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Introduction

The force distribution on a highway bridge due to a moving vehicle is time-
dependent both because of the progression of the vehicle across the bridge
and because the loads transmitted from the vehicle itself are time varying.
The latter are associated with vehicle response on its own Suspension Springs
and tyres, and with disturbances from pavement irregularity and bridge
deflection. Studies of bridge dynamic problems have been made both theo-
retically and experimentally by a number of workers and a partial list of
recent work on bridge behaviour under the passage of heavy vehicles is to be
found in a paper by Veletsos and Huang [1].

For theoretical analysis of response under vehicle loading a highway bridge
is usually idealised as a lumped mass beam model [1]. When the response is
then calculated in terms of natural modal coordinates it is normally found
that dynamic effects are important only in the lower order modes, and it is
customary therefore to include in the analysis only the coordinates
corresponding to these modes. However, while the essentially dynamic nature of
response (as distinct from static behaviour under the instantaneous external
load-distribution) is evident only in the lower order modes, this does not imply
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that the quasi-static response in the higher order modes is necessarily negligible.
A method suggested by Williams [2] takes account of quasi-static response
in higher order modes and it is adapted here to provide a means for obtaining
greater accuracy in the calculation of bridge deflections than is customarily
achieved by direct coordinate transformation from the modes included in the
dynamic analysis. A procedure is also derived for the calculation of dynamic
loading, and in particular the loading actions of bending moment and shear
force, by the method of force summation [3], which again is more accurate
than that obtained by direct coordinate transformation.

In the following, the terms "bridge" and "bridge model" are used inter-
changeably. Notations are defined where they first appear and are also listed
alphabetically in an Appendix for convenience of reference.

1. Formulation of the Problem

A lumped-mass beam model for a highway bridge is shown in Fig. 1. In
general the number of spans and the support conditions may differ and the
structure may be either statically determinate or indeterminate.

^— Lumpcd Mass at Bridge
\ Reference Station

\ Massless Flexible Beam

1
////// m/77 /tttttt

A ¦ ¦ * • g ^ ¦ ^ C .f D

Fig. 1. Lumped mass beam model of a highway bridge.

Assuming viscous damping, the equations of motion of the bridge may be
written in matrix form as

My + Cy + Ky P(t), (1)

where for the reference stations at the mass points:

M is the diagonal inertia matrix (also known as the mass matrix);
C is the matrix of damping coefficients;

K is the stiffness matrix;
y is the vector of dynamic deflections;

and P is the vector of (generalised) time-dependent forces at the reference

points corresponding to the vehicle axle loads. (The axle loads do not
necessarily coincide with any of the reference points at a particular
instant of time and are obtained together with the bridge deflections y
by solving the interacting system of Eq. (1) and the equations of
motion of the vehicle.)
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Single and double dots over y represent the first and second time derivatives
respectively.

The vector of bridge deflections y may be written in terms of modal
coordinates A as

y &A, (2)

where <P is the matrix of natural-vibration mode vectors for the bridge. The
ith column of 0 eonsists of the bridge deflections at the reference points in
the ith mode.

The mode-shape vectors in 0 may be so normalised that the generalised
inertia matrix <PTM& I, the unit matrix. It may then be shown that the
generalised stiffness matrix &T K& is Q2 where Q is a diagonal matrix con-
sisting of the natural frequencies of free Vibration of the bridge model. With
Substitution of the coordinate transformation (Eq. (2)) and pre-multiplication
by <&T, Eq. (1) then reduces to

Ä+ DÄ+Q2A =0TP(t), (3)

where D=&TC<P.
Eq. (3) may be solved together with the equations of motion of the vehicle

to obtain the response in terms of bridge modal-coordinates and the vehicle
coordinates. Only a numerical Solution is generally possible.

The natural frequencies and mode shapes of free Vibration of the bridge,
required for the formulation of Eq. (3), are obtained by solving the eigenvalue

problem corresponding to the free-vibration equation

My + Ky 0. (4)

Methods for solving Eqs. (3) and (4) are available in Standard textbooks
on Structural Dynamics (e. g. Ref. [4]) and are not discussed here. The Solution
of these equations and other relevant data, including the instantaneous axle
loads of the vehicle, are assumed known from previous calculations.

The flexibility matrix of the bridge is required in the procedure here and
it is taken that this is known. This may, for example, be obtained by the
Transfer Matrix method [5]. The stiffness matrix of the bridge is not required
at any stage in the calculations and it is therefore never necessary to invert
the flexibility matrix.

2. Calculation of Dynamic Deflections and Loading

2.1. General Basis

Having calculated the modal coordinates of motion at any instant according
to Eq. (3), the next step may be to calculate the dynamic deflections, bending
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moments and shear forces in the bridge. The corresponding static values may
also be required for comparison, in order to establish the dynamic effects.

By rearrangement of Eq. (1) as

y F[P + {-My-Cy)},
where F denotes the bridge flexibility matrix (F=K~~1), it is evident that the
dynamic deflection at a point on the bridge is the sum of deflections due to
the vehicle loads and to the bridge inertia and damping forces. The generalised
bridge damping and inertia forces in the ith mode are given as (— Dt.) A and Ai
respectively (Eq. 3). This is consistent with a general distribution of damping
in the structure and with orthogonality conditions in natural modes. It implies
that response in the ith mode may be caused by damping forces arising from
other modes but not by inertia forces.

If all the modes of free Vibration were included in the modal analysis of
bridge response, the dynamic deflections as calculated by direct coordinate
transformation according to Eq. (2) would be the same as would be obtained
by direct Solution in terms of y coordinates (Eq. (1)). In practice, however,
to reduce computations only the first few modal coordinates are calculated,
contributions from the higher modes being generally small. Direct coordinate
transformation in such a case would imply that (a) generalised forces
corresponding to the modes excluded from the analysis are considered negligibly
small, both due to externally applied vehicle load and the bridge inertia and
damping forces and (b) in general, deflections due to damping forces of the
modes being included in the analysis do not include higher mode components.

In the alternative method proposed here, total deflections due to the axle
loads and damping forces of the "included modes" are included in the
calculated dynamic deflections and only the components due to the inertia and
damping forces of the modes not included in the Eq. (3) analysis are neglected.
In short, the inertia and damping forces due to the modes included in the
Eq. (3) analysis are first calculated. Deflections due to the static application
of the instantaneous axle loads and to the inertia and damping forces are then
calculated separately, using the bridge flexibility matrix, and superposed to
obtain the dynamic deflections. In this process calulation of deflections due
to the axle loads must be considered in some detail since the axle loads need
not coincide with the mass points at the instant of time under consideration.

To calculate the dynamic bending moments and shear forces by force
summation [3] support reactions of the bridge are needed in addition to the
known axle loads and inertia and damping forces. A procedure is developed
to calculate the redundant reactions in multi-span bridges by the method of
superposition, taking into account the non-coincidence of the axle loads with
the mass points on the bridge.

Similar methods are then applied for the calculation of corresponding static
deflections and loading for comparison.
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2.2. Inertia and Damping Forces

The inertia and damping forces acting at the mass points of the bridge at
any instant are given by

P -(M§+Cy). (5)

In terms of the loads associated with the modes included in the analysis,
this becomes

p -(M&Ä + C&Ä), (6)

where here, and in what follows, 0 represents the matrix of only those mode
vectors which are included in the analysis.

A and A, as calculated during the process of numerical integration of Eq. (3),

may be used in Eq. (6) to obtain the inertia and damping forces. However, in
a numerical method the derivatives A and A would have a lower order of
accuracy than A; e.g. in Newmark's ß method with ß=l/6, the truncation
errors of i, i and A are of the order A4, h3 and h2 respectively, h being the
time interval for numerical integration [6]. It would therefore be desirable to
calculate the inertia and damping forces using only the coordinates A. Such
a procedure is set out in the following.

The modal coordinates of motion may be thought of as consisting of two
parts, due to the static application of instantaneous axle loads and due to the
bridge inertia and damping forces. The vectors of these coordinates are denoted
by Ä and A respectively.

The axle loads P are assumed known from previous calculations. For a
sprung-mass vehicle model with frictional damping in the Suspension Springs
as shown in Fig. 2. these loads may be expressed in terms of the corresponding
spring deformations [1], and their order of accuracy would therefore be the
same as for the response coordinates of the bridge and the vehicle.

Centre of Mass

Vehicle Suspension Spring—> BJ—-Frictional
>—i Damper

Fig. 2. Vehicle model. AxU 2 5^-Tyre Spring ffixie 1

The vector Ä of corresponding bridge deflection-coordinates may be
calculated by the principle of Virtual work. For the equilibrium of the bridge
under the static application of instantaneous axle loads P, the work done
during an arbitrary Virtual displacement § y is

8W (8y)TKy-(8y«)TP 0, (7)
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where y and y° are the vectors of bridge deflections at the mass points and
under the vehicle axles respectively due to the static application of axle
loads P.

With the coordinate transformations y 0Ä and y° 0°Ä, Eq. (7) becomes

(§ Ä)T0TK0Ä-(S Ä)T(0°)TP 0

or (8Ä)T[Q2Ä-(0°)TP] 0, (8)

where 0° is the matrix of mode deflections under the axles and Q2 (=0TK0)
is the generalised stiffness matrix as defined in See. 1. When the axles do not
eoineide with the mass points, 0° is obtained by interpolation.

Since §Ä is arbitrary, the square bracket must be zero. It follows that

Ä (Q2)-1(0°)TP- (9)

The vectors A and Ä now being known, the vector A follows as

Ä A-Ä. (10)

The inertia and damping forces are now readily calculated as

P K0Ä M0Q2A, (11)

where K0 M0Q2 is a consequence of Eqs. (4) and (2).
The bridge inertia and damping forces calculated by the expression (Eq. (11))

will now have the same order of accuracy as the response coordinates.

2.3. Redundant Reactions at Intermediate Supports

The support reactions are required as part of the loading for evaluation of
shear-force and bending moment distribution. Redundant supports of multi-
span bridges which are not located at the bridge extremeties are referred to as

"intermediate redundant supports" and reactions at such supports are now
considered.

A bridge with its intermediate redundant supports, if any, removed is
referred to as the "basic bridge" (Fig. 3) and the corresponding flexibility
matrix is called the "basic flexibility matrix", F*. It should be noted here

that a basic bridge may itself be statically indeterminate, for example as
shown in Fig. 3. The support locations, e.g. B and C in Fig. 3, are included
as additional reference stations in the basic bridge and the corresponding rows
and columns therefore appear in F*. The vector of displacements for the basic

Additional (zero moss) reference stations

A -^\ » E # i » ¦ ¦ m +d m m w w ¦ ¦<

^ rrmn

Fig. 3. Basic bridge corresponding to the bridge of figure 1.
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bridge, including displacements at the redundant support locations, is denoted
by y*.

The elements of the jth column, F.f, of F* are the deflections at the
reference stations of the basic bridge due to a unit load at Station j. The
corresponding deflection under a vehicle axle may be obtained by interpolation
in the general case that the axle does not coincide with a reference Station.
By Maxwell's reciprocal theorem this is also the deflection at Station j due to
a unit load at the axle position. Thus the deflections at all the reference stations
due to a unit load at an arbitrary axle position may be found from
interpolation on each column of F* in turn. The matrix of coefficients found in
this way for each axle position at a particular instant is denoted by F*, in
which the elements of the column vector F.f are the deflections of the basic
bridge at its reference stations due to a unit load at the position of the jth axle.

Superposition of the deflections due to vehicle axle loads and the bridge
inertia and damping forces then gives the hypothetical dynamic deflections
which would result in the absence of the deleted reaction forces i. e.

y* F*P + F*P*, (12)

where P* denotes the vector of inertia and damping forces supplemented with
zero elements corresponding to the reference stations of the deleted
intermediate redundant supports.

The vector of basic bridge deflections at the locations of intermediate
redundant supports (e. g. stations B and C in Fig. 3) - included in y* - is
referred to as yR. If the redundant reactions were now applied on the basic
bridge, equal and opposite deflections — yR would be caused. The redundant
reactions are therefore calculated as

R KR(-yR) -KRyR, (13)

where KR is the corresponding stiffness matrix, which is obtained by inverting
the small flexibility matrix corresponding to the intermediate redundant
supports, taken from F*.

A new vector of forces is now formed by including the reactions R in place
of the null elements in the vector of inertia and damping forces, P*. This new
vector is denoted by P*.

2.4. Dynamic Response and Loading

For a bridge with no intermediate redundant supports, matrices F and P*
are identical and Eq. (12) gives the final dynamic deflections i.e. in such a
case y y*.

Otherwise, with reactions R included, the dynamic deflections of the basic
bridge are given by

y* F*p + F*p* (14)
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and the deflections y of the actual bridge are then obtained from y* by deleting
the (zero) elements corresponding to the redundant-reaction stations.

Alternatively, the dynamic deflections may be calculated as

y FP + FP, (15)

where a column F.a of F represents the deflections of the actual bridge at the
mass points due to a unit load at the jth axle position. However, it is more
convenient to calculate the deflections according to Eq. (14) as it is then not
necessary to determine the additional matrix F by interpolation on each
column of the matrix F.

Calculation of the dynamic bending moments and shear forces in the bridge
by force summation [3] here involves evaluation of these quantities pro-
gressively from the left hand end. The additional force and moment reactions

Table 1. Outer Support Reactions Required to Calculate Bending Moments and Shear Forces
in the Bridge by Force Summation Method

Case Conditions at Bridge
Outer Supports

Outer Support Reactions
Required

1

A,A— —TiB
nrnr? n777

(a)

A/r— |b
//////

(b)

Force Reaction at A (R1);

2

(a)
A i jh*

(b)
A | 1 B

(c)

Force Reaction at A (R1)
and moment reaction at
-MO1)

3 A |B Nil; Ri Qi 0

4

A B

Force Reaction at A (R1)
and Force Reaction at
BiQ1)

ttttt (a)
Mr

A B

77777 (b) /77TTI

5
A

B Force Reaction at A (R1);
f77m 77T77
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at the supports of the basic bridge which are necessary for this purpose are
indicated in Table 1 for the various possible support conditions considered.

It is assumed here that the influence-eoefncient vectors of the required
reactions are known from previous calculations. These vectors are denoted as

P* and Q*; e. g. for a bridge with both ends simply supported (Case 1, Table 1),

P* is the vector of reactions at the left hand support due to a unit load at the
reference stations of the basic bridge. Since only one additional reaction is
required in this case, Q* is a null vector.

The required reactions are calculated as

& (R*)T P* + (R*)T P
and Q1 (#*)TP* + (Q*)TP, (16)

where, when axle positions do not coincide with reference stations, P* and Q*
are the vectors of interpolated values of reactions due to a unit load at the
axle positions. For a bridge with no intermediate redundant supports, P* is
identical to P.

The dynamic bending moment and shear force at a section may now be
calculated by considering equilibrium with the loads and reactions on the
bridge to the left of that section.

3. Static Deflections, Bending Moments and Shear Forces

The static deflections, bending moments and shear forces are calculated in
the same way as the dynamic values, with the bridge inertia and damping
forces omitted.

Static deflections of the basic bridge are first calculated as

yS F*P*, (17)

where Pst is the vector of static axle loads of the vehicle.
For a bridge with no redundant intermediate supports yst~y?f Otherwise

the reactions at the redundant intermediate supports are calculated as

Rst=K»(-yB) -KBy*, (18)

where KR is the stiffness matrix as defined in See. 2.2 and yR is the vector of
the static deflections at the points of intermediate redundant supports - con-
tained in y$, Eq. (17).

The static deflections are then calculated by an equation similar to Eq. (14),
i.e.

y*t F*Pst + F*Psf, (19)

where the vector Psf contains the reactions Rst at appropriate places, other
elements corresponding to forces at the mass points being zero. yst may be
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obtained from yft by deleting the (zero) elements corresponding to the
intermediate redundant supports.

The additional static reactions required for the calculation of static bending
moments and shear forces are obtained as before, i. e.

and
Rl {R*rPsf + (R*)TPsl

Ql {Q*)TPsf + (Q*)TPst.
(20)

The static bending moments and shear forces are then calculated in the
manner indicated in See. 2.4.

4. Illustrative Example

An example is given here to illustrate the method and to show the
convergence of results obtained by including different numbers of natural modes
of the bridge in the analysis. Impact factors for deflections are also compared
with those obtained by direct coordinate transformation (Eq. (2)) for a one-
mode and a three-mode representation of the bridge. All the results are
obtained using a Computer program developed for the IBM 360/50 Computer
at the University of New South Wales.

The response of a two-span continuous bridge with uniform distribution of
mass and stiffness is calculated under the passage of a two axle sprang vehicle
moving with a nominal speed of 75 ft/sec. (22.85 m/sec.) on the bridge. The
actual speed fluetuates slightly about the nominal speed as a result of bridge
and vehicle response, constant traction being assumed.

A
/TTTT/

10' — 20'-
(305 {6-10m)

B

77777/

2 0'-»- 10'--10' —20'

-60-
(18-29m)

C

77777/

-60'-
(18-29 m)

Fig. 4. Bridge model for illustrative
example.

The idealised bridge model is shown in Fig. 4 and the vehicle model is shown
in Fig. 2. The corresponding numerical data are as follows:

Length of each span:
Mass per unit length:
Stiffness (EI):

Numerical Data

1. Bridge

60 ft (18.29 m)
126.1 slugs/ft (6036 kg/m)
4.698 Xl09lbft2
(1.941 xl09Nm2)
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2. Vehicle

Static load on each axle:
Pitching inertia:

Axle spacing:
Normal height of centre of mass

above pavement level:
Tyre stiffness at each axle:
Vehicle Suspension stiffness at

each axle:
Limiting friction at each axle:

32,040 1b (142,500 N)
38,500 slugs ft2
(52,170 kg m2)
14 ft (4.267 m)

6ft (1.829 m)
480,000 lb/ft (7.003 X IO6 N/m)

270,000 lb/ft (3.939 X IO6 N/m)
4800 lb (21,350 N)

For ease of presentation the bridge mass is assumed lumped at only three
points per span. The inertia matrix M of the bridge is then a sixth order
diagonal matrix, each diagonal element being 2522.0 slugs (36,800 kg).

The natural mode shapes of the bridge with amplitudes normalised3as in
See. 1 are shown in Fig. 5.

////)// /7U77 fn/71

Mode 1-Natural Frequency 2-66 Hz.

Mode 2- Natural Frequency 4-15 Hz.

— 2

Mode 3 - Natural Frequency 10-3 Hz.
1 1 I I

10020 40 60 80

Spanwise Coordinate X (ft.)
Fig. 5. Illustrative example - normalised natural mode shapes of bridge.



124 H. KISHAN - R. W. TRAILL-NASH

The basic bridge is obtained by removing the intermediate redundant
support B (Fig. 4). The corresponding basic flexibility matrix F* is the
following, in which the units are ft/lb.

0.716 1.65 1.94 1.90 1.74 1.19 0.420"

4.31 5.34 5.26 4.88 3.35 1.19
7.24 7.36 6.95 4.88 1.74

i^*Xl06= 7.66 7.36 5.26 1.90

7.24 5.34 1.94

Symmetrie 4.31 1.65

0.716

(The conversion factor to convert the basic flexibility matrix to SI units
is 0.0685 m/N.)

The (sixth order) flexibility matrix of the actual bridge is not required for
the present calculations and is therefore not included here.

The inertia and damping forces at any instant are calculated by the procedure

described in See. 2.2 and deflections of the basic bridge are then
calculated using Eq. (12) The matrix F* of Eq. (12) changes in aecordance with
the changing axle positions of the vehicle and is calculated by interpolations
on the columns of the basic flexibility matrix F* as indicated in See. 2.2.

The matrix KR required to calculate the redundant reaction at support B
(Eq. 13) is a single element in this example. It is the inverse of element (4,4)
of the matrix jF* and is therefore 1.305 x IO5 lb/ft (19.04 x IO5 N/m). With the
reaction at B known, the vector P* is formulated by inserting this at the
appropriate place in the vector P of inertia and damping forces. The dynamic
deflections of the bridge are then obtained using Eq. (14).

The reaction at the left hand support of the bridge is required for the
calculation of dynamic bending moments and shear forces by the force summa-

r/wr 777T7 77777

1 2

+-. c
o o \\° +->

+j « O-"h-
// \\\VNDirection of

Vehicle Travelx*-

12010020 40 60 80

Spanwise Coordinate X(ft)

LEGEND
O One-mode Solution

——o Two-mode Solution
—X—— Three-mode Solution

Fig. 6 Illustrative example - maximum impact factor distribution for deflection
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tion method (Reference Case 1, Table 1). This reaction is denoted by R1. The
influence coefficient vector R* corresponding to R1 is obtained as

.ß* {0.917 0.750 0.583 0.500 0.417 0.250 0.0833},

where the braces indicate a column vector.
The vector Ä* of the influence coefficients of R1 due to a unit load at the

axle positions is calculated by interpolations onÄ*. The reaction R1 is then
calculated according to Eq. (16). It is then possible to calculate the dynamic
bending moments and shear forces progressively from the left hand end of
the bridge.

Corresponding static deflections, bending moments and shear forces are
calculated in a similar manner for comparison.

CD

777777

Z 0-9

7^777

Direction of
Vehicle trovel

J I

20 40 60 80

Spanwise Coordinate X (ft.)
(a)

100

7777777

/^x//

A

i
120

_ s

s

VA
II /

Direction of
Vehicle travel

10020 AO 60 80

Spanwise Coordinate X (ft.) *-
(b)

LEGEND
D One - Mode Solution.
o—- Two-Mode Solution.
x Three-Mode Solution.

Fig. 7. Illustrative example — maximum impact factor distribution for (a) positive bending
moment and (b) negative bending moment.
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For the present example the bridge response has been calculated for a one-,
two- and three-mode representation of the bridge. A bridge designer is usually
most interested in the maximum impact factors for deflections and bending
moments along the bridge. The term "maximum impact factor" is defined
here for a particular point on the bridge as the ratio of the maximum dynamic
value to the maximum static value at that point; and the maximum dynamic
and maximum static values do not necessarily occur for the same position of
the vehicle on the bridge.

The maximum impact factor curves for deflection and bending moments
are plotted in Figs. 6 and 7 respectively and it will be seen that the two- and
three-mode analyses by the proposed method show generally good agreement
(and convergence). The corresponding curves of deflection obtained by direct
coordinate transformation (Eq. (2)) are shown in Fig. 8 for one-mode and for

7777777? 77777 777771

M

09

^ Direction of
Vehicle travel

20 40 60 80

Spanwise Coordinate X(ft)
(a) One-Mode Solution

X"N

l£ o

ü « 11
D Ol \ \

X\ \M / \\\l / Direction of \
Vehicle travelyy

1200 20 40 60 60 100

Spanwise Coordinate X(ft) *-
(b) Three-Mode Solution

LEGEND
a Direct Coordinate Transformation
X Proposed Method

Fig. 8. Illustrative example - comparison of maximum impact factors for deflection obtained
by the proposed method and by dnect coordinate transformation
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three-mode representations of the bridge. In these a comparison is given with
the more accurate curves of the present method, and large discrepancies are
evident. The one-mode representation even shows an impact factor of less

than unity everywhere.

5. Conclusions

Given that a highway bridge is idealised as a lumped-mass beam model
and that its dynamic response to the passage of a vehicle is analysed in terms
of a small number of natural modal coordinates, a method is presented for
Computing deflections, shears and bending moments which has greater accuracy
than is obtained by direct coordinate transformation. The procedures are
based on a method suggested by Williams [2] and the method of "force
summation" [3] which are adapted to serve the present problem. In the
application a "basic bridge" is defined as one with its intermediate redundant
supports, if any, removed from the actual bridge. The instantaneous inertial
and damping forces from the bridge structure, and the vehicle axle loads, are
used in conjunction with the flexibility matrix of the basic bridge to evaluate
reaction forces of the real bridge at its intermediate supports. Corresponding
deflections for the actual bridge are then calculated, using the flexibility
matrix of the basic bridge. Special attention is required in treating vehicle
loads, since at a particular instant the axle loads may not coincide with bridge
reference stations to which the flexibility matrix refers. Dynamic bending
moments and shear forces are calculated from the known loadings and reaction
forces by the force summation process. For comparison, corresponding
calculations are then made for statically applied vehicle loads.

To illustrate the method, the response of a two-span continuous bridge is
calculated under the passage of a two-axle vehicle, with analysis in terms of
one-, two- and three-mpde representations. When the present method is used,
good agreement is obtained for maximum impact factor values for deflections
and bending moments calculated by two- and three-mode representations of
the bridge. However, corresponding results for deflections obtained by the
usual method of direct coordinate transformation have considerable differences,
especially in the single mode representation. It is shown that for comparable
accuracy fewer modes need be included for the present method than are
required in direct coordinate transformation.

Notations

A Vector of modal generalised coordinates for bridge deflections.
Ä Vector of modal generalised coordinates for deflections due to the

static application of instantaneous axle-loads.
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A Vector of modal generalised coordinates for deflections due to the
static application of bridge inertia and damping forces.

G Viscous damping matrix for the bridge corresponding to reference
Station deflection-coordinates.

D Generalised damping matrix.
F Flexibility matrix of the bridge for reference Station coordinates.
F* Flexibility matrix of the "basic bridge".
F Matrix of bridge deflections at the reference stations due to a unit

load at the instantaneous axle positions.
F* Matrix of deflections of the basic bridge due to a unit load at the

instantaneous axle positions.
h Time-interval used for numerical integration of the equations of

motion.
K Bridge stiffness matrix for reference Station coordinates.
KR Stiffness matrix corresponding to the locations of intermediate redun¬

dant supports in the basic bridge.
M Diagonal inertia (or mass) matrix of the bridge.
P Vector of generalised forces on the bridge corresponding to the axle

loads.
P Vector of axle loads.
P Vector of bridge inertia and damping forces.
P* Vector of forces at the reference stations of the basic bridge.
P* Vector of bridge inertia and damping forces and zero forces at reference

stations corresponding to the deleted intermediate redundant supports
in the basic bridge.

P1, Q1 Support reactions in addition to the intermediate redundant reactions
required for the calculation of bending moments and shear forces by
the force summation method.

R*, Q* Influence coefficient vectors corresponding to R1 and Q1 for a unit
load at the reference stations of the basic bridge.

P*, $* Influence coefficient vectors corresponding to P1 and Q1 for a unit
load at the instantaneous axle positions on the basic bridge.

P Vector of statically indeterminate reactions at intermediate supports.
W Total work done by external forces and internal stresses.

y Vector of dynamic bridge deflections at reference stations.

y Vector of bridge deflections corresponding to the static application of
instantaneous axle loads.

y° Vector of bridge deflections at the axle positions due to the static
application of instantaneous axle loads.

yR Vector of deflections at stations corresponding to intermediate redun¬
dant supports in the basic bridge.

y* Vector of deflections at the reference stations of the basic bridge.
0 Matrix of natural mode vectors for the bridge.
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0° Matrix of bridge mode deflections under the vehicle axles.
Q Diagonal matrix of bridge natural frequencies of Vibration in radians/

second.

Notes:

1. "Basic bridge" refers to the bridge with the intermediate redundant
supports, if any, removed.

2. The ith row and the jth column of a matrix (say F) are represented respectively

as Ft. and F.a.
3. The subscript "st" with a symbol refers to the static loading condition on

the bridge.
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Summary

For analysis of response under vehicle loads a highway bridge is often
idealised as a massless elastic beam with an appropriate distribution of lumped
masses. Equations of motion for the bridge may then be formulated in terms
of natural modal (or normal) coordinates and the response calculated in terms
of only a small number of these.

A method is presented here for calculating bridge dynamic response which
for such a set of coordinates yields greater accuracy than is obtained by direct
coordinate-transformation. Also the "force summation" concept is employed
for calculation of dynamic bending moments and shear forces. A numerical
example is included to demonstrate the improvement in accuracy obtained.
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Resume

Pour analyser l'influence des charges de vehicules sur un pont autoroute
celui-ci est souvent idealise comme poutre elastique sans masse avec
distribution appropriee de masses ponctuelles. Les equations de mouvement pour
le pont peuvent alors etre formulees en termes de coordonnees modales (ou
normales) et l'influence peut etre calculee en termes d'un petit nombre de

ceux-ci.
On presente ici une methode de calcul de l'influence dynamique de ponts

qui pour une pareille serie de coordonnees fournit une plus grande exactitude
que pour une transformation directe de coordonnees. Egalement la conception
de la «sommation des forces» est employee au calcul de moments de flexion
dynamiques et des forces de cisaillement. Un exemple numerique est donne

pour demontrer 1'exactitude elevee.

Zusammenfassung

Für die Analyse des Einflusses der Fahrzeugbelastung an einer Autobahnbrücke

wird diese häufig als masseloser elastischer Balken mit entsprechender
Verteilung punktförmiger Massen idealisiert. Bewegungsgleichungen für die
Brücke können dann in Termen natürlicher modaler (oder normaler) Koordinaten

und der errechnete Einfluss in einer nur kleinen Anzahl derselben
formuliert werden.

Hier wird eine Methode zur Berechnung des dynamischen Einflusses von
Brücken vorgelegt, welche für eine solche Reihe von Koordinaten grössere
Genauigkeit ergibt als bei direkter Koordinatentransformation. Auch das

«Kraftsummierungs-Konzept» wird zur Berechnung dynamischer
Biegemomente und Schubkräfte verwendet. Zum Nachweis der erhöhten Genauigkeit

wird ein numerisches Beispiel angeführt.
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