Layered finite element procedure for inelastic
analysis of reinforced concrete slabs

Autor(en):  Dotreppe, Jean-Claude / Schnobrich, William C. / Pecknold, David
A.
Objekttyp:  Article

Zeitschrift:  IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 33 (1973)

PDF erstellt am: 27.05.2024

Persistenter Link: https://doi.org/10.5169/seals-25631

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch


https://doi.org/10.5169/seals-25631

Layered Finite Element Procedure for Inelastic Analysis of Reinforced
Concrete Slabs

Analyse non-élastique par couches de plaques en béton armé selon la méthode des
éléments finis

Nichtelastische, schichtweise Berechnung von Stahlbetonplatten nach der Methode
der endlichen Hlemente

JEAN-CLAUDE DOTREPPE
University of Liége, Liege, Belgium
WILLIAM C. SCHNOBRICH DAVID A. PECKNOLD
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA

Introduction

The development of numerical procedures for the post-elastic stress analysis
of reinforced concrete plates and shells is a research area currently receiving
a good deal of attention. The central difficulty in evolving such procedures
concerns development of incremental relations between stress resultants and
strain measures which, though idealized, adequately reflect cracking, yielding
and crushing of concrete and yielding of steel reinforcement. Once such rela-
tions have been obtained, standard numerical techniques such as the finite
element method, can be employed to trace out the desired (nonlinear) load-
deflection response of the structure.

In the past, two distinctly different viewpoints have been taken in an
effort to obtain the necessary constitutive relations. In the first approach,
exemplified by the work of JorrieT and McNEicE [5] and BELL [2], a semi-
empirical overall moment-curvature relation is employed which attempts to
take into consideration the various stages of material behavior. In the second
approach, the incremental constitutive relations for the composite structure
are synthesized from the corresponding relations for the individual consti-
tutents, concrete and steel. CERVENKA [3] took the latter avenue in his study
of reinforced concrete panels subjected to inplane loading. In order to consider
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flexural deformation, the variation of material properties through the thick-
ness must be accounted for. This can be done by means of a layering approach
or by the introduction of numerical integration points through the thickness.
The layering concept was applied by WHANG [11] to the elastoplastic analysis
of shells, and is a physically interpretable special case of the integration point
approach suggested by MARCAL [8]. HAND [4], in work completed subsequent
to that reported here, employed the layering approach to develop an analysis
procedure for reinforced concrete plates and shells.

A rather interesting phenomenon often occurs after cracking has taken
place in the structure. The constitutive relations exhibit coupling between
membrane and flexural effects, similar to that which occurs in unsymmetrically
laminated plates. A consequence of this fact is that the inplane and plate
bending problems no longer uncouple, and membrane boundary conditions
must be specified. The practical significance of this observation remains an
open question, but HAND [4] has shown that inplane boundary conditions can
have a large effect on computed load deflection histories. In the literature on
the analysis of laminated plates, the ‘reduced bending stiffness’’ approxima-
tion, equivalent to assuming the membrane stress resultants to be zero, is
often used [1], [9]. This assumption ‘“‘approximately’’ uncouples the problem
and allows a corresponding reduction in computational effort. In much of the
reported work on reinforced concrete plates the same approximation is em-
ployed either implicitly or explicitly [10]. The general validity of such an
approach requires further investigation.

In this paper a finite element approach for the post-elastic stress analysis
of reinforced concrete plates under monotonically increasing load is described.
Concrete is assumed to be brittle in tension and to yield in biaxial compression
according to the yield criterion of KupFEr, HILSDORF and RuscH [6]. Rein-
forcing steel is assumed to be elastic-perfectly plastic. The layering approach
is employed, in conjunction with a twelve-degree-of-freedom plate bending
finite element. An approximation, essentially the “‘reduced bending stiffness’’
approximation, is employed, so that the number of degrees of freedom can be
reduced from five to three per node. The adequacy of this approximation is
discussed in the context of two particular numerical examples. In the first
example, comparisons are made, both with experimental results, and with
the results of HAND [4], who included inplane degrees of freedom in his analysis.

Material Properties

The objective is to obtain appropriate incremental relations between stress
resultants and the midsurface strains and curvatures of the plate for use in a
finite element procedure. To accomplish this, attention is first focused on a
thin lamina at a distance z from, and parallel to, the plate midsurface. As is
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usual in thin plate theory, the assumption is made that each such lamina is in
a state of plane stress. In this section the incremental stress-strain relations
for the lamina are obtained. In the following section these relations are utilized
to develop the desired relations between stress resultants and midsurface
strains and curvatures.

The incremental stress-strain relations for the lamina can be expressed in
the form

{do} =[Cl{4 €}, (1)
where {A 0'} = {A Cy> 4 Oy» 4 Txy}T7 {A 6} = {A €z 4 €y 4 'wa}T’ )

by requiring complete deformation compatibility between concrete and steel.
In (1), {4 o} represents an increment of pseudo-stress,

o} =2 pitdol, (2)

where {4 o} is the stress increment in the ith constituent?), and u? is the area
ratio of the ¢th constituent. Thus [(] is defined in terms of the incremental
material property matrices [C]¢ of the constituents by

[C] = ZZ,M' [CT. (3)

The nature of the matrices [C']’ of course depends on the idealizations of
material behavior. These are discussed below.

Concrete is idealized as a tension-limited elastic perfectly plastic material.
The corresponding uniaxial stress-strain curve is shown in Fig. 1. In order to
generalize this to biaxial states of stress, an appropriate yield criterion is
needed. In this study, the yield criterion of KupreRr, HILSDORF and RuscH [6],
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a) Concrete b) Reinforcing Steel

Fig. 1. Idealized uniaxial stress-strain curves for concrete and steel.

1) The constituents considered here are concrete and the steel reinforcement. A super-
seript ‘¢’ denotes concrete, ‘s’ denotes steel.
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Fig. 2. Concrete biaxial yield criterion of
KuvrrER, HiLsporRF and RuscH.

which is based on experimental results, is employed (Fig. 2). The procedure
for adapting the Kupfer, Hilsdorf and Rusch criterion to the incremental
analysis is fully discussed in [13]. The criterion obtained is of the form

Toot = @ —bp, (4)

where 7, is the octahedral shearing stress in the concrete,
p 1is the mean stress in the concrete,
a,b are material constants which take different values depending on the
signs of the concrete principal stresses.

The criterion (4) is employed to detect both cracking and biaxial yielding of
the concrete. When cracking occurs, the cracks are assumed to be perpen-
dicular to the concrete principal tensile stress. The corresponding material
property matrix in a coordinate system aligned with the cracks is

100
[0 = E,|000], (5)
(000

where F, is the modulus of elasticity of the concrete. A coordinate trans-
formation produces the desired matrix in the (z,y) system.

In (5) it is tacitly assumed that the cracked concrete can carry no shear.
HanD [4] has indicated the desirability of incorporating a ‘“‘shear retention’’
factor in (5) to compensate for phenomena such as aggregate interlock and
dowel action which have been neglected in the mathematical idealization.
A related concept has been employed by Scaxrow [10].

In the plastic range, the concrete incremental stress-strain relations are
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obtained in the usual way, by requiring the incremental plastic strain vector
to be normal to the yield surface.
The result is

Clgnatl [C)

(L = [0~ bt =2 (®)

in which [C]¢, is the concrete incremental stress-strain matrix in the plastic
range,

[C]g, is the concrete incremental stress-strain matrix in the elastic
range,

and n  is the unit normal to the yield surface at the current state of
stress.

The reinforcing steel is assumed to be elastic perfectly plastic, and is in a state
of uniaxial stress. The corresponding stress-strain curve is shown in Fig. 1.

Constitutive Relations for Layered Plate
In the previous section incremental stress-strain relations for a lamina in

plane stress were developed. The variation in material properties through the
thickness is discretized by dividing the plate into layers (Fig. 3), within each

-

Midsurface —

- ..'_H_l. —_———
VT T

N
y l \ i™Layer
z

Fig. 3. Layered plate.

of which the material properties are constant?). Thus, the incremental stress-
strain relations for the lamina become

{do} =[Cl{d e}, (7)

where the subscript j now identifies the layer in which the lamina is located.
The Kirchhoff assumption

{de} ={de}+2{4 K} (8)

2) The material properties for the entire layer are taken to be those at mid-layer.
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and the definition of the stress resultants,
h/

(4N} a M = (124 o} dz o)

2

yield the desired constitutive relations

AN) _ [Dyy|Dys] [de
) = 50 52w} (10

In these equations, {4 ¢,},{4 K} are the 3 X 1 vectors of midsurface strain and
curvature, respectively, and

{dN} ={dN,, AN, AN ' {d M} ={AdM_ ,AM, AM, }\T.
The 3 X 3 material property matrices in (10) are

[Dn] = ;(tﬂ-l— t;) [C;

2 2
[D1p] = [Dy]" = Z*——‘_(%HQ 5) [C]j: (11)

3 3
[Dgp] = Z‘%%*@[O]j»

]
where ¢; and ¢;,, are the distances from the midsurface to the top and bottom,
respectively, of the jth layer (Fig. 3).

Unless the section possess material property symmetry about the mid-
surface the matrices [D;,], [Dy] in (10) are non-zero. Even if this were the
case initially, cracking and yielding would eventually destroy such symmetry.

Thus coupling is produced between membrane and flexural effects, with
the result that even for plates loaded only in the transverse direction, inplane
boundary conditions are required. The quantitative influence of the inplane
conditions may not be large however, and in order to reduce computational
effort the ‘“reduced bending stiffness’’ approximation is introduced. It is
assumed that the inplane stress resultants {N} are zero. Thus, in terms of
incremental quantities, (10) yields

{dep} = —[Dy ] [Dyp]{4 K}. (12)
Thé incremental bending moments are then given by
{4 M} = [D*]{4 K}, (13)

where [D*] = [Dyy] —[Dy,][D11] 7 [Dy2] is the ‘“‘reduced bending stiffness’’.
This approximation can be viewed as a transformation such that the moments
are computed with respect to a ‘“‘generalized neutral surface’’, analogous to
the neutral axis in reinforced concrete beams. Strictly speaking, a neutral
surface does not exist in general, if by neutral surface is meant a surface on
which all membrane strains are zero. Nevertheless, the foregoing interpretation
is useful.
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For later reference the incremental bending moments appearing in (13) are
rewritten in terms of stresses integrated through the plate thickness as

R/2
{4 M}mjmf [2[1]—[Dy][Dy 17 1{4 o} dz. (14)

Eq. (14) reduces to the definition (9) since {4 N}=0. This merely expresses
the fact that the bending moment is the same with respect to all reference
surfaces in the absence of a resultant force.

The incremental stiffness matrix for the plate finite element is formed using
the “reduced bending stiffness’ [D*]. The resulting expression is

[K] =Af [B]"[D*][B]dA (15)

where [ B] is the usual 3 X 20 matrix relating curvatures to element nodal dis-
placements. A description of the standard twelve degree-of-freedom plate
bending finite element used may be found in ZIENKIEWICZ [12].

As, in general, a neutral surface does not exist, a slightly modified version
of the foregoing procedure was employed. The modification is based on the
physical interpretation of the ‘“‘reduced bending stiffness’’ approximation. In
place of (12), the expression

{de} = —[«]{4 K} (16)
was used, where
o, 0 0
[OC] = 0 ay 0 . (17)
0 0 oy |

Eq. (16) represents a shift of reference surface such that 4 M, is computed
about a surface on which 4 ¢,=0, 4 M, about a surface on which 4e,=0, and
4 M,, about a surface on which 4y,,=0. The three quantities «,, «,, «,, are
not independent because of Saint Venant’s well-known compatibility equation
between ¢, ¢,, €.,

Pe, + %e, _ P Yoy .

oy = ox? ox oy

The corresponding definition of the transformed incremental moments, similar
to (14), is

hi2
{4M }_7/ 2f [2[1]-[«]]" {4 o}dz (19)
and the approximate incremental bending stiffness is
G+l
[D*lapp = ;tf[z [1]— [} [C);[2 [ 1] - [«] dz, (20)

which can be rewritten as

[D *]app = [Dyp] —[«]* [D12] - [D21] [a] + [O‘]T (D] []. (21)
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Note that if [«] = [D;,]71[D;,], the right hand side of (21) reduces to [D*].
In order to gain some insight into the nature of the approximations, consider
a loading increment during which the material properties do not change. If
those cases are excluded in which nonzero boundary rotations or displace-
ments are imposed the ‘“reduced bending stiffness’’ approximation produces
a ‘‘softer’’ structure than is actually the case?®). This can be shown by the
principle of minimum complementary energy since the approximation is a
statically admissible field. The effect of the further approximation, Eqgs. (16)
to (21), can be shown by defining [F] = [«] —[Dy;]71[Dye]- Eq. (21) then
becomes

[D*]apy = [D¥]+[E17 [Dyy] [E]. (22)

Since [D,,] is positive definite, [E]7 [D,,]1[E] is positive semi-definite at
least, and the further approximation “stiffens’’ the structure, and thus perhaps
partly cancels the softening effect of the first approximation.

Numerical Procedure

The external loading is applied in increments (Fig. 4). At the beginning of
each load increment the structure tangent stiffness matrix is updated to reflect
any changes in material properties which have taken place. Inelastic action
within the load increment is taken into account by the “‘initial stress’’ method
[12], in which pseudo-loads reflecting the inelastic behavior are iteratively
redistributed through the structure using the tangent stiffness computed at
the beginning of the increment. This procedure is quite efficient and requires
the use of relatively few load increments.

For the ¢th Joad increment {4 P},, the first approximation to the incremental
displacements are calculated from

[K],{4 Uy = {4 P}, (23)
using the tangent stiffness [K],.
Subsequent iterations take the form
[K]{d U+ = {4 P}p, (24)
where {4 P}{) is the structure pseudo-load vector reflecting additional inelastic

action due to the displacement increment {4 U}P. The total incremental dis-
placement for the ith load increment (after IV iterations) is then given by

(@0}, = S . (25)

3) These considerations are quite apart from approximations made in the finite element
discretization of the structure.
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A
Load
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// W
Load , / Equilibrium Position at End of Load Increment
Increment
Tangent Stiffness at Beginning of Load Increment
II:’I
/
/
J
Deflection
a) General nonlinear problem
Load
{oe},
]
i
1
1
{aulo{aufy
Deflection

b) Structure which exhibits cracking behavior

Fig. 4. Schematic diagram of combined ‘‘tangent stiffness-initial stress’
numerical procedure.

The structure pseudo-load vector, {4 P}, appearing in (24) is assembled
from the element pseudo-load vectors in the conventional manner.

Although the approximation {4 N}=0 has been made, membrane forces
appear during the iteration process since the intermediate configurations
(Fig. 4) are not equilibrium states. Thus the element pseudo-load vector must
take into account excess membrane forces as well as bending moments. If the
excess stress resultants for a given element are denoted by

{A Ng.”}
4 M
the element pseudo-load vector is given by
(4 PYp = [ [BY ({4 JT}p ~ (D] [Dy] 4 By} dA (26)
or {4 P} = [[BI" {4 M}~ [«]" {4 N}P}dA (27)

A
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depending on which of the two approximations described earlier is used, where
[Dy]. [Dy5], [«] are evaluated at the beginning of the increment.

When the concrete is in the plastic range, the stress point tends to gradually
drift off the yield surface since in this case the incremental relations are valid
only for infinitesimal increments. To counteract this effect, after each iteration
the stress point is drawn back to the yield surface along a ray passing through
the origin. It is noted that it may be preferable to make this correction along
an ‘“‘average’’?) normal to the yield surface, but this refinement has not been
employed here.

Examples

1. Corner-Propped Slab

To demonstrate the accuracy of the numerical results which can be obtained
from the described procedure, the corner-propped slab of JOoFRIET and Mc NEICE
[5] was analyzed. The slab was 36 inches square, 1.75 inches thick, and was
reinforced with an isotropic mesh of 0.859%, reinforcing steel. The loading
consisted of a central concentrated load. Fig. 5 shows the grid used in the
finite element solution, together with the relevant material property data. Six
layers through the plate thickness were used and the load was applied in 400 1b
increments. Fig. 6 shows the computed deflection history at a particular node
together with experimental results. The agreement is quite good, although
a trend begins to appear in the later stages of loading in which the computed
results are somewhat ‘‘stiffer’’ than the observed. The discrepancy is not

\Corner Propped

Node 2

36"

h = 1.76" (Stab Thickness)
Concentrated Load P d= 1.31" (Depth to Steel)
No. of Layers =6

Steel Concrete
fy = 48,000 psi fc= 5500 psi
Eg=29x106 psi f, = 350 psi
p = 0.0085 (Isotropic Ec= 4.15x108 psi . . . .
Me:h) =605 Fig. 5. Material properties and finite ele-
L ment mesh for corner-propped slab.
36"

! 1

4) Some weighted average of the normals at the beginning and end of the increment.
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Fig. 6. Computed and experimental load-deflection responses of corner-propped slab.

serious, the computed deflections being on the order of 15%, too low at quite
high loads. It might be speculated that the stiffening effect of the second
approximation discussed earlier is beginning to be felt as cracking becomes
more severe. HAND [4] applied the same layering approach to reinforced con-
crete plates and shells, where he included inplane degrees of freedom. He
calculated the same example for two different membrane boundary conditions,
one in which the corner pins are rigid inplane and the second in which they

4000 -T T T T T T T 1/
3200
a |
=
T 2400
[«
J
- -
R
21600
Experimental, Ref. {5]
800 g —=-— Pin -
............... ey } Hond,Ret. [4]
I | I | | | | 1
o} 4q 8 12 16 20 24 28 32 36

Deflection at Node 2 (10~2inches)

Fig. 7. Effect of inplane boundary conditions on computed deflections of corner-propped slab
(after HaND, ref. [4]).
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are on rollers. Fig. 7 shows the results he obtained. The difference between
the two computed load-deflection curves is surprising, and it is noted that
they bound the computed curve shown in Fig. 6. Since it is uncertain what
the inplane boundary conditions were in the actual test, and since the com-
puted results are within the probable variability due just to a change of
membrane boundary conditions, the accuracy of the results presented here is
judged to be satisfactory. Others [7], [10], including JoFRrRIET and Mc NEICE [5],
have analyzed this slab, however no comparison of the various numerical
solutions is undertaken here. Further comparisons for a variety of situations
are required before any judgements can be made regarding the superiority
of one procedure over another, although the results presented here do compare
favorably with these other numerical solutions for this particular case.

2. Simply Supported Slab

Another example is presented here, which is taken from tests performed by
the Portland Cement Association in 1954. Results for this test may be found
in reference [14].

The slab is 72 inches square, 5.5 inches thick and is reinforced with an
isotropic mesh of 0.999%, reinforcing steel (F'ig. 8). The load is centrally applied
on a small column cast integrally with the slab as is also shown in Fig. 8.

simple support

\f\72”

e

simple 7 o) simple
7 support

\ o l
Z 1r 1
simple support . 72"
.

T S T

Fig. 8. Loading system and reinforcement mesh for simply supported square slab.

Fig. 9 shows the grid used in the finite element solution, together with the
material properties. Again six layers were used and the load was applied in
8000 1b increments.

Fig. 10 shows the comparison between experimental and theoretical results
for the load-deflection curve at the center of the plate. Again there is a good
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Fig. 9. Finite element mesh and material properties for simply supported slab.

Load (klbs)

Thickness :5.5"
10 -

|
l I I ] l L |

o] 0,20 0,40 0,60 0,80
Deflection (inches)

——— Experimental —-———— Computed

Fig. 10. Theoretical and experimental load-deflection curves at the center of the plate.

agreement except near failure. According to Hand’s results, this might be
due to the coupling between membrane and flexural effects as explained
before. The discrepancy is small, however; the computed failure load is only
on the order of 10%, too low. Fig. 11 shows some interesting results which can
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Fig. 11. Theoretical cracking patterns at bottom and top faces for the simply supported square slab.

be obtained directly from the program, i.e. cracking patterns at the bottom
and the top of the plate. Those results also compare favorably with experi-
mental cracking patterns of similar types of plates.

Conclusions

A numerical procedure has been presented which is capable of tracing out
the post-elastic load deflection behavior of reinforced concrete plates under
monotonically increasing loading as well as theoretical cracking patterns.
Cracking and yielding of concrete and yielding of steel reinforcement are
incorporated in the mathematical model. Approximations which allowed a
significant reduction in computational effort were made, and their effects
were discussed qualitatively and, in the context of two examples, quantitatively.
It is felt that the procedure described here provides results of reasonable
accuracy, but further study of the effects of inplane boundary conditions is
needed. '
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Summary

A non-linear finite element procedure is presented for the inelastic stress

analysis of reinforced concrete slabs including the effects of cracking, yielding
of concrete and yielding of reinforcing steel. Material property variation
through the slab thickness is accounted for in discretized fashion by means
of a layering approach. Approximations are discussed which reduce the effects
of membrane-flexure coupling in the constitutive equations due to inelastic
action, and thus allow a reduction in computational effort. A comparison is
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made between computed and experimental results for two centrally loaded
plates: one is a corner-propped slab, the other is simply supported along the
four edges.

Résumé

On décrit une méthode de calcul par éléments finis des dalles en béton
armé jusqu’a la ruine, et en particulier dans la phase non-linéaire: on examine
P’influence de la fissuration, de la plastification du béton ainsi que de la plasti-
fication des barres d’armature. On tient compte de la variation des propriétés
du matériau sur 1’épaisseur de la plaque en divisant celle-ci en couches de pro-
priétés différentes. On introduit certains approximations qui réduisent, dans
les équations constitutives, le couplage entre les effets flexionnels et les effets
membranaires. On présente une comparaison entre résultats théoriques et ex-
périmentaux pour deux plaques chargées au centre: 1’une est appuyée aux
quatre coins, ’autre est simplement appuyée le long des quatre bords.

Zusammenfassung

Ein nichtlineares Finite-Element-Verfahren fiir die nichtelastische Stress-
analyse von Eisenbetonplatten wird beschrieben, das die Effekte von Risse-
bildung, Versagen des Betons und Versagen des Stahls mit einschliesst. Die
Anderung der Materialeigenschaften iiber die Plattendicke wird in diskreti-
sierter Weise durch Einfithrung von Schichten beriicksichtigt. Niherungen
werden diskutiert, welche die Wirkung der Koppelung zwischen Scheiben- und
Plattenwirkung infolge nichtelastischen Verhaltens vereinfachen und dadurch
eine Reduktion des Computeraufwandes erlauben. Es wird ein Vergleich der
gerechneten und experimentell gewonnenen Resultate fiir zwei zentrisch be-
lastete Platten vorgenommen: die eine ist an den Ecken gestiitzt, die andere
entlang den vier Réndern einfach gelagert.
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