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Lateral Buckling of Tapered Beams
Flambage latéral de poutres & section réduite
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1. List of Symbols

flange breadth

depth of beam

Young’s modulus

shear modulus

minor second moment of area
torsion constant

critical moment

reduction in stability due to taper

slenderness parameter

flange thickness
web thickness
section modulus

3 3 271/
dl) (bf °) (ti—o)] : taper parameter

br1) \tra
warping constant

lateral buckling coefficient
J for whole section
J for flanges only
ratio of minimum to maximum value of tapered dimension(s)
bending stress in beam
maximum bending stress in beam
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2. Introduction

In cases where beams are required to support a given system of loads which
produces a varying distribution of moment within the span a more economical
use of material may be obtained if a tapered member is employed, curtailment
of the section to suit the bending moment distribution producing a more
favourable pattern of stress. Tapered members may also be preferred in certain
circumstances for aesthetic reasons. However, the reduction in section proper-
ties may also render the member more susceptible to failure by lateral buckling.
Therefore, before such sections can safely be employed, a check on their
lateral stability is necessary. Although adequate lateral support may be
available in the completed structure, during erection the beam may be required
to support considerable loads when little or even no bracing is provided.

A review of several methods of calculating stresses in tapered beams has
been given by O’CoNNER [1], whilst VICKERY [2] has presented an extension
of the simple plastic theory to cover portal frames fabricated from tapered
members. In his tests, VICKERY observed that failure of the frames was often
precipitated by flexural-torsional buckling.

An analysis of the lateral buckling of a narrow rectangular section with
linearly tapering depth loaded by a uniform moment has been presented by

_LxE [3]. For a centrally loaded beam, MASSEY [4] has given a solution for a
section with linearly varying lateral flexural and torsional rigidities. Both of
these quantities were allowed to vary independently but the effects of warping
were not included. In their paper outlining the background to the revised
B.S. 153, KERENSKY, FLINT and BrROwWN [5] have given some consideration to
the buckling of members with curtailed flanges, curtailment of either flange
breadth or flange thickness being considered. However, the solutions given
were only approximate and further study of the subject was suggested.

Experiments on tapered I and channel sections tested as cantilevers sup-
porting either a tip load or a uniform load have been reported by KREFIELD,

BuTLER and ANDERSON [6]. Their test program considered both depth taper
é(bfo d1)3’2
Z1\bs1do

where Z = section modulus, b; = flange breadth, d = depth and suffices 0
and 1 relate to root and tip respectively, was suggested as a governing para-

and flange breadth taper and from the results the parameter « =

Tl‘_bfo"‘ bi:f_v;{)bfo
¥
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Fig. 1. Tapered I-section.
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meter for the reduced lateral stability of tapered cantilevers. Extensions of
this work to cover beam columns [7] and the lateral bracing of tapered
cantilevers [8] have also been reported.

This paper presented the results of a theoretical study of the lateral buckling
of tapered beams. Linear curtailment of either flange thickness, flange breadth,
web depth or all three quantities as illustrated in Fig. 1 is considered and
reduction formulae for use with existing methods of determining the stability
of uniform members proposed.

3. Method of Solution

The results presented in this paper have all been obtained from a Finite
Element analysis of lateral buckling. Details of the Finite Element formulation
of stability problems have been given by a number of authors [9-12] and will
not be repeated here. In the present work the element first proposed for the
analysis of torsional-flexural stability problems by BaArsouM and GALLAGHER
[13] and subsequently used extensively by the writer [14-16] has been em-
ployed. Earlier papers [13-16] have demonstrated the high degree of accuracy
that may be obtained with the use of only a small number of these elements.

However, all of these previous studies related to uniform members and it
was considered prudent that the present study should begin with an examina-
tion of the method’s convergence characteristics when applied to the buckling
of non uniform members. Since computing time increases rapidly with an
increase in the number of elements employed, it was necessary to determine
the minimum number of elements consistent with reasonable accuracy. Fig. 2
shows two series of results for a cantilever with a single load at the tip. Two
extremes of length have been included together with three values of flange
breadth taper v,. The results are presented in a form which relates y,, where y,
is defined in Eq. (1), to =, the number of elements.
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V=00 o o © ©o o o o
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Fig. 2. Convergence of finite element results for the buckling of tapered end loaded cantilevers.
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M, =2 (B, G, - (1)

where M, = maximum moment in the beam i.e. moment at the root,
E I, = minor flexural rigidity,
G J = torsional rigidity,
L = span.

For the purposes of the analysis the tapered member was replaced by a stepped
member, the dimensions and therefore the geometrical properties of each
element being those of its mid point.

Exact results are only available for the two cases involving a uniform beam
[17] and for each of these Fig. 2 shows that the method rapidly converges.
For the non uniform beams convergence is almost as rapid, the use of eight
elements always giving answers that are accurate to at least one per cent.
Several other examples including different types and levels of loading and
different forms of taper have also been studied and in all cases convergence
of the results was similar to that illustrated in Fig. 2. Thus it was decided
that the tapered beam could adequately be represented by eight elements.

For depth tapered members additional terms appear in the torsional equi-
librium equation due to the inclination of the flanges (18). The finite element
model, since it replaces the actual member by an elastic line possessing the
appropriate flexural, warping and torsional stiffness, neglects the effect of
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Fig. 3. Comparison of results for depth tapered section.
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these additional terms and an additional check upon its ability to represent
depth tapered members was therefore conducted.

Fig. 3 compares the author’s results with a set obtained from a numerical
solution of the complete differential equations by KiTtPoRNcHAT and TRAHAIR
[18]. Eight elements were used to represent one half of the beam, and since
part of the discrepancy between the two solutions is due to the fact that the
load was applied to the top flange whereas ref. [18] specifies a load acting
“Just above’’ the top flange agreement seems perfectly acceptable.

The computer programs employed were such that only the beam’s dimen-
sions, material properties, loading and support conditions and type and degree
of taper needed to be input. The average dimensions and hence the geometrical
properties of each element were calculated automatically within the program
which then proceeded to calculate the critical load and the associated buckling
mode.

4. Lateral Buckling of Tapered Cantilevers

A cantilever loaded only at its free end presents a good example of a member
subjected to a rapidly varying bending moment distribution. Fig. 4 contrasts
the distribution of bending stress in a cantilever of uniform section with that
in several types of tapered beams (for the example shown flange breadth
curtailment produces an almost identical stress distribution to flange thickness
curtailment whilst tapering breadth, flange thickness and depth gives results
very similar to those for depth taper alone). Since the efficiency of the section
is proportional to the area under the curve, Fig. 4 clearly shows the tapered
sections to be more economic in their use of material. It is also of interest to
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Fig.74. Variation of stress with length for tapered cantilever (12 x 4 x 16.5 UB section).
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Table 1a. Buckling Parameters for tapered cantilevers — end load, flange breadth taper

Values of vy,

Value of v 1.0 0.8 l 0.6 0.4 0.2 0.0

Value of » — 1.92 ' 1.15 l 1.92 ’ 1.15 | 1.92 ' 1.15 | 1.92 ' 1.15 | 1.92 | 1.15
Value of R? Top flange loading

550 4.18 | 2.58 | 3.55 | 2.97 | 2.90 | 2.34 | 2.24 | 1.65 | 1.50 | 0.96 | 0.57
310 4.22 | 3.61 | 3.58 | 2,99 | 291 | 2.35 | 224 | 1.65 | 1.50 | 0.96 | 0.57
140 4.27 | 3.65 | 3.60 | 3.01 { 293 | 2.36 | 224 | 1.66 | 1.50 | 0.97 | 0.56
96 4.29 | 3.66 | 3.62 | 3.03 | 2.94 | 2.37 | 2.24 | 1.67 | 1.50 | 0.97 | 0.56
62 4.28 | 3.67 | 3.61 | 3.04 | 2.93 | 2.38 | 2.23 | 1.68 | 1.49 | 0.98 | 0.56
35 4.21 | 3.65 | 3.56 | 3.04 | 2.90 | 2.40 | 2.21 | 1.69 | 1.48 | 0.99 | 0.56
15 3.84 | 3.38 | 3.29 | 2.88 | 2.72 | 2.33 | 2.12 | 1.68 | 1.44 | 1.03 | 0.57
4 3.42 | 3.04 | 295 | 2.64 | 246 | 2.21 | 1.95 | 1.68 | 1.39 | 1.07 | 0.58

Shear centre loading

550 440 | 3.78 | 3.72 | 3.11 | 3.04 | 2.44 | 234 | 1.70 | 1.56 | 0.98 | 0.58
310 454 | 3.88 | 3.84 | 3.18 | 3.11 | 248 | 2.38 | 1.72 | 1.58 | 0.93 | 0.58
140 4.84 | 409 | 408 | 3.3¢ | 3.26 | 2.58 | 2.48 | 1.78 | 1.63 | 1.01 | 0.59
96 5.03 | 424 | 421 | 3.46 | 3.38 | 2.64 | 2.53 | 1.81 | 1.66 | 1.03 | 0.60
62 532 | 445 | 444 | 3.59 | 3.50 | 2.72 | 2.64 | 1.86 | 1.70 | 1.05 | 0.61
35 582 | 482 | 484 | 3.87 | 3.76 | 2.89 | 2.79 | 1.95 | 1.78 | 1.08 | 0.62
15 6.93 | 566 | 5.61 | 448 | 435 | 3.33 | 3.15 | 2.20 | 1.95 | 1.19 | 0.65
4 9.78 | 7.89 | 7.80 | 6.10 | 5.95 | 4.39 | 4.18 | 2.76 | 2.49 | 1.43 | 0.76

Bottom flange Loading

550 4.60 | 3.92 | 3.89 | 3.23 | 3.18 | 2.51 | 243 | 1.75 | 1.62 | 1.00 | 0.59
310 4.81 | 4.09 | 405 | 3.35 | 3.30 | 2.59 | 2,561 | 1L.79 | 1.66 | 1.02 | 0.60
140 527 | 442 | 439 | 3.60 | 3.52 | 2.76 | 2.66 | 1.89 | 1.74 | 1.05 | 0.62
96 557 | 465 | 462 | 3.76 | 3.68 | 2.86 | 2.76 | 1.95 | 1.80 | 1.08 | 0.63
62 6.04 | 5.01 | 497 | 401 | 3.91 | 3.02 | 291 | 2.03 | 1.88 | 1.12 | 0.65
35 1 6.85 | 560 | 5.58 | 4.43 | 4.38 | 3.29 | 3.18 | 2.17 | 2.01 | 1.17 | 0.68
15 8.90 | 7.09 | 7.06 | 5.561 | 542 | 3.99 | 3.85 | 2.56 | 2.34 | 1.34 | 0.74
4 14.91 (11.67 |11.60 | 8.70 | 8.58 | 6.02 | 5.91 | 3.60 | 3.32 | 1.72 | 0.91

note that linear curtailment of either flange breadth or flange thickness pro-
duces an almost linear decrease in major second moment of area with distance
along the beam. The cantilever is clearly one type of beam where tapered
sections may efficiently be employed and for this reason it has been used as
the basis for the present study. Later sections of the paper will show how the
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Table 1b. Buckling Parameters for tapered cantilevers — end load, flange thickness taper

Values of y.

Value of » 1.0 0.8 0.6 0.4 0.2 0.0

Value of 9 — 1.92 t 1.15 1.92 ‘ 1.15 | 1.92 l 1.15 1.92 ' 1.15 1.92 1.15
Value of R? Top flange loading
|
550 4.18 | 3.85 | 3.74 | 3.52 | 3.28 | 3.18 | 2.79 | 2.83 | 2.28 | 2.38 1.73
310 4.22 | 3.87 | 3.74 | 3.53 | 3.24 | 3.18 | 2,72 | 2.82 | 2.20 | 2.37 1.66
140 4.27 | 3.89 | 3.72 | 3.53 | 3.15 | 3.16 | 256 | 2.80 | 2.02 | 2.35 | 1.54
96 4.29 | 3.89 | 3.67 | 3.51 | 3.06 | 3.14 | 244 | 2.78 1.78 | 2.33 1.46
62 4.28 | 3.86 | 3.59 | 3.47 | 292 | 3.09 | 2.28 | 2.73 1.77 | 2.30 | 1.37
35 4.21 3.75 | 3.43 | 3.33 | 2.69 | 297 | 2.07 | 2.64 | 1.62 | 2.25 | 1.27
15 3.84 | 3.36 | 3.04 | 3.01 | 2.35 | 2.64 | 1.81 2.39 1.43 | 2.10 | 1.16
4 3.42 3.01 | 278 | 2.68 | 2.27 | 242 | 191 2.21 1.61 1.99 1.35
Shear centre loading
550 440 | 4.07 | 3.98 | 3.73 | 3.54 | 3.38 | 3.07 3.00 | 2.57 | 2.43 1.97
310 4.54 | 4.18 | 4.10 | 3.83 | 3.63 | 3.46 | 3.14 | 3.06 | 2.62 | 2.47 | 2.00
140 4.84 | 4.43 | 4.35 | 4.03 | 3.83 | 3.63 | 3.29 3.20 | 2.73 | 2.57 | 2.08
96 5.03 | 4.58 | 4.53 1.17 | 3.96 | 3.75 | 340 | 3.30 | 2.82 | 2.64 | 2.14
62 5.32 | 4.84 | 4.76 | 4.39 | 4.17 | 3.94 | 3.57 3.47 | 295 | 2.74 | 2.25
35 5.82 | 5.28 | 5.19 | 4.78 | 4.53 | 4.27 | 3.85 3.74 | 3.18 | 2.93 | 2.39
15 6.93 | 6.30 | 6.13 | 5.67 | 5.34 | 5.04 | 4.52 4.36 | 3.37 | 3.38 | 2.82
4 9.78 | 8.86 | 8.66 7.98 | 7.56 | 7.09 | 6.37 6.15 | 5.21 | 4.68 | 3.96
Bottom flange loading
l

550 4.60 | 4.25 | 4.17 | 3.90 | 3.74 | 3.54 | 3.27 | 3.15 | 2.77 | 2.65 | 2.15
310 4.81 | 445 | 4.36 | 4.07 | 3.90 | 3.68 | 3.41 3.27 | 2.88 | 2.74 | 2.25
140 527 | 4.86 | 4.77 | 444 | 424 | 400 | 3.70 | 3.53 | 3.12 | 2.94 | 2.45
96 5.67 | 5.15 | 5.03 | 4.69 | 4.52 | 4.21 | 3.90 | 3.71 | 3.31 3.07 | 2.59
62 6.04 | 5.57 | 5.55 | 5.06 | 4.85 | 4.54 | 423 | 3.98 | 3.60 | 3.28 | 2.81
35 6.85 | 6.28 | 6.29 | 5.71 | 552 | 5.11 | 4.86 | 447 | 4.08 | 3.66 | 3.20
15 8.90 | 8.11 8.07 | 7.31 | 7.24 | 6.53 | 6.36 | 5.66 | 542 | 4.56 | 4.20
4 14.91 |13.70 |13.67 [12.41 [12.36 |11.05 [11.01 9.52 | 9.41 7.562 | 7.35

results obtained for cantilevers may be used to estimate the stability of
tapered beams subjected to other forms of loading and provided with other
types of support.

Numerical values of the coefficient y, as defined in Eq. (1) are given in
Tables 1 and 2 respectively for tapered cantilevers subjected to an end load
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Table 1c. Buckling Parameters for tapered cantilevers — end load, depth taper

Values of y,

Value of v 1.0 0.8 0.6 0.4 0.2 ’ 0.0

Value of 5 — 1.92 , 1.15 | 1.92 I 1.15 | 1.92 l 1.15 | 1.92 I 1.15 ' 1.92 l 1.15
Value of R? Top flange loading
550 4.18 | 417 | 4.20 | 4.16 | 4.23 | 4.15 | 4.25 | 4.13 | 4.28 | 4.12 | 4.30
310 4.22 | 4.22 | 4.25 | 4.22 | 4.30 | 4.22 | 4.34 | 4.22 | 4.38 | 4.22 | 4.41
140 427 | 431 | 435 | 434 | 443 | 4.37 | 451 | 440 | 458 | 4.42 | 4.65
96 429 | 4.35 | 4.39 | 441 | 4.50 | 4.46 | 4.60 | 4.51 | 4.70 | 4.55 | 4.79
62 4.28 | 439 | 4.45 | 449 | 461 | 458 | 4.76 | 4.67 | 4.89 | 4.75 | 5.01
35 421 | 440 | 440 | 458 | 4.68 | 4.76 | 494 | 493 | 520 | 5.08 | 5.42
15 3.84 | 419 | 4.24 | 440 | 492 | 499 | 522 | 547 | 5.64 | 585 | 6.11
4 342 | 3.78 | 3.86 | 430 | 453 | 508 | 535 | 6.26 | 6.70 | 7.73 | 8.12
Shear centre loading
550 440 } 435 | 439 | 430 | 437 | 424 | 435 | 4.19 | 4.34 | 4.14 | 4.32
310 4.54 | 448 | 4.53 | 442 | 4.50 | 4.36 | 4.48 | 4.30 | 446 | 4.24 | 4.43
140 4.84 | 475 | 4.82 | 4.68 | 4.78 | 4.60 | 4.74 | 4.53 | 4.71 | 4.44 | 4.68
96 503 | 493 | 5.00 | 484 | 496 | 4.76 | 4.91 | 4.68 | 487 | 4.59 | 4.84
62 5.32 | 5.20 | 5.29 | 5.10 | 5.23 | 5.00 | 5.17 | 4.90 | 5.12 | 4.78 | 5.07
35 5.82 | 5.67 | 5.76 | 5.54 | 5.69 | 542 | 5.60 { 5.29 | 551 | 514 | 541
15 6.93 | 6.74 | 6.79 | 6.54 | 6.67 | 6.36 | 6.53 | 6.16 | 6.39 | 5.90 | 6.25
4 9.78 | 9.52 | 9.61 | 9.24 | 9.39 | 895 | 9.12 | 8.62 | 8.88 | 8.32 | 8.64
Bottom flange loading

550 4.60 | 4.51 | 4.56 | 4.42 | 4.50 | 4.33 | 4.45 | 4.24 | 4.39 | 4.15 | 4.33
310 4.81 | 4.69 | 4.75 | 4.59 | 4.67 | 4.48 | 4.60 | 4.33 | 4.53 | 4.26 | 4.45
140 527 | 5.10 | 5.18 | 4.95 | 5.05 | 4.90 | 4.93 | 4.67 | 4.83 | 4.48 | 4.71
96 5.57 | 536 { 5.44 | 5.19 | 531 | 5.01 | 5.15 | 4.82 | 5.02 | 4.81 | 4.87
62 6.04 | 580 | 593 | 556 | 575 | 5.33 | 5.52 | 5.10 | 532 | 4.85 | 5.12
35 6.85 | 6.52 | 6.78 | 6.22 | 6.50 | 5.91 | 6.19 | 558 | 590 | 5.24 | 5.58
15 8.90 | 837 | 841 | 7.68 | 813 | 7.34 | 7.44 | 6.76 | 6.93 | 6.16 | 6.40
4 14.91 |13.83 |14.01 {12.71 |12.81 |11.17 [11.36 ;10.18 |10.32 | 8.67 | 8.98

or a uniform load. Three different levels of loading have been considered as
recent work [19] has shown that for short cantilevers the effect of altering the
level of application of the loading is considerable. The results cover a series of

values of the torsional parameter R? =

I2GJ
SET

where F I' is the warping rigidity,

and are listed for five different values of each of the taper parameters v.
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Table 1d. Buckling Parameters for tapered cantilevers — end load, flange breadth, flange
thickness and web depth taper

Values of ye

Value of v 1.0 0.8 0.6 0.4 0.2 I 0.0

Value of 5 — 1.92 ’ 1.15 1.92 } 1.15 | 1.92 ' 1.15 1.92 ’ 1.15 } 1.92 ‘ 1.15
Value of R? Top flange loading

550 4.18 | 3.27 3.17 2.41 2.22 1.59 | 1.35 | 0.82 | 0.58 \ 0.24 | 0.29
310 4,22 3.30 | 3.18 | 2.42 | 2.22 1.59 | 1.34 | 0.83 0.58 | 0.24 | 0.29
140 4.27 3.34 | 3.20 | 2.45 | 2.22 1.61 1.34 | 0.84 | 0.58 | 0.25 | 0.29
96 | 4.29 | 3.35 | 3.20 | 2.46 | 2.22 1.62 | 1.34 | 0.84 | 0.58 | 0.25 | 0.29
62 428 | 3.36 | 3.18 | 2.48 | 2.20 | 1.64 1.33 | 0.85 | 0.58 | 0.25 | 0.30
35 4.21 3.35 | 3.11 2.50 | 2.17 1.67 1.32 | 0.86 | 0.59 | 0.256 | 0.30
15 3.84 | 3.12 | 2.89 | 2.48 | 2.05 1.74 1.29 | 0.92 0.60 | 0.26 | 0.30
4 3.42 2.91 2.67 | 2.40 1.95 | 1.80 | 1.27 1.01 0.64 | 0.28 | 0.32

Shear centre loading

550 440 | 3.41 | 3.33 | 248 | 232 | 1.62 | 1.39 | 0.83 | 0.59 | 0.24 | 0.07
310 454 | 3.49 | 3.41 | 2.53 | 2.36 | 1.64 | 141 | 0.84 | 0.59 | 0.24 | 0.07
140 484 | 3.65 | 3.58 | 2.62 | 2.44 | 1.68 | 1.44 | 0.85 | 0.60 | 0.24 | 0.07
96 5.03 | 8.79 | 3.70 | 2.68 | 2.50 | 1.71 | 1.46 | 0.86 | 0.61 | 0.24 | 0.07
62 5.32 | 3.96 | 3.87 | 2.79 | 2.58 | 1.75 | 1.50 | 0.87 | 0.62 | 0.25 | 0.07
35 5.82 | 4.26 | 4.16 | 2.96 | 2.77 | 1.83 | 1.58 | 0.90 | 0.64 | 0.256 | 0.07
15 6.93 | 5.05 | 485 | 3.41 | 3.13 | 2.10 | 1.74 | 0.99 | 0.68 | 0.26 | 0.07
"4 9.78 | 6.92 | 6.71 | 4.56 | 4.11 | 2.63 | 2.22 | 1.16 | 0.80 | 0.28 | 0.08

Bottom flange loading

550 4.60 | 3.53 | 3.46 | 2.55 | 240 | 1.65 | 1.43 | 0.84 | 0.60 | 0.24 | 0.29
310 481 | 3.66 | 3.59 | 2.62 | 247 | 1.68 | 1.46 | 0.85 | 0.61 | 0.24 | 0.29
140 5.27 | 3.93 | 3.86 | 2.77 | 2.60 | 1.75 | 1.52 | 0.87 | 0.62 | 0.25 | 0.29
96 5.57 | 4.12 | 4.04 | 2.86 | 2.70 | 1.79 | 1.56 | 0.88 | 0.63 | 0.25 | 0.30
62 6.04 | 442 | 432 | 291 | 2.84 | 1.85 | 1.62 | 0.90 | 0.65 | 0.25 | 0.30
35 6.85 | 4.87 | 4.91 | 3.28 | 3.16 | 1.97 | 1.74 | 0.93 | 0.68 | 0.25 | 0.30
15 8.90 | 6.31 | 6.04 | 4.11 | 3.77 | 2.36 | 2.01 | 1.06 | 0.75 | 0.26 | 0.31
4 14.91 | 9.88 | 9.86 | 6.01 | 5.82 | 3.18 | 2.87 | 1.28 | 0.92 | 0.29 | 0.34

KereENskY et al. [5] have shown that for tapered beams a parameter
additional to those that govern the lateral stability of uniform beams affects
the magnitude of the reduction in stability due to taper. This parameter is the
ratio of the torsional rigidity of the whole section to the torsional rigidity of
the beam’s flanges, 7, each quantity relating to the maximum section. A study



182 D. A. NETHERCOT

Table 2a. Buckling Parameters for tapered cantilevers — uniform load, flange breadth taper

Values of ve
Value of v | 1.0 0.8 f 0.6 0.4 0.2 0.0
|
Value of 3 — 1.92 ‘ 1.15 ‘ 1.92 ’ 1.15 | 1.92 I 1.15 | 1.92 | 1.15 | 1.92 [ 1.15
Value of R? Top flange loading M
|
550 6.84 | 6.14 | 6.09 | 543 | 533 | 4.68 | 4.55 | 3.87 | 3.69 | 2.91 | 2.52
310 6.91 | 6.20 | 6.31 | 547 | 5.36 | 4.71 | 4.56 | 3.88 | 3.68 | 2.92 | 2.50
140 7.01 | 6.29 | 6.26 | 553 | 5.40 | 4.76 | 4.57 | 3.91 | 3.68 | 2.93 | 2.48
96 7.04 | 6.31 | 6.21 | 5.55 | 540 | 4.78 | 4.57 | 3.93 | 3.67 | 2.94 | 2.47
62 7.07 | 6.33 | 6.21 | 5.58 | 5.39 | 4.81 | 4.55 | 3.95 | 3.65 | 2.95 | 2.45
35 6.98 | 6.27 | 6.17 | 562 | 5.34 | 4.82 | 4.51 | 4.02 | 3.62 | 2.97 | 2.42
15 6.71 | 6.17 | 5.96 | 5.51 | 5.19 | 4.79 | 4.39 | 3.98 | 3.53 | 3.01 | 2.37
4 6.59 | 6.02 | 580 | 542 | 5.04 | 4.71 | 4.30 | 4.02 | 3.47 | 3.11 | 2.36
Shear centre loading
550 7.47 | 6.67 | 6.63 | 587 | 5.78 | 5.03 | 490 | 4.13 | 3.96 | 3.08 | 2.68
310 7.82 | 6.96 | 6.92 | 6.09 | 6.00 | 5.20 | 5.06 | 4.25 | 4.06 | 3.14 | 2.72
140 8.57 | 7.56 | 7.51 | 6.56 | 6.47 | 5.55 | 5.39 | 4.48 | 4.27 | 3.28 | 2.82
96 9.94 | 7.94 | 790 | 6.83 | 6.73 | 5.76 | 5.63 | 4.62 | 4.41 | 3.39 | 2.87
62 9.77 | 851 | 847 | 7.33 | 7.21 | 6.11 | 5.81 | 4.85 | 4.64 | 3.48 | 2.97
35 10.94 | 9.47 | 9.41 | 8.06 | 8.01 | 6.66 | 6.37 | 5.25 | 5.00 | 3.68 | 3.12
15 13.64 (11.64 [11.61 | 9.83 | 9.65 | 7.98 | 7.74 | 6.15 | 5.81 | 4.23 | 3.46
4 20.58 |17.48 117.34 |14.46 |14.21 |11.51 |11.23 | 8.55 | 8.12 | 5.52 | 4.37
Bottom flange loading

550 8.08 | 719 | 7.16 | 6.30 | 6.22 | 5.39 | 526 | 4.39 | 4.23 | 3.25 | 2.82
310 8.67 | 7.67 | 7.65 | 6.68 | 6.61 | 5.67 | 556 | 4.60 | 4.41 | 3.30 | 2.93
140 998 | 8.76 | 868 | 7.55 | 7.42 | 6.34 | 6.17 | 5.05 | 485 | 3.64 | 3.16
96 10.83 | 9.41 | 938 | 8.05 | 7.97 | 6.71 | 6.567 | 533 | 5.12 | 3.81 | 3.29
62 12.14 [10.52 110.46 | 8.91 | 8.79 | 7.36 | 7.18 | 5.77 | 5.56 | 4.06 | 3.50
35 14.48 |12.36 |12.29 |10.41 |10.25 | 8.49 | 8.23 | 6.33 | 6.19 | 4.52 | 3.82
15 19.98 {15.88 115.98 113.96 |13.88 |11.18 |11.01 | 8.41 | 8.18 | 5.63 | 4.82
4 35.28 [29.49 [29.45 |23.99 23.88 |18.77 |18.57 [13.71 |13.42 | 8.59 | 7.21

of the values of 7 for all beam and column I sections in the British handbook
has been made from which extreme values of 1.103 and 1.917 have been
obtained. The average value is about 1.35, low values usually indicating com-
pact column type sections and high values deep beam type sections. Therefore
Tables 1 and 2 contain results for two extreme values of 7, 1.15 and 1.92. The
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Table 2b. Buckling Parameters for tapered cantilevers — uniform load, flange thickness taper

Values of ye

Value of » 1.0 0.8 0.6 0.4 0.2 0.0

Value of 5 — 1.92 1 1.15 | 1.92 ’ 1.15 | 1.92 | 1.15 | 1.92 ) 1.15 | 1.92 ] 1.15
Value of R? Top flange loading

550 6.84 [ 6.45 | 6.30 | 6.05 | 5.75 | 5.65 | 5.17 | 5.25 | 4.57 | 4.81 | 3.93
310 691 | 6.50 | 6.32 | 6.09 | 5.72 | 5.66 | 5.09 | 5.24 | 444 | 4.79 | 3.77
140 7.01 | 6.60 | 6.31 | 6.10 | 5.61 | 5.65 | 4.87 | 520 | 4.15 | 4.74 | 3.46
96 7.04 | 6.59 | 6.28 | 6.09 | 5.51 | 5.62 | 4.73 | 5.17 | 3.97 | 4.71 | 3.30
62 7.07 | 6.54 | 6.19 | 6.03 | 5.35 | 5.56 | 4.50 | 5.10 | 3.73 | 4.64 | 3.00
35 6.98 [ 6.44 | 6.01 | 590 | 5.06 | 542 | 4.17 | 4.97 | 3.42 | 453 | 2.86
15 6.71 | 6.11 | 5.65 | 5.57 | 4.64 | 5.14 | 3.79 | 4.74 | 3.14 | 4.36 | 2.68
4 6.59 | 5.95 | 547 | 5.42 | 4.61 | 5.00 | 3.93 | 4.68 | 3.43 | 4.39 | 3.07

Shear centre loading

550 7.47 | 7.06 | 6.98 | 6.65 | 6.45 | 6.23 | 587 | 5.79 | 5.28 | 5.30 | 4.64
310 7.82 | 7.38 | 7.26 | 6.95 | 6.71 | 6.48 | 6.09 | 6.01 | 546 | 5.49 | 4.76
140 8.67 | 805 | 7.94 | 7.54 | 7.28 | 7.01 | 6.59 | 6.48 | 5.87 | 5.89 | 5.10
96 9.04 | 849 | 835 | 792 | 7.64 | 7.35 | 6.90 | 6.78 | 6.15 | 6.15 | 5.31
62 9.77 | 9.15 | 901 | 852 | 821 | 7.90 | 740 | 7.24 | 6.56 | 6.54 | 5.68
35 10.94 {10.12 |10.01 | 9.51 | 9.18 | 8.79 | 8.24 | 8.04 | 7.30 | 7.23 | 6.30
15 13.64 {12.71 |12.49 |11.78 |11.38 |10.85 ;10.13 | 9.90 | 8.94 | 8.83 | 7.72
4 20.58 [19.14 |18.82 [17.73 ( 17.19 (16.33 ‘ 15.50 {14.89 |13.49 [13.24 |11.96
I !

Bottom flange loading

550 8.08 | 7.65 | 7.567 | 7.23 | 7.02 | 6.77 | 643 | 6.30 | 5.85 | 5.76 | 5.20
310 8.67 | 8.20 | 8.12 | 7.72 | 7.50 | 7.23 | 690 | 6.71 | 6.26 | 6.14 | 5.58
140 9.98 | 941 | 9.32 | 8.84 | 8.63 | 826 | 793 | 7.63 | 7.20 | 6.95 | 6.41
96 10.83 |10.21 |10.16 | 9.57 | 9.42 | 891 | 862 | 823 | 7.80 | 7.48 | 6.95
62 12.14 {11.40 |11.38 |10.70 |{10.54 | 9.95 | 9.62 | 9.19 | 8.97 | 8.33 | 7.81
35 14.48 113.61 [13.562 112.57 |12.72 |11.64 |11.51 |10.89 [10.48 | 9.83 | 9.36
15 19.98 |18.71 [18.68 |17.36 |17.35 |16.14 [15.99 [14.82 |14.56 |13.16 [12.98
4 35.28 [33.18 [33.08 {31.01 |30.98 |28.74 |28.67 |26.29 |26.05 |23.55 |23.36

results presented in this paper are not, of course, limited merely to these
sections listed in the handbook; the survey was conducted merely to obtain
an indication of the range of values of 7 likely to be encountered in practice.

In general, the reductions in stability caused by taper are larger for sections
possessing low values of 5 than for sections for which 1 is large, the differences
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Table 2¢. Buckling Parameters for tapered cantilevers — uniform load, depth taper

Values of ye

‘ |

Value of v 1.0 0.8 0.6 ‘ 0.4 0.2 0.0

Value of 3 — 1.92 l 1.15 | 1.92 l 1.15 * 1.92 ' 1.15 | 1.92 | 1.15 | 1.92 I 1.15
Value of R? Top flange loading

550 6.84 | 6,85 | 6.88 | 6.85 | 6.93 | 6.86 | 6.98 | 6.87 | 7.03 | 6.88 | 7.08
310 6.91 | 693 | 6.98 | 6.96 | 7.06 | 7.00 | 7.14 | 7.02 | 7.22 | 7.056 | 7.29
140 7.01 | 7.10 | 7.14 | 7.18 | 7.29 | 7.26 | 7.44 | 7.34 | 7.59 | 7.43 | 7.72
96 7.04 | 7.17 | 7.20 | 7.29 | 7.41 | 7.41 | 7.61 | 7.54 | 7.79 | 7.83 | 7.98
62 7.07 | 7.24 | 7.28 | 743 | 7.55 | 7.62 | 7.83 | 7.82 | 8.10 | 8.01 | 8.36
35 6.98 | 7.28 | 7.32 | 7.568 | 7.74 | 7.90 | 8.14 | 8.24 | 8.56 ; 8.58 | 8.98
15 6.71 | 7.23 | 7.26 | 7.88 | 7.89 | 841 | 8.59 | 9.14 | 9.34 | 9.77 |10.12
4 6.59 | 7.18 | 7.21 | 7.99 | 8.13 | 9.08 | 9.41 [10.58 |11.08 |12.51 |13.13

Shear centre loading

550 7.47 | 7.39 | 7.45 | 7.32 | 7.41 | 7.26 | 7.38 | 7.19 | 7.34 | 7.10 | 7.31
310 7.82 | 7.711 | 7.718 | 7.63 | 7.74 | 7.57 | 7.70 | 7.47 | 7.65 | 7.38 | 7.61
140 8.57 | 845 | 852 | 832 | 845 | 8.21 | 837 | 810 | 830 | 7.98 | 8.23
96 9.04 | 890 | 8.96 | 8.76 | 8.86 | 8.62 | 8.78 | 8.48 | 8.70 | 8.27 | 8.62
62 9.77 | 9.54 | 9.67 | 9.37 | 7.55 | 9.21 | 9.44 | 9.05 | 9.33 | 8.89 | 9.22
35 10.94 110.71 |10.86 |10.49 |10.70 |10.28 |10.55 |10.06 |10.39 | 9.84 10.25
15 13.64 {13.36 |13.38 (13.16 |13.17 |12.68 |12.86 |12.34 |12.60 |11.98 [12.33
4 20.58 [20.09 |20.18 [19.58 [19.64 |[19.04 |19.39 |18.46 18.62 [17.81 |17.98

Bottom flange loading

550 8.08 | 7.88 | 800 | 7.77 | 7.88 | 7.63 | 7.78 | 7.48 | 7.65 | 7.35 | 7.565
310 8.67 | 8.40 | 8.54 | 823 | 839 | 8.05 | 824 | 7.87 | 8.08 | 7.68 | 7.93
140 998 | 9.52 | 9.76 | 9.30 | 9.51 | 9.03 | 9.29 | 8.75 | 9.03 | 8.47 | 8.77
96 10.83 |10.30 |10.54 | 9.96 [{10.26 | 9.62 | 9.92 | 9.33 | 9.61 | 8.98 | 9.30
62 12.14 |11.65 |[11.78 |11.23 [11.38 |10.81 {11.00 [10.31 |[10.52 | 9.82 |10.02
35 14.48 |13.83 114.02 |13.21 |13.42 |12.55 |12.76 |11.92 |12.13 [11.21 |11.45
15 19.98 |18.88 |18.99 [17.98 |18.00 [16.81 |16.96 |15.68 [15.86 |14.49 '14.69
4 35.28 (33.24 |33.44 [31.31 |31.37 |28.88 |28.93 [26.44 [26.64 [23.63 [23.74

becoming more noticeable for highly tapered members. The exception to this
is, as might be expected, the case of depth taper for which the reverse is true.
When all three dimensions (b;, ¢;, and d) are tapered the effect of flange cur-
tailment predominates. '
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Table 2d. Buckling Parameters for tapered cantilevers — uniform load, flange thickness, flange
breadth and web depth taper

Values of ye

Value of v 1.0 0.8 0.6 0.4 0.2 0.0

Value of 5 —_— 1.92 ‘ 1.15 1.92 ! 1.15 | 1.92 ‘ 1.15 1.92 ‘ 1.15 1.92 ] 1.15
Value of R? Top flange loading

550 6.84 | 5.77 5.64 | 4.73 | 448 | 3.68 | 3.34 | 2.59 | 2.13 1.31 1.48
310 6.91 | 5.82 | 5.67 | 4.76 | 449 | 3.70 | 3.33 | 2.60 | 2.13 1.31 1.48
140 7.01 5.91 5.71 4.84 | 4.50 | 3.76 | 3.33 | 2.63 | 2.12 1.32 1.49
96 7.04 | 594 | 5.72 | 4.86 | 4.561 | 3.77 | 3.32 | 2.65 | 2.11 1.33 1.50
62 7.07 | 5.97 5.71 4.90 | 449 | 3.84 | 3.32 | 2.69 | 2.12 1.34 | 1.51
35 6.98 | 598 | 5.66 | 496 | 445 | 3.91 | 3.31 2.75 | 2.12 1.37 1.54
15 6.71 5.92 | 5.47 5.02 | 425 | 4.02 | 329 | 2.92 | 2.16 | 1.42 1.60
4 6.59 | 5.88 | 546 | 520 | 4.40 | 4.42 | 344 | 3.30 | 2.36 1.60 | 1.68

Shear centre loading

550 747 | 6.22 | 6.12 | 5.03 | 4.81 | 3.87 | 3.54 | 2.68 | 2.23 | 1.33 | 0.60
310 7.82 | 6.47 | 6.35 | 519 | 495 | 3.96 | 3.61 | 2.73 | 2.25 | 1.33 | 0.60
140 8.567 | 6.99 | 6.86 | 5.53 | 5.27 | 4.17 | 3.77 | 2.82 | 2.32 | 1.36 | 0.60
96 904 | 7.32 | 7.18 | 5.76 | 546 | 4.31 | 3.89 | 2.89 | 2.36 | 1.37 | 0.60
62 9.77 | 7.85 | 7.69 | 6.15 | 579 | 454 | 404 | 2.99 | 2.44 | 1.40 | 0.60
35 10.94 | 8.66 | 8.48 | 6.65 | 6.31 | 6.83 | 4.37 | 3.13 | 2.56 | 1.44 | 0.61
15 13.64 [10.65 |10.41 | 8.01 | 7.60 | 5.75 | 5.14 | 3.62 | 2.91 | 1.57 | 0.64
4 20.58 |15.82 |15.46 |11.64 |11.02 | 7.96 | 7.18 | 4.67 | 3.72 | 1.79 | 0.71
Bottom flange loading

550 8.08 | 6.66 | 6.56 | 5.34 | 512 | 4.05 | 3.75 | 2.77 | 2.33 | 1.35 | 1.50
310 8.67 | 7.09 | 6.97 | 5.62 | 540 | 4.23 | 3.89 | 2.86 | 2.40 | 1.36 | 1.52
140 998 | 7.98 | 7.87 | 6.20 | 5.96 | 4.57 | 4.20 | 3.03 | 2.53 | 1.40 | 1.55
96 10.83 | 8.59 | 8.46 | 6.62 | 6.32 | 4.79 | 4.41 | 3.13 | 2.60 | 1.42 | 1.57
62 12.14 | 9.50 | 9.38 | 7.22 | 6.88 | 519 | 473 | 3.31 | 2.73 | 145 | 1.60
35 14.48 |11.17 |10.96 8.31 7.96 5.77 | 5.33 3.57 2.99 1.51 1.65
15 ° |19.98 |15.02 |14.93 |10.98 |10.60 | 7.29 | 6.93 | 4.32 | 3.73 | 1.70 | 1.75
4 35.28 [25.44 |25.23 |18.21 |17.48 |11.68 |10.82 | 6.27 | 5.36 | 2.00 | 2.01

Fig. 5, which shows a plot of the reduction in stability » against the degree
of taper » for end load and flange breadth taper, shows that the effect of the
parameter 7 is, however, less than that of certain other factors, notably the
value of R? (a measure of the importance of warping) and the level of applica-
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Fig. 5. Reductions in stability caused by linear flange breadth curtailment.

tion of the loading. Since the torsion constants J and the warping constant I,
where J and I" are defined in Eqgs. (2), will be affected to different degrees by
the variation in geometry, variations in » with R? are to be expected.

J = 4[26,8 +(d—t) ],

_ b (d—1,)%b}
- 24 )

(2)
r

For all cases considered in this section of the paper, loading on one or
other flange was found to produce larger reductions in stability than shear
centre loading, top flange loading usually being the critical case although for
flange breadth taper, bottom flange loading was the more severe. The width
of the “band’’ into which the results shown in Fig. 5 fall is typical of that
obtained for other types of taper and also for the four cases involving uni-
formly loaded beams.

5. Reduction Formulae

From the results of their tests KREFIELD et al. [6] suggested that reductions

in lateral stability due to taper were approximately dependent upon the para-

meter o = é(—Z—)ﬂ)—dl
T Zi\bs1do

lateral buckling first proposed by pE VRIEs [20] and does not allow for the
possibility of flange thickness taper ¢;. KREFIELD et al. showed that if their
results were plotted in a form relating » the reduction in stability due to taper
to o, then as shown in Figs. 6 and 7 which are taken from their original paper,
for each type of loading, the experimental points fall within a sufficiently
narrow band for a line to be drawn through them. The suggested reduction
formulae were:

3/2 . . L
) . This parameter was derived from the bf—Z formula for
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r = Tt for an end load,
5+3a 5
44 ) (3).
r = for a uniform load,
3+2a

the scatter in the results being attributed to experimental error.

rof
"
o8I
O-6r
04 1 : I ] Q-4 1 t Il —J
o 2 4 6 ~ 8 o 2 4 6 ok 8
Fig. 6. Experimental results from Fig. 7. Experimental results from
ref. [6], end load. ref. [6], uniform load.

It has been found that the present solutions (Tables 1 and 2) agree very
well with Egs. (3) and moreover, that the effects of linear flange thickness
curtailment may also be included in the reduction formulae if « is redefined as:

AL
x =032 (520 (£2) | . 4
Zy |\do) \bs1) \ts1 =
As an additional check on the accuracy of this approach several other solutions
have been obtained for beams possessing arbitrarily chosen types and degrees
of linear taper and the results compared with Eqgs. (3) and (4). Figs. 8 and 9
show, for two extreme values of R2?, that the reduction formulae give very

reasonable predictions of the stability of tapered cantilevers loaded with either
an end load or a uniform load providing this load is applied at the level of the

IO r
r
o5
1 1 L ] - —
(o] 2 4 6 8 10

-3

Fig. 8. Comparison of reduction formulae with numerical results for arbitrarily tapered canti-
levers — end load.



188 D. A. NETHERCOT

10
r
oS5 |-
o RP=550
x R2=4
1 1 1 1 J
(o] 2 4 6 8 10

o

Fig. 9. Comparison of reduction formulae with numerical results for arbitrarily tapered canti-
levers — uniform load.

shear centre. Also included in each figure is an approximate lower bound line,
the equations of which are:

r= ita for an end load,
3+3«

(5)

. for a uniform load.

Similar sets of results have been obtained for top and bottom flange loading.
For the former case Eqs. (3) now provide an approximate lower bound i.e.
reductions in stability are smaller, whilst for the latter case some results fall
slightly below the lower bound lines (Egs. (5)) which now approximate to
average curves. It should be noted, however, that the above statements apply
only for low values of R?i.e. for short beams, since for high values the effects
of flange loading are slight. It is also of interest to note that whereas the work

of KREFIELD et al. was based on the use of the b—f-g approximate formula for

determining lateral buckling strength [20] the present work uses the more
accurate Eq. (1).

6. Extension to Other Types of Loading and Conditions of Support

The effect of providing lateral bracing at the tip of the cantilever on the
reductions in stability caused by taper has been extensively studied and
complete sets of results similar to those of Tables 1 and 2 have been obtained
for the following two conditions:

Lateral deflexion prevented at the tip, complete fixity at the tip. Providing
the correct value of the critical load for the similar uniform beam was used
[19], in all cases, the reductions in stability caused by taper were found to be
either the same as or less than those for the identical unbraced beams. There-
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fore the reduction formulae given in the previous section are equally applicable
to cantilevers supported laterally at the tip.

Using the set of arbitrarily chosen sections previously employed to check
the accuracy of the reduction formulae, further series of results for variously
loaded, simply supported beams have been obtained. In each case the numerical
results have been plotted against the taper parameter « and the best line
passed through the points by means of a least squares curve fit. The resulting
curves are compared in Fig. 10 with similarly obtained curves for cantilevers
and also with Eqs. (3). For both cases of transverse load, three different levels
of loading have been considered and the results indicate that this factor is less

o5 —

o EQUATIONS (3)
— CURVES OBTAINED FROM LEAST SQUARES FIT

1 1 !

o 2 4 6 .8
=3

Fig. 10. Effect of loading and support conditions on reduction curve.

Calculate the critical load for a
similar uniform member using
the methods of ref. (20)

i
3 3 271/2
Determine o = ~Z~ [(%) (gﬂl) (tf_ﬂ) ]
“1 0 71 tfl

Calculate the reduction in stability
due to taper as

e

T+ a

g =5+3oc

Fig. 11. Procedure for estimating the critical load for a tapered beam.
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important for simply supported beams than for cantilevers, the degree of
scatter in the complete set of results being only of the order of that shown
previously in Figs. 8 and 9, which relate to shear centre loading only.

Fig. 10 suggests that variations in the type of loading and support condi-
tions do not have a pronounced affect upon the r, « relationship. Furthermore,
the original reduction formula (Eq. (3)) for end loaded cantilevers of KREFIELD
et al. [6] appears to provide a very reasonable indication of the stability of
tapered members when subjected to any of the loading systems considered
herein. A rapid and fairly accurate estimate of the critical load of a tapered
beam may therefore be obtained by the process outlined in Fig. 11.

7. Conclusions

Results have been presented for the lateral buckling of I-section cantilevers
having various forms of linear taper. By plotting the numerical results in a
suitable form, the accuracy of the reduction formulae proposed in reference
[6] have been confirmed and their scope extended to include flange thickness
taper. It has also been shown that the reductions in stability caused by taper
are not unduly affected by variations in loading and support conditions and
a simple process for calculating rapid estimates of the critical load for tapered
beams has been advanced.
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Summary

The paper describes a theoretical study of the lateral buckling of tapered
I-section beams. Various forms of taper are considered and cantilevers are
studied in detail. The numerical results confirm the dependence of the reduc-
tions in stability due to taper on the single geometrical parameter first suggested
by KrEFIELD et al. [6] and also extend its scope. Finally, the influence of
variatiors in loading and support conditions are examined and a simple
procedure for rapidly estimating the critical load for tapered beams presented.

Résumé
Le travail décrit une étude théorique du flambage latéral de poutres réduites,

a section double té. On considere différentes formes de réductions et des
poutres en porte-a-faux sont étudiées en détail. Les résultats numériques con-
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firment la dépendance de la diminution de stabilité due & la réduction sur le
seul parameétre géométrique qui d’abord fut proposé par KREFIELD et autres
[6] et ils étendent également leur but. Finalement, l'influence des variations
de charge et des conditions de support sont examinées et on présente une
procédure simple en vue d’une estimation rapide de la charge critique pour
des poutres réduites.

Zusammenfassung

Die Arbeit beschreibt eine theoretische Untersuchung iiber das Kippen
von Balken mit I-Profilen, deren Querschnittshohe mit der Balkenlidnge
abnimmt. Verschiedene Arten von Verjingungen werden betrachtet und
Kragarme im einzelnen untersucht. Die numerischen Ergebnisse bestéitigen
die Abhingigkeit der Stabilititsverminderung infolge der Verjingung vom
einzigen geometrischen Parameter, wie es zuerst von KREFIELD und anderen
[6] vorgeschlagen wurde, und erweitern auch deren Rahmen. Schliesslich wer-
den der Einfluss der Lasténderung und die Auflagebedingungen untersucht
und ein einfaches Verfahren zur raschen Beurteilung der kritischen Belastung
fiir verjingte Trager vorgelegt.
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