
beamEc,l. K, Fig. 15. Load acting
- at frame joint.
a4 1
R R
According to (19) and (20):
R +NCOl . . 4: s 2 a 2 a
= hich C= ———— — —— = —-214 - —
€ CKltE'w’ in which C -1 K, T
if the load is close to the corner; but C = —% = —0.64 if it is far from the
corner.
The strain in the column is é,v Z?ll .
Now, the condition ¢,,; = ¢, yields:
Ncol - OKz (36)

According to the derivation, the approximate maximal value of the contact
stress o, appears to be:

_ Ncol R
Uy,max = 0 (1 +7) K;—t. (37)

The authors have not been able to propose a reliable formula for the internal
forces of the stiffening beams. But with some reservation it may be suggested
that with frame columns present N in the bottom beam is by 209, and M by
40-609, smaller than those without columns.
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In conclusion of this paragraph the following should be noted:

— The approximation formulae stated may generally suffice for the design of
load bearing walls without opening, i.e. for designing the section of the
bottom beam and checking the maximal plate stresses.

— The above formulae were, for the most part, derived from the half-plane
and quarter-plane. Their usefulness is, therefore, limited to ‘“tall’’ walls.

— For the use of the above formulae the knowledge of the external forces
along the perimeter, including redundant support reactions, is required.
The following two paragraphs deal with these questions.

The effect of height. A load-bearing wall with a bottom beam shall be defined
as ‘“tall’’ if any increase in plate height — H — does not appreciably change the
contact stresses and the internal forces of the beam. Let H, denote the limit
value of “tall’” wall.

In order to arrive at a numerical value for H, the maximal contact stresses
obtained from numerical analysis were compared with correspondent values

given in table 1.

For walls with 4.5 = % < 6.5 deviations were less than 59,; for I% ~ 3.3

the deviations were 5%,-89%,, and in the range 1.8 < % < 2.5 the deviations
exceeded 209, .
Thus it may be concluded that H,=4 K, and for walls with % = 4 approxi-

mating formulae of the preceding paragraph are applicable. It may be noted
that many of the common structures belong to this category.

Continuity over internal supports. Some examples of continuous walls, which
were numerically analyzed, are shown in Fig. 16 and the internal support

reactions indicated. In these examples, with EH;> 4 and IH> 0.65, the distri-

bution of the reactions is similar to that of beams with hinges over the supports,
i.e. there is no appreciable increase of the internal reactions on account of con-
tinuity. This, in fact, applies, to a certain measure, also to homogeneous deep
beams and is due to the strain effect of the o, and + stresses (negligible in
slender beams). The cumulative compression in the vicinity of the supports
due to o, appears to be particularly pronounced in composite walls.

On the strength of this, the indeterminacy problem of continuous walls
mayyoften be bypassed by directly estimating the reaction forces, and an
approximate analysis may be initiated from there.

T'he effect of wall openings. The numerical solution obtained tends to indicate
that the stress distribution in the support areas is not appreciably different
for walls with openings compared with that of solid walls. It is, however,
substantially different at some distance from the supports.
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Qualitatively the following may be stated as regards the effect of a wall
opening:

a) In a symmetrical case (regarding loading and position of openings) the
integral shear is carried mainly by that part of the walls (above or below
the openings) which is nearer to the load. If the non-loaded part is the
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beam only, then the shear force in it is zero.

of solid walls.

b) In antimetrical loadings the integral shear splits, proportionally to the

stiffness of the wall parts above and below the opening.

Obviously, the wall part loaded by greater shear carried also the larger
part of bending moment and the horizontal stresses reach high values.
In the less loaded wall parts, the stresses remained even below those
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The design requires checking of stresses in the lintel and the plate in the
vicinity of the opening. No ready-to-use formulae could be developed for this
purpose.

It might, in principle, be possible after splitting (analogously to frame
analysis) the integral forces into parts related to wall parts above and below
the opening, to deal with those parts as with ordinary or deep beams, depending
on their slenderness.

Conclusions

In the analysis of composite walls described in this paper, the contact
problem and the plate stresses could be solved by a continuous procedure in
consequence of an appropriate formulation of the boundary conditions.

The method is based on the determination of stress function values by the
finite differences method and it is, therefore, specially suitable for composite
walls having a low degree of statical indeterminacy.

In the present article only isotopic plates were treated, but the method
can readily be extended to orthotopic plates bordered by stiffening elements.

On the basis of the numerical analysis of a considerable number of cases,
the influence of some important parameters was investigated with the aim
of formulating simple design procedures.

Notation
A4 cross sectional area of stiffener
a distance of concentrated load from wall corner

a(§) function of ¢ — Eq. (28), (33)

A, + A, generalized redundant forces in walls with openings, Eq. (12), (13)
C,, O, integration constants, Eq. (30), (35)

d distance of stiffener axis from wall edge

E,, E,, modulus of elasticity of stiffener and wall, respectively

[F] flexibility matrix, Eq. (16)

1 moment of inertia of stiffener
H height of wall
h depth of stiffener

K,, K, relative bending and axial rigidity of stiffener, Eq. (17), (23)
L half length of wall

M, M bending moment in stiffener (tension at inside fibres-positive) and
M

RK,

bending moment in stiffener due to external load

external distributed moment

non-dimensional notation, M =
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=
=

axial force in stiffener (tension-positive), and non-dimensional nota-

. = N
tion, N = B

axial force in stiffener due to external load

=

. .. L
normal coordinate (positive outwards) or constant n = g
2

concentrated load

radius of gyration

circumferential coordinate (positive clockwise)
wall thickness
strain energy

longitudinal and transverse displacement along stiffened wall edges,
respectively, or horizontal and vertical relative displacement between
cut edges

{u} displacement vector

{X} redundant — force vector

X, X horizontal distributed external and contact forces

Y,Y vertical distributed external and contact forces

~

F
S

x, Y Cartesian coordinates; non-dimensional notation — x = %, y= —Ky—l
o angle between cut edges

& n nondimensional coordinates — £ = I%z’ n = Ry_;

A1, A, constants — Eq. (29), (34) ’

o, G normal stress, and nondimensional notation — = a%j or ¢ =01%t
T, T shear stress, and nondimensional notation — 7 =T%—t or ~F=1~I—§§j

D, D Airy stress function, and nondimensional notation, D= ¢ﬁ{—2

. —¢, functions of § — Eq. (29), (34)

Subscripts
c of stiffener
lr of left-hand and right-hand sides of internal stiffener
0 of opening
w of wall
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Summary

A numerical method is presented for elastic analysis of load-bearing walls
strengthened by stiffeners, based on determination of the Airy stress function
by the finite-differences technique. Judicious formulation of the boundary
conditions along the strengthened wall edges permitted the contact problem,
and the in-plane stress distribution in the plate, to be solved by a continuous
procedure.

The computer program yields the in-plane stress components in the plate
and the internal forces along the stiffeners.

On the basis of the numerical analysis of a considerable number of parti-
cular cases, the influence of some important parameters was investigated with
the aim of formulating simple design procedures.

Résumé

On présente une méthode numérique pour l’analyse élastique des parois
renforcées par raidisseurs se basant sur la détermination de la fonction de
contraintes Airy moyennant la technique des différences finies. Une formulation
judicieuse des conditions-limites le long des bords sollicités des parois a permis
de résoudre le probléeme de contact et la distribution de la sollicitation dans
la paroi moyennant un procédé continu.

Le programme d’ordinateur donne les composantes dans le plan des parois
et les forces internes le long des raidisseurs.

Sur la base d’une analyse numérique d un grands nombre de cas particuliers
I'influence de quelques parameétres importants fut examinée afin de formuler
de simples procédés de projet.

Zusammenfassung

Es wird eine numerische Methode zur elastischen Analyse von tragenden,
durch Versteifungen verstiarkten Wianden vorgelegt, die auf der Bestimmung
der Airy-Spannungfunktion mittels Differenzenrechnung basiert. Eine zweck-
entsprechende Formulierung der Grenzbedingungen lings der beanspruchten
Wandkanten erlaubte das Kontaktproblem und die in der Wandebene lie-
gende Verteilung der Beanspruchung mittels eines kontinuierlichen Verfahrens
zu losen.

Das Computerprogramm ergibt die in der Wandebene liegenden Kompo-
nenten und die inneren Krifte lings der Versteifungen.

Auf Grund der numerischen Analyse einer erheblichen Anzahl besonderer
Fille wurde der Einfluss einiger wichtiger Parameter untersucht, um einfache
Entwurfsverfahren zu formulieren.
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