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Automatic Optimum Plastic Frame Design

Automatisches optimales plastisches Dimensionieren von Rahmen

Dimensionnement optimal automatique de cadres par moments plastiques

B. O. KUZMANOVIC N. WILLEMS
Professor of Civil Engineering, University Professor of Civil Engineering, University

of Kansas, Lawrence, Kansas, U.S.A. of Kansas, Lawrence, Kansas, U.S.A.

1. Introduction

The proposed method is based on the plastic moment distribution
technique and the subdivision of multistory frames *).

1.1. Basic Assumptions

The following assumptions are made:

1. Frames are rectangular and have rigid joints.
2. Members are prismatic.
3. Loads are static.
4. Vertical loads are represented by single concentrated loads acting at beam

midspans.
5. Horizontal loads are represented by concentrated loads acting at floor levels.
6. A continuous spectrum ränge of member sizes is available.
7. Frame stability does not control.

In addition it is assumed that the simple plastic theory for rigid frames
applies and that effects such as caused by axial loading, unequal column
shortening, the spreading of the yield zone and the influence of shear stresses
and strain hardening [1] can be considered as secondary for an initial design.

*) References are given at the end of this paper.
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1.2. Objective Function

To solve a deterministic structural optimum design problem involves
finding a position vector D, which locates one point in an w-dimensional design

space such that all equality or inequality constraints fjc(D) 0 (where
k= l, 2, 3,. .K) are satisfied while an objective function W (D) at the same
time is a minimum. The objective function is a linear expression approximating
the frame weight in terms of the füll plastic moment capacity of each member

{Mv)i and its length li. Thus
i=n

W(D)= Zk(Mp)t, (1)
1

where n is the number of members. The plastic moments represent the design
variables although some of them may be given preassigned values such as
would be the case in an "equal" or "minimum stanchions" design.

When using a linear weight function there may be a ränge of designs which
all have the same minimum weight. In most structural optimization problems
the contours of the objective function prove to be very flat. This implies that
there is a broad ränge of designs which differ by only a small percentage from
the optimal weight [2]. As the final member size selection is affected by
availability and uniformity of sizes and several additional constraints, the
simplification due to using a linear weight function is justified.

1.3. Proposed Method

The first two stages of the plastic moment distribution method [5] consist
of constructing an admissible moment distribution and as such do not form
part of the optimization procedure. The third stage however, which consists
of reducing and equalizing moments, represents the actual optimization
procedure. When two moments acting at two different sections in a frame
member are equalized by reducing the larger and increasing the smaller
moment, two goals are achieved at the same time - one additional hinge is
formed while also the frame weight is reduced.

If the Virtual work equations (Fig. la) for beam, sway and Joint collapse
mechanisms are first written and then differentiated, the following four equations

governing the adjustments dMi result:

-dM3 + 2dM4L + dM5 0,

dM1 + dM2 + dM6 + dM1 0,
dM2 + dM3 0,

(2)

dM5 + dM6 0.

The coefficients of the dM 's represent the carry-over factors and will be
either 0, ±1 or +2. The moment adjustment is carried out progressively at
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Fig. 1. Simple portal frame.

(a) Loads. Intermittent lines denote tensile side of a member under the action of a positive
moments. (b) Moments from independent failure mechanisms. (c) Statically admissible moments.

(d) Collapse mechanism.

a number of "potentially critical sections" [6] so as to satisfy all the
equilibrium conditions (Eqs. 2) simultaneously until the structure or part thereof
is transformed into a kinematical mechanism with one degree of freedom. By
equalizing moments, plastic hinges are formed and this progressive cycling
process is therefore dynamic in character. The proper sequence of creating
hinges automatically until a minimum weight design is achieved with a minimal

number of steps, forms the most important part of the proposed method.
By partitioning a frame into basic units the designer is freed from trying to
assume and try several collapse mechanisms. The successive creation of plastic
hinges can be obtained by using correction moments which represent terms
of a decreasing geometric series. The sum of such a series can easily be deter-
mined thus yielding the final moment values without carrying out corrections
by successive cycling.

Partitioning of multistory frames was first suggested by N. S. Boulton [7].
He had to assume a collapse mechanism and use a modification to the Dines
[8] method to obtain a Solution. The partitioning is possible because even in
elastic analysis of such frames it is known that the member end moments in
a story have a successively diminishing effect on stories above or below.

The proposed method can easily be extended to include distributed loads
and several concentrated loads and considerations of instability and drift as
well as the effect of axial and shear forces.
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Following the first programs [3,4] linear programming for plastic design
optimization is now widely used. Most of the optimization search methods
are of the feasible direction type using either the kinematical or the statical
approach. The plastic moment distribution method although known, has not
been used for developing linear optimization programs [5].

2. Optimal Design of a Single Frame

Consider the frame shown in Fig. 1 a under the action of loads V and P.
Stage one consists of constructing moment diagrams from independent simple
beam (BGD) and sway failure mechanisms (ABDE) (Fig. lb).

Stage two consists of establishing rotational balance at joints B and D so

as to obtain an admissible bending moment distribution as shown in Fig. 1 c.

Setting M± MB and M1 M2 M6 M7 -MS as shown in Fig. lc, the
"weight" at the start of the optimization process, depending on the relative
values of M B and M S, is thus

MB>MS: W0 2H(MS) + L(MB), (3a)

MB<MS: W0 (2H + L)MS, (3b)

MB MS: W0 (2H + L)(MS)or (MB). (3c)

2.1. MB>MS

Hinges will form in the frame at the end of stage two as shown in Fig. 1 d,
representing a two-degree of freedom mechanism. To equalize ikf4 and M5
while holding M2 and M3 constant, a correction Ax is subtracted from M± as
shown in Fig. 2 a. To maintain equilibrium 2 A1 is then added to M5 and
subtracted from Mq while Ax is added to Mx and Jf7. From the equation that
M^-A± M5 + 2Aly Ax is obtained as:

M3=MS

M5=MS+2A

f2A
3 M2=-MS

M4=MB-A,

.// I JM, -MS+A,

fA+A
(a)

M6=-MS-2A,
erb

20i

Hm7=-MS4-Ai

(b)

Fig. 2. First half cycle, Case MB>MS.
(a) Equalization of beam moments M± and Mh. Intermittent lines admissible moments.

(b) Collapse mechanism after the first half cycle.
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(4)

The corresponding collapse mechanism is shown in Fig. 2 b. The moments can
now be further modified by equating the moments Ml7 Me and M7 while
holding Jf4 constant. By adding 1.5^ to M2 and M6 and substracting it from
M3 and M5 to balance joints B and D and subtracting 1.5 Ax also from Mx
and M7 to satisfy the sway condition, the moments are

+ 1 5A
M0=-MS + I 5A

M4 ^I.5A

M4=MB-A,

M| -MS-0.5A
I.5AI.5A,

(a)

M1 M6 M7 -MS-0.5A1,
M2 -Ms -M S+ 1.5 Jls
M4 MB-A1 MB,
M5 - M6 M8 + 0.5A1 WS.

^-I.5A,
+ l.5Ai

-J"m6=-MS-0.5A,

M7 -MS-0.5Ai

(b)

(5)

20

Fig. 3. Second half cycle. Case MB > MS.
(a) Equalization of stanchion moments. Intermittent lines moments after first half cycle.

(b) Final collapse mechanism.

This results in the collapse mechanism shown in Fig. 3 b and the frame weight
is Wx 2H(MS + 0.5A1) + L(MB-AJ
or W^Wo-A^L-H). (6)

This completes the first cycle.
The same procedure is now repeated again and a new A2 is used in terms

of the new values of M4 and M5 which yields

/j2 MB-MS *1
2 ' (7)

Repeating the two previous steps of the first cycle yields a new distribution
at the end of the second cycle. The new moment values are (analogous to the
expressions given in Eqs. (5)):

Mx M6 M1 -MS-0.5A1(1 + ^),
M2 -Ma -MS + 1.5A1{l + $),

(8)
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Mt MB-A1(l+%) MB-^,
1\7T .Q i 1

M5 -M6 M £ + 0.5^(1 + 1) =M S +

The correction moment for the third cycle is therefore

(8)

A3
MB-^-MS-^2 4 ^(i-i-Ä)- 22' (9)

(10)

In general the correction for the n-th cycle is

A =-A.

Thus, the total sum of corrections for an infinite number of cycles is

5^=1^(1+1+ ¦•• +^l_)j1 2J1. (11)

The final value of the moments after an infinite number of cycles thus is

(Fig. 4)

Mx -M5 M6 M7 -MS-0.5A1Sn -MS-A1,
M2 -M3 -MS+1.5A1Sn -M S + 3 Al9 (12)

ikf4 MB-A1Sn MB-2AX.

M5=MS+Ai

3 M2 -MS+I.5A| 4

M3=MS-|.5A,

M4 MB-2A

M6=-MS-A,

7 M7=-MS-A,
M,=-MS-A,

Fig. 4. Final moments after infinite cycling. Case MB>MS.

The above procedure can be generalized by assuming a correction A1 necessary
to equalize ikf4 and M5 as done before and given by Eq. (4). Subsequent
corrections to equalize Ml3 M6 and M7 are assumed to be yA1. Again calling the

sum of all corrections SnA1 the final moments are

Ml M, -MS + (l-y)A18n,

Ml MB-A1Sn,
M6 -M6 MS + (2-y)A1Sn.

(13)
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Setting Mt M5 -Me and M1 M6 M1 yields

MB-A1Sn MS + (2-y)A1Sn, (14a)

-MS + (l-y)A1Sn -MS-(2-y)A1Sn. (14b)

Using the expression given for Ax in Eq. (4) yields y 1.5 and Sn 2 which is
the same result as given before.

Making use of the geometric progression it is thus possible to find the final
moment diagram without carrying out any cycling and the final weight is

given as

Wn 2H(MS + A1) + L(MB-2A1) W0-2A1(L-H). (15)

The corresponding final moment diagram is shown in Fig. 4. From Eq. (15)

it is obvious that the weight decreases only if
L>H. (16)

In most practical cases this is true. If however L<H a frame can always be
modified so as to satisfy Eq. (16) by increasing L and decreasing the vertical
load [10]. As will be shown later, if such a modification is made the best value
for L is twice the height H.

The above procedure in its final result as expressed in Eqs. (12) and (15)
is only correct if at no time during the cycling process \M3\ > Jf4. In such a
case the collapse mechanism becomes a typical three hinged beam mechanism.
This would not occur, according to Eqs. (12), when

-MS + 3A1<MB-2A1 (17)

f|<4. (18)

If this inequality is satisfied the true mechanism is the one shown in Fig. 3b.
It can be easily shown that Foulkes theorem in this case is satisfied and therefore

the distribution and corresponding mechanism yields a minimum value
for the linearized weight function [5],

In case MB/MS>4= it will occur that after say k cycles (where 0<h<n),
\Mz\=M4i. The cycling should be stopped at this point. Using Eqs. (12) and
replacing Sn by Sk and setting \MS\ Jf4 yields

6(MB + MS)
5(MB-MS)s* :)z»z*- <19)

If there is only vertical loading, M S 0 and therefore Sk equals 6/5.
The final values of the moments and the corresponding partial collapse

mechanism are shown in Fig. 5. In this case the total weight is

Wk (H + L)(MB-A1Sk) + (MS + 0.5A1Sk)H

Wn-2MB^^-2MS^}^.
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M3=MS-!.5A,(Sk)

M2=-M3

M4 MB-A,(Sk)

M5=MS+0.5Ai (Sk)

M6=-MS-0.5A,(SJ 3 Q _Q~~
2 202

M, -MS-0.5A,(Sk)

(0)
M7=-MS-0.5A,(Sk)

passive hinqe^

'b)

Fig. 5. Finite cycling, Case MB> MS.
(a) Moments after &-th cycle. (b) Collapse mechanism after &-th cycle.

2.2. MB<MS

Although this case is not likely to occur very frequently it will be briefly
discussed here. The admissible moment diagram and collapse mechanism are
shown in Fig. 6 while W0 is given by Eq. (3b). As Jf4 < M5, A1 equals zero and

geometric progression does not apply. No cycling is necessary and only one
correction needs to be made by setting M3 and M5 equal to M± by reducing
M3 and M5 by

A =MS-MB. (21)

M5=MS

M,= -MS

M^MB
M3 MS

A=MS-MB

M6=-MS

M7=-MS

9,-9. 9*9
I "2

Ca) (b)

Fig. 6. Case MB<MS.
(a) Statically admissible moments. (b) Collapse mechanism for admissible moments.

M3 MB

-AM2=-MB
M*=MB+A +A

M6/=-MB

_/_-~ — "— M4 MB

0M| -2MS*H-MB
Aj

M7=-2MS + MB

5Äö|+

Fig. 7. Moment distribution. Case MB<MS.
(a) Equalization of beam moments. Intermittent lines admissible moments. (b) Collapse

mechanism after equalization.
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The moments are given by

M1 M1 -MS-A -2MS + MB,
¦ M2 M3 Mi M5 -Jf6 MB. (22)

The final weight is

W L(MB) + 2H(2MS-MB) W0-A(L-2H). (23)

This value will only decrease if L>2H. For the collapse mechanism shown
in Fig. 7 b, when it is tested to see if it satisfies Foulkes theorem, it is found
that it only does so when L>4H because 92 has to be larger than 6X. So only
if L>4H is there a real minimum. If L is larger than 2H and smaller than
4H the design will be only at the Vertex point of a permissible region.

If MB equals zero the frame collapse is a sway mechanism.

3.2. MB MS

In this case a plastic hinge will develop at every Joint and an overcomplete
failure will occur. Obviously no optimization is needed.

2.4. Examples of Simple Portal Frame

As an illustration of case 1 (M^ > M5) two problems are solved.

a) Combined loading. This problem was originally solved by J. Heyman
and W. Präger [11] using their method. The moment at midspan of simple
beam BCD equals M± MB= Fi/4 168(4)/4= 168. The sway moment is
M S PH/4 84 (3)/4 63.

Because MB> M /Sand MBjMS= 168/63 2.67 < 4 /. n-* oo.
The correction moment now equals (Eq. (4)) ^ (168 — 63)/3 35. Using

Eq. (12), the final moments are

M1 -Mh MQ M7 -63-35 -98,
M2 -M3 -63+.3(35) +42,
M± 168-2(35) - +98.

In Figs. 8b and 8 c the moment field and the collapse mechanism are shown.
The weight is Wn 98(2 x 3 + 4) 980 which is identical to previous results
(11).

b) Vertical Load Only. This problem illustrates the case where n -> k, i.e.,
the cycling has to be terminated at the moment when |Jf3|=Jf4. This is the
case of local beam collapse. The problem was solved by a different method by
Massonnet and Save [6]. Their optimum weight W= 1008 is exactly the same
as obtained by the proposed method. The frame and its loading are shown in
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Fig. 8. Example (A).
(a) Combined loading. (b) Final moments. (c) Final collapse|mechanism.
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20:
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(c)

Fig. 9. Example (B).
(a) Vertical loading. (b) Final moments. (c) Final collapse mechanism.
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Fig. 9a. The simple beam failure moment is lf4 MB 210x4/4 210.
The sway moment is MS — 0 and the correction moment A± (210)/3 70;
because MBjM#>4 using Eq. (19) yields Sk 6/5 1.20. From Eq. (12) the
final moments are found to be

M1 -M5 M6 M7 -0.5(70) (1.2) -42,
M2 -Ms 1.5 (70) (1.2) 126,

Jf4 210-70(1.2) 126.

In Fig. 9 b and 9 c the moment field and the collapse mechanism are shown.

3. Single-Bay Multi-Story Frames

The proposed method can be extended to apply to single-bay multi-story
frames. Starting from the top story, the optimization is performed. The only
difference is that any adjusting moments distributed to the bottom of stan-
chions of a story must be added with changed signs to the beam-end joints
of the story immediately below it so as to preserve Joint equilibrium.

Pc

B 4

A 4 E

[G_ I F

10 I 10 "

+ 7.5

A3 -7.5 D -7.5 A3 -15 4 E -15

+ 75

+ 15

+30

L A

7.5 -15
(C)(b)

3) + 0

0 C / -10
Oj B*^*^

+10

' D

+ 26.67/
-in/ -10 / -16.67

IU
A/ /-I0 E/

+ 2o/
/ / /

7 + 26.67 // G / F

e2-ö53DB 3

**4

6,+e,

(d) M
Fig. 10. Two-story, single-bay frame.

(a) Loading. (b) Top story admissible moments. (c) Bottom story admissible moments. Beam
end moments increased by Ax 2.5. (d) Final moments. (e) Final collapse mechanism.
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As an example, the problem of a two-story single-bay rectangular frame
(Fig. 10) is taken which is the same as given by B. G. Neal [5]. His minimum
value of the weight is 1533.3, exactly the same as obtained here.

a) Top Story. The admissible bending moments for the top story are
reproduced in Fig. 10b where MB 3 X 20/4 14 and MS 2 x 15/4 7.5;

MB/MS 2.0 < 4.0 /. Sn 2.0, and A1 (15-7.5)/3 2.5.

+ 750 + 7.50

-7500 -7.50-7.50

7.50

+ 16.25

+ 25.00

750750
750

(a)

+ 10.00

+ 7.50

+12.50

7.50 -750

-5.ob\

7
+ 10.00

+ 12.50

10.0015.00
(b)

0240320

0,-0
20220

-12.50

10.00

(c)

Fig. 11. Two-bay, Single story frame.

(a) Loading and statically admissible moments. (b) Final moments, minimum beam design.
(c) Final collapse mechanism, minimum beam design.



AUTOMATIC OPTIMUM PLASTIC FRAME DESIGN 143

Using Eqs. (12) the final moments in the top story are obtained and are
shown in Fig. lOd.

b) Bottom Story. The admissible bending moments are: MB 6 x 20/4 30;
MS (2 + 2) 15/4 15; MB/MS 2.0<4.0 /. Sn 2.0; J2 (Jf4-Jf6)/3

(30 - 25)/3 1.67. The beam moments M3 M5 + 22.5 had to be changed
by +2.5 — At of the top story, i.e., the negative of the correction moment
— 2.5 is added to the end-beam moments to re-establish rotational balance of
joints A and E. Using the same Eqs. (12) the final moments are as shown in
Fig. lOd. The collapse mechanism is shown in Fig. lOe. The final weight is:
W 10 (20 + 2x15) + 26.67 (20) + 2 (15) (16.67) 1533.3 which is same as
obtained by Neal [5].

4. Single Story Multibay Frames

The optimization of these frames depends to a large extent on the type of
design that is selected. Two of the most common types are the so called
"minimum beam" design and the "equal stanchion" design. The second type
represents a more practical and realistic design. It is impossible to discuss in
detail both approaches except to mention that several examples have been
worked using the same principles as discussed above. An example of minimum
beam design is shown in Fig. 11. The exact Solution by Neal [5] yields an

47.50

-7.50

4 19.16

11.66r66

7.5Q,

0.00
r7.50

416.25
-5.84

4/19.16
\U^
4 25.00 + 10.4

5.42
0.42

4 9. 6

7.50 -7.50
a)

B-Q

0+e

202

(b)

Fig. 12. Minimum stanchion design.

(a) Moment distribution and final moments. (b)aCollapse mechanism.
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Fig. 13. Multistory frame, minimum stanchion design.

(a) Loading. (b) Admissible moments and moment distribution. (c) Final moments. (d) Final
collapse mechanism.
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overall weight of 987.5. The proposed method gives 1012.5( + 2.54%). The
same problem solved as an equal stanchion design is shown in Fig. 12. The
weight thus obtained is 953.9 while Neal obtained 954.1.

5. Multistory, Multibay Frames

The procedure discussed in sections 3 and 4 above can be combined to
solve multistory-multibay frames. In Fig. 13 an example is shown using the
equal stanchion design approach. To demonstrate how short and effective the
proposed method is, all the necessary calculations are shown in Fig. 13 b. This
problem was originally discussed by Neal and Symonds [12] and later by
Boulton [7]. The weight obtained by the proposed method is 38.72 as
compared with 38.22 found by Boulton.

6. Conclusions

The proposed method makes use of the well known plastic moment
distribution method. Cycling is eliminated by recognizing the existence of geometric
progressive correction moments. Although the method is well suited for linear
programming, the main purpose of this paper is to show that even fairly
complicated frames can easily be designed by hand when making use of
geometric progression. The method is not always exact but even when approximate

is very close to other exact methods which are much more complicated
and require large Computer storage for relatively simple frames. The method,
like most available minimum weight designs is only developed for preliminary
design purposes. By considering additional structural constraints the design
can be checked and corrected as for any iterative design procedure.

List of Notations

i Subscript designating i-th member or section
k Subscript designating k-th cycle
lx Length of i-th member
n Number of members or cycles

yAx Correction moment
D Position vector
H Story height
L Span
Mi Bending moment at i-th section
dMi Correction moment
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(M^ Füll plastic moment of i-th member
M B Midspan bending moment of a simply supported beam
M S Sway moment
P Horizontal concentrated force
SkA1 Sum of correction moments after k-th cycle
SnA1 Sum of correction moments after n-th cycle
V Vertical concentrated force
W0 Frame weight before optimization
W (D) Objective function
6 Angle of rotation at plastic hinges
A Correction moment in case MS>MB
Ax Correction moment in case MS<MB
\a\ Numerical value of a
a>b a greater than b

a<b a smaller than b
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Summary

An approximate method based on plastic moment distribution and
geometric progressions is developed for the optimal design of rectangular frames.
The optimization consists of reducing the required füll plastic moment capa-
cities of frame members by the successive creation of plastic hinges. For a
single frame "unit" the distribution of correction moments is developed in
such a way that they represent terms of a decreasing geometric series. Expressions

for the final moments can thus be found in closed form without cycling.
Using subdivision of frames, the method is adapted to the design of multi-
story-frames.

Resume

Une methode approchee est developpee pour le calcul optimal des cadres

rectangulaires. Cette methode est fondee sur la distribution des moments
plastiques et les progressions geometriques. Le procede d'optimisation con-
siste dans la reduction des capacites necessaires des moments entierement
plastiques des membres des cadres par la creation successive de rotules
plastiques. Pour un cadre "unite" la distribution des moments correctifs est
developpee de teile facon' que ces moments representent les termes d'une serie

geometrique descendante. On peut ecrire les expressions pour les moments
definitifs sans aucune repetition cyclique. En utilisant la subdivision des

cadres, la methode est adaptee au calcul des cadres ä plusieurs etages.

Zusammenfassung

Es wird eine Näherungsmethode für das optimale Dimensionieren
rechteckiger Rahmen abgeleitet. Diese Methode stützt sich auf die plastische
MomentVerteilung. Die Optimierung besteht aus der Reduktion der notwendigen

vollplastischen Momentenkapazitäten der Rahmenglieder durch
fortlaufende Schaffung plastischer Gelenke. Für eine einzelne Rahmeneinheit wird
die Verteilung der Korrekturmomente so entwickelt, dass diese die Terme
einer abnehmenden geometrischen Reihe darstellen. Die Ausdrücke für die
endgültigen Momente lassen sich alsdann in geschlossener Form ohne irgendeine

zyklische Wiederholung anschreiben. Unter Benutzung der Unterteilung
der Rahmen wird die Methode der Berechnung mehrstöckiger Rahmen ange-
passt.
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