Flambement par flexion-torsion des colonnes comprimées centriquement, appuyées élastiquement aux extremités

Autor(en): Mateescu, D. / Cuteanu, E.

Objekttyp: Article

Zeitschrift: IABSE reports of the working commissions = Rapports des

commissions de travail AIPC = IVBH Berichte der

Arbeitskommissionen

Band (Jahr): 23 (1975)

PDF erstellt am: **25.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-19805

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

FLAMBEMENT PAR FLEXION-TORSION DES COLONNES COMPRIMEES CENTRIQUEMENT, APPUYEES ELASTIQUEMENT AUX EXTREMITES

D. Mateescu

E. Cuteanu

Institutul Politehnic "Traian Vuia" Catedra de Constructii Metalice Timisoara, Roumanie

ABSTRACT

The determination of the critical load on a column of a monosymmetric section is presented herein for the general case of end restraints. The column, whose centroid does not necessarily coincide with the shear centre, is represented by a system of eight first-order differential equations. Since ten analytical treatments of the problem poses great difficulties, ten solutions of the differential equations are obtained numerically by applying the method of Runge-Kutta-Gill. A general program was prepared and ten numerical computations are carried out in the IRIS-50 electronic digital computer. The influence of the end conditions on the value of the critical load in flexural-torsional buckling are examined using several numerical. examples. A few conclusions are drawn on the influence of the geometric parameters, related to flexural, torsional, and bimoment restraints, on the buckling behaviour.

1. INTRODUCTION

Le calcul de stabilité qui reflète le plus fidèlement le comportement réel d'une structure, c'est le calcul à la divergence d'équilibre. Un tel calcul, effectué sur l'ensemble de la structure, est extrêmement laborieux et -jusqu'à présent- difficile à aborder. Toutefois, du fait que l'instabilité de la structure par divergence peut être causée par l'affaissement d'un seul élément composant, on a proposé des méthodes de calcul basées sur l'étude de l'instabilité d'une seule barre de la structure. En isolant donc la barre, mais en tenant compte de l'influence du reste de la structure, on arrive à des simplifications essentielles qui permettent d'aborder le problème. Evidemment, l'exactitude de cette substitution reste dépendante de la correction avec laquelle on détermine les paramètres de connexion entre l'élément examiné et le reste de la structure. Comme exemples d'application de ce procédé on peut citer /1/, /2/ pour les cadres et /3/,/4/ pour les poutres à treillis constituées de barres à parois minces formées à froid.

Les colonnes des cadres sont généralement comprimées et fléchies, avec ou sans charges transversales appliquées entre les noeuds. Pour tenir compte des effets de charges transversales et des imperfections, on dispose de relations d'interaction, connues dans la littérature et adoptées par les règlements /5/,/6/,/7/.

2. DEFINITION DU PROBLEME

L'un des paramètres essentiels, dans les relations d'interaction mentionnées cidessus, c'est la valeur critique de l'effort de compression centrique pour la barre idéale (sans aucune imperfection).

Si la barre comprimée présente un seul plan de symétrie longitudinal, ce qui arrive bien souvent en pratique (Fig. 1), les centres de gravité et de torsion ne coîncident pas ; de ce fait l'instabilité se produit généralement par flexion transversale et torsion. Dans le but d'une utilisation plus généralisée des relations d'interaction, il est nécessaire de connaître l'effort critique du flambement centrique par flexion transversale et torsion, dans l'hypothèse d'appuis élastiques.

Le système (1-2) est remplacé par un système équivalent de huit équations différentielles du premier ordre, ce qui permet de réduire les erreurs dans le cadre du procès d'intégration numérique /12/. Le système est écrit dans une forme non dimensionnelle:

$$\begin{cases}
\widetilde{u} = 9 \\
S' = \beta \\
S' = \beta
\end{cases}$$

$$S = g_3 n \alpha - \beta m$$

$$\psi' = \psi'$$

$$\psi' = \psi$$

$$\psi$$

Pour cette forme d'instabilité, on connaît une formule généralisée par un paramètre tenant compte des conditions d'appui /8/. Il faut toutefois souligner que la formule mentionnée et respectivement les valeurs du paramètre ne concernent pas les appuis élastiques; même dans les autres situations, les résultats ne sont exacts que si les déformées de flexion et de torsion de l'équilibre indifférent sont affinées. (Dans l'article /9/, on donne une justification théorique de cette observation, par l'utilisation des fonctions fondamentales du flambement par flexion). Pour autres modes d'appui, la formule peut conduire à des valeurs plus ou moins satisfaisantes; dans certains cas, les résultats peuvent devenir inutilisables (nombres imaginaires), ce qui nous impose une grande réserve.

Le but de l'article présent est de déterminer cet effort critique des barres à section monosymétrique, pour le cas général d'appui. Puisque un traitement analytique aurait présenté des difficultés on a fait appel a un procéde de calcul numérique, en intégrant le système d'équations différentielles du problème par la méthode Runge-Kutta-Gill.

3. EQUATIONS DU PROBLEME

Par rapport au système de référence intrinsèque ayant l'origine dans le centre de torsion (Fig. 2) le système d'équations différentielles est /10/, /11/:

$$\begin{cases} B\bar{u}' + N\bar{u}' - N\bar{y}_{G}\varphi'' = 0 \\ C_{\omega}\varphi^{IV} - (C - Ni_{c}^{2})\varphi^{II} - N\bar{y}_{G}\bar{u}'' = 0 \end{cases}$$
(1...2)

où:

 \bar{u} est le déplacement du centre de torsion selon la direction de l'axe \bar{x}

rotation de la section transversale autour du centre de torsion C

N effort de compression centrique, dont on calcule la valeur

ordonnée du centre de gravité G par rapport au centre de torsion C

rayon d'inertie polaire par rapport au centre de torsion C

et:

$$B=EI_{w}$$
, $C=GI_{+}$, $C_{w}=EI_{w}$ (3...5)

sont les modules de rigidité à la flexion dans un plan perpendiculaire au plan de symétrie, à la torsion pure (du type Saint-Venant) et respectivement au gauchissement.

On a utilisé les notations suivantes dans (6-13) :

$$\widetilde{u} = \frac{\overline{u}}{i_c} , \quad m = \frac{N \ell^2}{B}$$

$$g_1 = \frac{C \ell^2}{C_\omega} , \quad g_2 = \frac{C_\omega}{B i_c^2} , \quad g_3 = \frac{\overline{g}_6}{i_c}$$
(6...13)

où 1, représente la longueur de la barre.

On peut mentionner que les mêmes paramètres géométriques de la barre (16-18) sont mis en évidence si l'on procède à l'intégration du système (1-2), ce qui prouve qu'ils sont intrinsèques au phénomène et facilitent l'étude de celui-ci.

4. CONDITIONS AUX LIMITES

Ces équations sont, pour \$ = 0 :

$$\begin{cases} k_{o}(\bar{u}_{o}^{-}\bar{a}_{o}^{\dagger}) + N_{cr}(\bar{u}_{o}^{\dagger} - \bar{y}_{o}^{\dagger}) + \bar{u}_{o}^{\dagger} B = 0 \\ k_{o}(\bar{u}_{o}^{\dagger} - \bar{b}_{o}^{\dagger} + \bar{y}_{o}^{\dagger}) - \bar{u}_{o}^{\dagger} B = 0 \\ \sim k_{o}(\bar{u}_{o}^{\dagger} - \bar{b}_{o}^{\dagger} + \bar{y}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{b}_{o}^{\dagger} + \bar{y}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{a}_{o}^{\dagger} + \bar{y}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{u}_{o}^{\dagger} + \bar{u}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{u}_{o}^{\dagger} + \bar{u}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{u}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{u}_{o}^{\dagger} - \bar{u}_{o}^{\dagger}) - k_{o}(\bar{u}_{o}^{\dagger} - \bar{u}$$

D'une manière similaire, on écrit les conditions pour l'appui $\frac{\pi}{2} = \ell$, en observant les mêmes conventions de signe et en affectant de l'indice ℓ , les valeurs pour cette section.

Le dernier terme de l'équation (22) a été obtenu en intégrant sur la section transversale l'effet des contraintes normales $\mathfrak{S}_{\mathrm{cr}}$, parce que le principe de Saint-Venant n'est pas applicable à la torsion des barres à parois minces.

En utilisant les notations (14-18) et les rigidités non dimensionnelles :

$$\tilde{k} = \frac{k\ell^3}{B}$$
, $\tilde{\kappa} = \frac{\kappa\ell}{B}$, $\tilde{\kappa} = \frac{\kappa\ell}{C_w}$, $\tilde{\chi} = \frac{\kappa\ell^3}{C_w}$ (23...26)

et les cotes non dimensionnelles des niveaux d'appui :

$$\widetilde{a} = \frac{\overline{a}}{i_c} \qquad , \qquad \widetilde{b} = \frac{\overline{b}}{i_c} \qquad (27...28)$$

Les conditions (19...22) pour $g = \frac{\overline{z}}{\ell}$ 0 deviennent :

$$\begin{pmatrix}
\widetilde{k}_{o}(\widetilde{u}_{o}-\widetilde{\alpha}_{o}\varphi_{o}) + n(\widetilde{u}_{o}-g_{3}\varphi_{o}^{\dagger}) + \widetilde{u}_{o}^{\sharp} = 0 \\
\widetilde{k}_{o}(\widetilde{u}_{o}^{\dagger}-\widetilde{b}_{o}\varphi_{o}^{\dagger}) - \widetilde{u}_{o}^{\sharp} = 0 \\
\widetilde{\kappa}_{o}(\widetilde{u}_{o}^{\dagger}-\widetilde{b}_{o}\varphi_{o}^{\dagger}) - \widetilde{u}_{o}^{\sharp} = 0 \\
\widetilde{\kappa}_{o}\varphi_{o}^{\dagger}-\frac{\widetilde{b}_{o}}{g_{2}}\widetilde{k}_{o}(\widetilde{u}_{o}^{\dagger}-\widetilde{b}_{o}\varphi_{o}^{\dagger}) - \varphi_{o}^{\sharp} = 0 \\
-\varphi_{o}^{\sharp}+g_{4}\varphi_{o}^{\dagger}-\widetilde{\chi}_{o}\varphi_{o}+\frac{\widetilde{a}_{o}}{g_{2}}\widetilde{k}_{o}(\widetilde{u}_{o}-\widetilde{a}_{o}\varphi_{o}) - \frac{n}{g_{2}}(\varphi_{o}^{\dagger}-\widetilde{u}_{o}^{\dagger}g_{3}) = 0
\end{pmatrix}$$
(19'...22')

De même on écrit les conditions pour $\frac{\sqrt{2}}{2} = \frac{\overline{2}}{2} = 1$.

Les conditions aux limites pour des modes d'appui particuliers /8/ peuvent être obtenues en rendant les rigidités nulles ou infinies (selon le cas). Les calculs numériques, effectués à l'aide d'un ordinateur IRIS-50 selon le programme élaboré par les auteurs (en FORTRAN IV), ont traité les modes d'appui indiqués dans le tableau 1.

TABLEAU 1

NE	TYPE D'APPUI
1	Ko ü
	γ γ γ γ γ γ γ γ γ γ γ γ γ γ
•	Ko ü
2	φ
3	ĵ ŭ
	φ

Nr.	TYPE D'APPUI		Nr.	TYPE D'APPU	
1	ς Ψ	THE THE THE	6	, ũ , Ψ	K ₁
2	, Ψ	TWON THE TANK	7	, ŭ. , φ	$\widetilde{\mathcal{K}}_1$
3	, ũ , Ψ	W = W = X = X = X = X = X = X = X = X =	8	, ũ , φ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	, τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	N XI	9	γ φ	K ₁
5	, α , φ	X X	10	ς α , φ	- War

5. METHODE DE CALCUL

L'intégration du système d'équations différentielles a été effectuée en traitant le problème de stabilité non pas comme un problème à conditions marginales, mais comme un problème à valeurs initiales. Ce procédé est utilisé dans de divers domaines /12/, /13/, grâce aux possibilités offertes par les ordinateurs. Donc, les solutions du système (6-13) sont écrites sous la forme :

$$\widetilde{u} = C_{4}\widetilde{u}_{4}^{*} + C_{2}\widetilde{u}_{2}^{*} + C_{3}\widetilde{u}_{3}^{*} + C_{4}\widetilde{u}_{4}^{*}$$

$$S = C_{4}S_{4}^{*} + C_{2}S_{2}^{*} + C_{3}S_{3}^{*} + C_{4}S_{4}^{*}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T = C_{4}S_{4}^{*} + C_{2}J_{2}^{*} + C_{3}J_{3}^{*} + C_{4}J_{4}^{*}$$
(29...36)

où (u, , , ,), i = 1,2,3,4 sont quatre groupes de solutions particulières linéairement indépendantes qui satisfont aux conditions initiales pour = 0 et au système d'équations différentielles. Ces solutions particulières sont obtenues numériquement à l'aide de la méthode Runge-Kutta-Gill.

Les conditions initiales nécessaires dans ce procédé de calcul sont établies en précisant les vecteurs linéairement indépendants $(\widetilde{u}_0,\widetilde{u}_0',\ldots,\widetilde{\psi}_0'',\widetilde{\psi}_0'')$ pour $\widetilde{y}=0$. Ainsi, par exemple, dans le cas des conditions d'appui (19'-22') qui correspondent au type 1 du tableau 1, les quantités $\widetilde{u}_0''',\widetilde{u}_0'',\widetilde{\psi}_0'',$ et $\widetilde{\psi}_0'''$ pouvant être exprimées en fonction de $\widetilde{u}_0,\widetilde{u}_0',\widetilde{\psi}_0$ et $\widetilde{\psi}_0'$, les quatre solutions particulières linéairement indépendantes sont établies à l'aide des vecteurs linéairement indépendants suivants :

I.
$$\widetilde{u}_{o}=1$$
, $\psi_{o}=0$, $\widetilde{u}_{o}=0$, $\psi_{o}^{\dagger}=0$

et les autres valeurs conformément à (19'-22'),

II.
$$\widetilde{\mathcal{U}}_{o} = 0$$
, $\varphi_{o} = 1$, $\widetilde{\mathcal{U}}_{o} = 0$, $\varphi_{o}^{\dagger} = 0$

et les autres valeurs conformément à (19'-22'),

III.
$$\tilde{u}_0=0$$
, $\tilde{v}_0=0$, $\tilde{u}_0=1$, $\tilde{v}_0=0$

et les autres valeurs conformément à (19'-22'),

IV.
$$\widetilde{\mathcal{U}}_{o}=0$$
, $\widetilde{\mathcal{V}}_{o}=0$, $\widetilde{\mathcal{U}}_{o}'=0$, $\widetilde{\mathcal{V}}_{o}'=1$

et les autres valeurs conformément à (19'-22').

En effectuant les quatre intégrations numériques, les valeurs des fonctions (29-36) pour f = 1 sont :

$$\widetilde{u}_{1} = C_{1} \, \alpha_{11} + C_{2} \, \alpha_{12} + C_{3} \, \alpha_{13} + C_{4} \, \alpha_{14} \qquad (37...44)$$

Dans certains cas, il est souhaitable de connaître aussi les allures des déformées u et Ψ qui correspondent à l'équilibre indifférent. Dans ce but, les valeurs de solutions particulières (u_1^*, Ψ_1^*), i = 1,2,3,4 en 9 points intermédiaires équidistants et aux extrémités sont retenus dans la subroutine d'intégration du système d'équations différentielles. Avec ces valeurs, la subroutine DEFØRM (Fig.8) calcule les valeurs de trois constantes d'intégration du système d'équations différentielles en fonction de la quatrième constante (que l'on prend égale à 1) et construit les déformées à l'aide de (33) et (37).

6. DOMAINE DE VARIATION DES PARAMETRES g₁,g₂,g₃.

Pour établir les domaines de variation des trois paramètres géométriques, on a d'abord construit la section typique pour une colonne d'un hall industriel à pont roulant (Fig. 9). En variant le paramètre $\mathbf{\hat{y}} = \mathbf{b_2}/\mathbf{b_1}$ entre 1 et 0,5, on a obtenu pour une longueur $\mathbf{\hat{z}} = \mathbf{10}$ h les valeurs suivantes :

1,00	0,75	0,50
3,41 .	5,88	15,60
1,19	0,79	0,30
0,214	0,25	0,505
	3,41 . 1,19	3,41 . 5,88 1,19 0,79

Ce domaine a été élargi par la considération des barres à sections transversales C et N étant donné leur sensibilité aiguë au flambement par flexion-torsion mais aussi leur utilisation fréquente comme éléments sollicités axialement dans certaines structures planes et spatiales. En supposant, pour le calcul des paramètres, des longueurs de barres entre 0,5 et 4,0 m, les valeurs obtenues ont été situées entre les limites suivantes:

$$2 \le g_1 \le 120$$
 0,02 $\le g_2 \le 1,2$ 0,1 $\le g_3 \le 1,0$

qui ont été retrouvées lors de la vérification numérique de certains cas concrets.

7. CALCUL DE L'EFFORT CRITIQUE ET INTERPRETATION DES RESULTATS

Afin d'étudier l'influence des conditions d'appui sur la valeur de l'effort critique du flambement par flexion-torsion on a calculé plusieurs exemples numériques. Les valeurs des paramètres géométriques ont été choisies de sorte qu'elles correspondent pour une barre sensible à ce mode d'instabilité, comme le sont par exemple les barres à parois minces formées à froid, à section \mathbf{N} . Ainsi, les valeurs \mathbf{g}_2 = 0,07 et \mathbf{g}_3 = 0,8 correspondent à un profil \mathbf{M} de dimensions moyennes de la gamme des profils laminés couramment ; pour \mathbf{g}_1 , qui dépend aussi de la longueur de la barre, on a considéré quatre valeurs : 2, 25, 50 et 100.

Les conditions d'appui ont été choisies pour modeler une colonne faisant partie d'un cadre et qui, à l'extrémité supérieure, est liée de diverses façons au reste de la structure. Afin d'avoir un critérium pour le choix des rigidités de l'appui supérieur, on a défini trois degrés d'encastrement, notamment :

$$S_{k} = \frac{M_{i}}{m_{i}}$$
, $S_{n} = \frac{B}{B}$, $S_{n} = \frac{M_{t}}{m_{t}}$ (45...47)

où les numérateurs représentent respectivement le moment de flexion, le bimoment et le moment de torsion engendrés par le flambement de flexion-torsion à l'extrémité appuyée élastiquement ; le dénominateur de chaque fraction représente la valeur de la sollicitation au cas où la déformation afférente serait complétement annulée par l'appui. Dans les calculs effectués, on a considéré les valeurs extrêmes des degrés d'encastrement (c'est-à-dire 0 et 1) et la valeur 0,5. Avec les définitions (46-47), les quantités et \mathcal{H} ont été exprimées en fonction du paramètre \mathbf{g}_1 et du degré d'encastrement respectif. Les diagrammes tracés (en hypothèse $\mathbf{a} = \mathbf{b} = \mathbf{0}$) montrent les effets des trois composantes \mathbf{K}, \mathbf{K} et \mathbf{H} qui définissent l'ensemble de la rigidité de l'appui (Fig. 10... 14).

Afin d'obtenir des conclusions directes de ces diagrammes, vu que le paramètre g_1 dépend (outre les caractéristiques géométriques de la section transversale) du carré de le longueur (16), les diagrammes de la figure 12 ont été retracés, de sorte que seule la longueur géométrique de la barre a été maintenue comme variable. On observe que l'effet de variation du degré d'encastrement est maximum dans le domaine $g_1 \leqslant 25$ (Fig. 15).

En examinant les diagrammes représentés dans les figures 10, 13, 14, on peut observer que pour g₁ > 25 un degré d'encastrement **5%** = 0,5 rapproche la valeur du paramètre critique n de celle qui correspond à un degré d'encastrement limite **5%** = 1; plus le degré d'encastrement au gauchissement **5%** est grand, plus cet effet est marqué. Par conséquent, les diagrammes montrent l'inutilité des trop grandes rigidités de ces liaisons dans le domaine des grandes valeurs g₁.

En effet, une analyse comparative des diagrammes des figures 10, 11, 12 d'une part, respectivement 10, 13, 14 de l'autre, montre que dans les situations où l'on opère des modifications sur les liaisons qui empêchent la rotation due à la flexion ($\tilde{\mathbf{u}}$ '), le taux d'augmentation du paramètre critique n est plus grand dans le domaine des grandes valeurs \mathbf{g}_1 , où le flambement par flexion est prédominant ; en ce qui concerne les modifications qui affectent les liaisons concernant l'autre composante du phénomène, c'est-à-dire la rotation et le gauchissement dus à la torsion ($\tilde{\mathbf{u}}$ '), le taux d'augmentation du paramètre critique est plus grand dans le domaine des petites valeurs \mathbf{g}_1 .

En modifiant aussi les deux autres paramètres g₂ et g₃ de la barre, il résulte que pour l'augmentation de g₃, la valeur du paramètre critique n diminue (Fig. 16). L'explication réside dans la signification géométrique de ce paramètre, qui est proportionnel à la distance entre les deux centres de la section transversale. Si cette distance est plus grande, l'effort de compression centrique produit (par sa composante transversale dans l'état déformé de la barre) un effet défavorable plus marqué. Certaines grandes valeurs de ce paramètre peuvent être aussi interprétées comme une réduction de la rigidité de la barre à la torsion, de sorte qu'une liaison à l'extrémité, plus rigide du point de vue de la torsion, ne saurait influencer la valeur du paramètre critique, d'une manière décisive.

L'influence du paramètre géométrique g, est inverse à celle de g, le paramètre critique n augmentant pour les grandes valeurs de g, Toutefois, son importance pour l'analyse phénoménologique du flambement par flexion-forsion est moindre.

L'influence des rigidités des appuis a été suivie aussi à l'aide de diagrammes du type de celui de la figure 17, construits pour plusieurs valeurs constantes des paramètres géométriques, respectivement par l'interprétation des allures déformées ($\hat{\mathbf{u}}$ et $\hat{\mathbf{v}}$) correspondant à l'équilibre indifférent. Ainsi sur la figure 18, sont représentées les allures des déformations d'équilibre indifférent (pour deux modes d'appui) d'une barre avec \mathbf{g}_1 = 10, \mathbf{g}_2 = 0,07 et \mathbf{g}_3 = 0,8, où l'influence favorable de l'empêchement du gauchissement de la ligne médiane de la section transversale à l'extrémité est illustrée aussi par la géométrie des allures déformées.

En ce qui concerne l'influence des niveaux d'appui a et b les calculs effectués ont mis en évidence l'existence de niveaux optimums d'appui en fonction de l'élasticité de l'appui.

Ainsi, par exemple si le degré d'encastrement 5% (Fig. 17) tombe au-dessous de la valeur 0,75, pour obtenir une charge critique maximale (correspondant au degré d'encastrement 5% respectif) l'appui simple supérieur devra être disposé à une distance à de plus en plus importante du centre de torsion, cette distance tendant vers la valeur +1. (Fig. 17-18)

Les auteurs ont l'intention de poursuivre leurs recherches concernant les barres comprimées et fléchies.

BIBLIOGRAPHIE

/1/	Edmonds F.D. Medland I.C.	Approximate Determination of Frame Critical Loads. Journal of the Structural Division Vol. 98 No. ST3, Mar. 1972
/2/	Hangan D.M.	Die Bestimmung der Säulenknicklänge bei Stockwerkrahmen durch Schrittweise Näherung. Die Bautechnik No. 8 Aug. 1958
/3/	Appeltauer I. B ăluț N. Gioncu V. Cuteanu E.	Calcucul approximativ al tălpii superioare din profile omega, la grinzi cu zăbrele din bare cu pereți subtiri formate la rece. Revista construcțiilor și a materialelor de construcții.8/1967
/4/	Mateescu D. Appeltauer I.	Elméleti és kisérleti kutatások a hidegen alakitott profilok épitőipari alkalmazására II. Tartószerkezeti konferencia 1969 május 6-9
/5/	Capus F. Massonnet Ch.	Recherches sur le flambement de colonnes en acier A37, à pro- fil en double Té, sollicitées obliquement I.R.S.I.A. Comptes rendus de recherches. Travaux de la commission pour l'étude de la construction métallique No. 17 avril 1956
/6/	Capus F. Massonnet Ch.	Specification for the Design of Cold-Formed Steel Structural Members. 1968 Edition
/7/	Pekoz T.B. Winter G.	Torsional-Flexural Buckling of Thin-Walled Sections under Eccentric Load. Journal of the Structural Division Vol. 95 No. ST 5 May 1969
/8/	Brezina V.	Vzpěrna pevnost prutů kovorych konstrukci Statní Nakladatelstvi Technické Literatury, Praga 1963
/9/	Appeltauer I. Cavaropol R. Cuteanu E. Gioncu V.	Contribuții la calculul la stabilitate al barelor cu pereți subtiri, rezemate diferit la capete. Buletinul științific și tehnic al Institutului politehnic Timișoara. Tom 15 (29) Fascicola 2 Iulie-Decembrie 1970
/10/	Vlasov V.Z.	Tonkostenniie uprughie sterjni. Fizmatghiz, Moscova 1959
/11/	Kollbrunner C.F. Meister M.	Knicken, Biegedrillknicken, Kippen. Springer Verlag, Berlin 1961
/12/	Zurmühl R.	Praktische Mathematik für Ingenieure und Physiker. Springer-Verlag Berlin/Göttingen/Heidelberg 1961
/13/	Ebner A.M. Bellington D.P.	Steady State Vibration of Damped Timoshenko Beams. Journal of the Structural Division Vol. 94 No. ST 3 Mar. 1968







