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SUMMARY

During severe earthquakes, tall buildings are subjected to overturning moments
which may tend to 1ift the column bases off the foundation. Building codes in
California require anchorage of the columns against such uplift, although the
cost of anchorage may be high. In this paper, shaking table tests of a 9 story
building frame model are described, and the relative behavior with and without
anchorage is discussed. Excellent correlations are demonstrated between
observed performance and computer predictions.
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1. INTRODUCTION

1.1 Overturning Effects during Large Earthquakes

The lateral loading applied to a structure during a major earthquake will often
greatly exceed that suggested by current building code seismic provisions. This
fact has long been recognized by code committees, and provisions requiring ade-
quate detailing to accommodate local excursions into the nonlinear behavior range
have resulted.

No rational provisions have yet been incorporated into codes, however, to con-
sider the effect of the large overturning moments resulting from actual intense
seismic loadings. Generally, current code provisions require that whatever over-
turning moment results from the design calculations must be resisted completely
by the structural system, even if supplementary anchorage is indicated. It
should be noted, however, that design loadings almost always are lower than the
maximum credible seismic loading.

1.2 Implications of Overturning Moment Overloads

If an overturning moment is applied to a structure which exceeds the structure's
overturning capacity, a transient uplifting of portions of the structure from
its foundationwill result. This uplifting response, while not implying imminent
toppling of any practical building, is highly nonlinear. Rational consideration
of this overload condition, therefore, requires investigation into the category
of nonlinear response represented by uplifting systems.

2. UPLIFTING STEEL FRAME TEST PROGRAM

2.1 Preliminary Investigation

Any good structural design must be based on a thorough understanding of the beha-
vior of the structural system when subjected to the anticipated loading condi-
tions. Because severe seismic loading conditions will usually result in a non-
linear response, at least for economical structures, this type of response should
be understood as completely as possible. To better understand the nonlinear
phenomena associated with uplifting response, a preliminary experimental and
analytical investigation was undertaken utilizing a relatively simple single-bay,
three-story steel frame superstructure system [1%. In this investigaton the up-
1ifting response was compared to the response of the system when supplementary
overturning anchorage was provided, for similar intense excitations. The experi-
men%a] portion of the investigation was conducted on the U.C. Berkeley shaking
table.

The results of this preliminary investigation showed a considerable reduction in
applied loading and ductility demand for the uplifting response, when compared to
the corresponding fixed base response. In addition, analytical predictions of
the uplifting response agreed quite well with the observed experimental results.
A mathematical model employing bilinear elastic foundation support elements
having zero capacity in the upward direction, combined with a tangent stiffness
proportional damping matrix, was utilized in this analytical work.

2.2 Nine-Story Frame Model

As a result of these promising preliminary results, an investigation was under-
taken into the uplifting response of a more sophisticated superstructure system,
one which would be more representative of an actual prototype structure. The

9 story steel frame model, pictured in Fig. 1 and shown schematically in Fig. 2,
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was designed and fabricated for this purpose [2]. As can be seen from the indi-
cated dimensions of the structure in the diagram, the test system was approxi-
mately a 1/3 scale model of a realistic, although hypothetical, prototype steel
building frame with moment resisting joints. The column base detail which
allowed uplift and included a cushioning pad is shown in Fig. 3.

The *est structure and the shaking table, described eisewhere by Rea and Penzien
[3], were instrumented extensively for the experimental program. A total of 128
data acquisition channels were utilized, with each channel being sampled at a

rate of approximately 50 times per second. The resulting data defined the shaking
table accelerations and displacements, the accelerations and displacemdnts at the
floor levels of the model, its uplift displacements, and selected local member
force and deformation quantities, primarily in the lower two floors.

2.3 Experimental Results

One uplift test and one fixed base test utilizing a time-scaled version of the
1971 Pacoima Dam S74W input signal are discussed in this paper. The table ac-
celerations and displacements in the horizontal direction along with the response
spectra of these motions for damping ratios of 0.01, 0.02, 0.03 and 0.05 are shown
in Figs. 4 and 5. As can be seen in these figures, the table shaking for the two
tests was similar and very intense in nature.

The overturning response for the two base conditions is shown in Figs. 6 and 7.
Comparison of these figures demonstrates the dramatic effect of column uplift

on the response of the structure. The uplift phenomenon performs as a struc-
tural "fuse," limiting the overturning forces generally to those values which
initiate uplift. Transient excursions beyond this 1imiting value of load do
occur, primarily at instants when the column bases impact with the foundation.
However, these very short-lived impulses, such as that seen at about 3.8 seconds
in the uplift time history of Fig. 7, appear to be resisted largely by the in-
ertia of the system; these impulses are not so evident in the local element
force records.

2.4 Analytical Results: Uplift Test

The analytical results for the uplift test are shown in Figs. 8 through 11; in
these figures the analytical quantities are plotted as solid curves together with
the corresponding experimental data presented as dashed curves, in order to faci-
litate comparison of the two. For this analytical work the uplift response was
included in the mathematical model through the use of bilinear elastic foundation
elements as described for the preliminary tests. In addition a tangent stiff-
ness proportional viscous damping matrix giving a linear 1st mode damping ratio
of 0.007 was employed.

As can be seen from the relative horizontal floor displacements of Fig. 8 and the
uplift displacements of Fig. 9, the global structural response was predicted
quite accurately by this mathematical model. The local 1st floor column forces
of Figs. 10 and 11 also show good correlation. An interesting feature of the
column base moments of Fig. 11 is the gradual transition from a fixed-base to

a free-base condition as the columns separate from the foundation on one side
before the other. In addition, a slight numerical stability problem is evident
in the calculated column axial forces in Fig. 10; this impact-associated analy-
tical complication is understandably sensitive to the integration time step em-
ployed. A time step of 0.0048 sec. was used for this analysis, and the results
seem to be within acceptable engineering resolution.
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2.5 Analytical Results: Fixed Base Test

The analytical results for the fixed-base test are shown in Figs. 12 through 14,
plotted in a similar manner to the previous results. For this analysis the 1st
mode damping ratio was specified to be 0.032, and the integration time step was
0.0096 sec. The longer time step was permissible because of the lack of any
impact problem in this test. The response during this test extended slightly
into the nonlinear strain range for the beams and columns in the Tower two floors;
their nonlinear moment-curvature behavior was included in the mathematical model
through the use of concentrated bilinear plastic hinges at the ends of the members.

As is shown in Fig. 12, the displacements for this test were again predicted
-accurately. The displacements for the fixed base tests were only slightly lower
than those observed during the uplift test, indicating that the internal struc-
tural deformations were considerably higher for- the fixed base test because there
‘was no "rigid body" contribution to these displacements. The local column forces
of Figs. 13 and 14 again show generally good agreement between experimental and

analytical values. It can be seen however, that the 2nd mode response was not
predicted nearly as accurately as the 1st mode response. Mathematical models,
due to assumptions made during their construction, generally tend to over-
estimate higher mode frequencies. It is interesting to note that the dynamic
column compression forces of the fixed base test in Fig. 13 are higher than those
of the uplift test, shown in Fig. 10, demonstrating that the impact effect re-
sulting from uplift is not very severe.

3. PRACTICAL DESIGN IMPLICATIONS

The results of this test program indicate that a structural system including a
rationally designed uplifting capability would have an enhanced probability of
surviving a severe earthquake in a functional condition. Both the structural
frame and the nonstructural exterior and interior walls are subjected to reduced
strains and deformations. In order to fully exploit this improvement, it is sug-
gested that the two-level design philosophy be employed in the design of building
frames in which uplift is allowed. Under expected moderate earthquake conditions,
corresponding to normal building code design requirements, it is probable that
the dead weight overturning constraint will not be exceeded, and the design may
follow standard procedures, because no uplift will occur.

However, under severe seismic cgnditions, corresponding to the maximum expectable
earthquake at the building site, a dynamic response analysis should be performed
to determine whether the structure develops overturning tendencies. If so, a
nonlinear dynamic uplift analysis should be made to evaluate the maximum frame
stresses which can be expected. As is .evident from the results of this investi-
gation, these stresses will be significantly reduced by allowing uplift to take
place; in effect, the uplift mechanism absorbs the seismic displacements and
greatly reduces the ductility demand on the structure frame.

In designing for uplifting performance, the following factors should be considered.

There should be relatively little restraint to vertical separation of

the column bases from the foundation, although a rather flexible energy
dissipation mechanism could be incorporated if deemed desirable. Suffi-
cient resistance to steady-state wind loading must, of course, be provided.

A reliable "shear key" is required to prevent the columns from walking off
the foundation during uplift response. The flexure plate concept used in

the test program seems worthy of serious consideration, but would have to

be extended to accommodate a biaxial type of response.
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An impact pad must be provided at each column, which will tolerate
impact and protect potentially more brittle components.

Flexibility is required in service connections to the structure. A
centrally located service core, where little or no separation should
occur, would seem a logical design concept.

A reliable nonlinear dynamic analysis which takes account of the up!ift
response must be made to ensure a tolerable amplitude of uplift motion,
even during the most severe credible earthquake.

Looked at in this light, a planned uplift capability can be thought of as a supple
ment to the current detailing requirements which ensure a safe behavior during
overload conditions. Due to the fact that little experience has been acquired
with the uplift phenomenon, however, it should be considered explicitly in the
design process, through an actual dynamic analysis.

Although this investigation was concerned with a steel moment frame, there is no
reason to limit uplift behavior to only that category of structural system.
Ductility may be achieved readily in steel moment frames, and systems without thi
inherent ductility would have their seismic performance enhanced to an even great
degree by the inclusion of an uplift capability. Achieving a ductile behavior in
reinforced concrete frames, for example, requires adequate confinement steel, wit
associated increased material and placement costs. Shear wall and braced frame
systems also present special problems in achieving high ductility. Eliminating
or at least substantially reducing the ductility demand for those systems could
easily lead to considerable savings in the superstructure system, and simultan-
eously provide enhanced safety for the occupants.

As an added economy to these mentioned above, potential foundation savings could
result in structural systems for which current code overturning provisions requir
supplementary anchorage. Such overturning anchorage can be exceedingly expensive
requiring deep piles or caissons to provide the required tensile capacity.

4. CONCLUSIONS

This research presents strong evidence for including a rationally planned uplift
capability as part of a dual seismic performance criterion. By this approach in-
creased safety can potentially be coupled with increased economy. Analytical tool
are presently available to accurately predict this type of nonlinear response;
indeed this catagory of nonlinearity lends itself very well to analysis, due to
its inherently simple nature.
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