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II

Plastic Solutions for Reinforced Concrete Beams in Shear

Solutions plastiques pour des poutres en béton armé soumises à un effort tranchant

Plastizitätstheoretische Lösungen für schubbeanspruchte Stahlbetonbalken

J.F. JENSEN
Civil Engineer, M.Sei.Eng.
Technical University of Denmark
Lyngby, Denmark

SUMMARY
The paper treats reinforced concrete beams in shear by means of the theory of plasticity. Disregarding
the tensile strength of the concrete, exact solutions are found for some common cases of beams and
loading, and comparison is made with test results. Furthermore, an upper-bound analysis is carried out
to investigate the influence of the tensile strength of the concrete in beams without shear reinforcement.

RESUME
La théorie'de la plasticité est appliquée pour l'analyse des poutres en béton armé soumises à un effort
tranchant. La résistance à la traction du béton étant supposée négligeable, quelques solutions complètes
sont établies et des comparaisons avec des résultats expérimentaux sont faites. L'influence de la
résistance à la traction du béton sur la charge ultime de poutres sans armature de cisaillement est examinée
par la méthode cinématique.

ZUSAMMENFASSUNG
Durch Querkraft beanspruchte Stahlbetonbalken werden mit der Plastizitätstheorie behandelt. Unter
der Annahme einer verschwindenden Betonzugfestigkeit werden vollständige Lösungen für einige
übliche Fälle angegeben, und Vergleiche mit Versuchsergebnissen werden durchgeführt. Der Einfluss
der Betonzugfestigkeit auf die Traglast von Balken ohne Schubbewehrung wird mit der kinematischen
Methode untersucht.
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1. INTRODUCTION

This paper presents briefly a number of plastic solutions for determination of the
shear strength of reinforced concrete beams. Ear the detailed examination, the
reader is referred to [4].

2. BASIC ASSUMPTIONS

The solutions presented are based on the following assumptions:
- The concrete is a rigid, perfectly plastic material with Coulombs modified failure

hypothesis as its yield criterion. The angle of friction is tp the uniaxial
compression strength is f* and the tensile strength f * pf* The

deformations are governed by the normality condition. c

- The reinforcing steel is rigid, perfectly plastic, and can only resist forces in
its longitudinal direction. The magnitude of the yield stress is the same for
tension as for compression.

- The stress field in the beam is plane.

3. SOME EXACT SOLUTIONS

In the solutions in this section it is assumed that the concrete has no tensile
strength, i.e., that f 0 Regarding the consequences of this assumption, see
section 4.

3.1 Stringer beam with shear reinforcement - concentrated load.

Plastic solutions for this type of beam and load, see fig. 1, have been known for
some years,[l] and [2] However, none of these works give coinciding upper-bound
and lcwer-bound solutions for beams with very little shear reinforcement, which is
a somewhat unsatisfactory state of affairs. It will be shown here how the desired
coincidence can be obtained by quite a simple alteration of the stress distribution

on which lower-bound solutions known so far are based.

Fig. 1. Beam under consideration, showing failure mechanism.

In the following, the compression zone and the tensile reinforcement are idealized
as stringers, and these are at the same time assumed to be sufficiently strong to
resist the stringer forces occurring.

Furthermore, the stirrups, which are all inclined at the angle a with the beam
axis, are assumed to be placed so closely together that the stirrup forces can be
substituted by a uniformly distributed equivalent stirrup stress.

Let us now consider the part of the beam located between the loading plate and the
support, with the distribution of the concrete stresses in the beam web shown in
fig. 2. Here, the best lower-bound is obtained by optimizing the angle 0 putting
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Fig. 2.

II
Stress field in concrete with
low degree of reinforcement.

Fig. 3. Stress field in concrete with
high degree of reinforcement.

f* and assuming yielding of the shear reinforcement. The solution found in
this way is valid as long as together with the equivalent stirrup stress fulfil

the boundary conditions along the stringers without exeeding the uniaxial
compression strength Of the concrete, f^
this is possible as long as

With the stress distribution applied.

* - <!»'
/1+<F' a

K
2 sin' ct/l+(f)2

A f£ vs
b c f*c

(3.1)

Here, we have introduced the mechanical degree of shear reinforcement, tp A
denotes the stirrup area crossing the concrete area b c is the spacing
between the stirrups measured at right angles to these, and finally
yield stress of the stirrup reinforcement. ys is the

In case of larger degrees of shear reinforcement than given by (3.1), the stress
distribution from fig. 2 must be replaced by that shown in fig. 3. Here, we put
a f* and for a given equivalent stirrup stress, the angle 9 is determined
such tfiat the boundary conditions slong the stringers is fulfilled in all zones
shown. The equivalent stirrup stress is then optimized»leading to yielding of the
shear reinforcement as long as

* + cosot
2 sin2 a

(3.2)

while the best lower-bound is obtained without yielding of the shear reinforcement,
when ij> Ï i|i"

The complete result of the lower-bound solution can be written as follows:
T V

f*c

f*c

b h ff <l/^l v9 a 9 >3.r - — + sin^ a (— + cot a)

/ i{j sin2 a 1 - :(> sin2 a) + tp sin a cos a ip' < xp < xp'

(3.3)

(3.4)

f*c
cot lp" < \p (3.5)

The solution determined by means of (3.3) - (3.5) is exact, because an upper-bound
solution derived on the basis of the failure mechanism fcom fig. 1 gives the same
carrying capacity when the angle ß is optimized.

Fig. 4 shows the results of 84 shear tests on simple T-beams with vertical stirrups,

carried out in the years 1967 to 1975 at the Structural Research Laboratory
of the Technical University of Denmark, compared with the theory. In the diagram,
an empirical expression from [l] is used for determining the apparent strength of
the concrete in the beam web on the basis of a given cylinder compression strength,
valid for stringer beams with shear reinforcement:



74 II - REINFORCED CONCRETE BEAMS IN SHEAR 4

f*c= (0-8' 2Öö'-fc (3.6)

In (3.6), both f and f are measured in MPa, f denoting the cylinder strength.

Fig. 4.
Comparison of the theory
and the results of tests.
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3.2 Rectangular beam without shear reinforcement- uniformly distributed load.

We now consider a simply supported beam with the free span 2a, see fig. 5. It is
assumed that the force, T in the tensile reinforcement can be transmitted to
the concrete by the part of the beam lying behind the support, as shown, in
principle, in the figure.

adopted division of concrete into fields in the zones from fig. 5.
zones with homogeneous stress fields.

The concrete is divided into zones with homogeneous stress fields, as shown in fig.
5. The stress fields are illustrated by means of the Möhr's circles in fig. 6. As

seen, the length l is determined such that hydrostatic pressure is obtained in
zone VI. No tensile stresses occur in any part of the concrete, and in the best
solution, the largest compression stress, is obtained simultaneously in zones
III, IV and VI. We put f* giving the magnitude of y and the solution
then becomes :

2 $(1 - $) f A. fT _ p a _ h
_ I y&

f* h f* ,a,2 ' bhf*c c (—) + 2$ (1 - $) ch

(3.7)
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+ 1

where we have introduced the mechanical degree of longitudinal reinforcement, $
A is the cross-sectional area of the reinforcement, and f is the yield
stress of the same. In opposition to (3.7), no yielding of tKe

cur corresponding to (3.8).
ne reinforcement oc-

The solution given by (3.7) and (3.8) is exact, since an upper-bound solution
based on the failure mechanism from fig. 7 leads to the same carrying capacity.
The points A and B act as hinges, and part I rotates an angle 0 about
the point A Part II's displacement is a pure translation.

Fig. 8 shows a comparison of the results obtained in theory and those obtained
from tests for a narrow interval of degrees of reinforcement. A detailed analysis
of the test results versus theory has not yet been performed. Therefore, since the
apparent concrete strength will presumably vary in relation to the cylinder
compression strength, analogously to (3.6), we have chosen only to consider a number

of tests with concrete strengths that do not vary too much in relation to
each other. We have then tentatively put f* 0.65 f

f
y
y

1— b —jr

B 0,2

01 2 3 U 567 89 10 alh

Fig. 7. Failure mechanism used. Fig. 8. Comparison with tests from
the literature.

With regard to the type of load and beam considered here, it is also interesting
to compare the carrying capcitites measured in tests reported in the literature
with the flexural strength determined in accordance with the CEB-FIP Model Code.
In a comparison of this nature reported in [l] and [3] for a total of 115 tests,
the average value of the ratio between the two carrying capacities is found to be
1.00, with a coefficient of variation of 15.2%. Thus, apart from ensuring a ductile

failure, only little can generally be gained by reinforcing with stirrups.
3.3 Rectangular beam without shear reinforcement - combined central, normal force

and concentrated load.

For derivation of the lower-bound solution, use is made of the stress distribution
shown in fig. 9. Forces in the tensile reinforcement are assumed to be transmitted
to the concrete behind the support, as in case of the beam in section 3.2.

The corresponding upper-bound is derived on the basis of a failure mechanism
analogous to that shown in fig. 7., see fig. 10. The best solution is found by
optimizing x, y^ and y^
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Fig. 9. Stress distribution for use in
lower-bound solution.

T
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L

Fig. 10. Sketch showing failure
mechanism used.

Both the lower-bound and the upper-bound solution leads to the carrying capacities:
VT

f* bhT* % < I/2 "(1 - t - 2 $)+ 4 0(1 - $) + (^)2-(^-) I 0 - ir - 1—2$ (3.9)
c c

I* Vw2 + (f)2-f> 1-2$ < TT < 1 (3.10)

where we have introduced the dimensionless parameter, ir by N it b h f* and the
degree of longitudinal reinforcement, $ from (3.7). Only corresponding to (3.9),
yielding of the reinforcement is obtained.
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Fig. 11. Alternative failure mechanism
for ir 0

Fig, 12. Variation of carrying capa¬
city with $ and ir

Now, compare the failure mechanism from fig. 10 with that from fig. 11. When the
beam is not subjected to a normal force, the mechanism from fig. 11 leads when
a is optimized to the same carrying capacity as given by (3.9) - (3.10) for ir 0.
Here a denotes the angle between the vertical and the relative displacement, S

between zones I and II. In this case, the solution is well known, and comparisons
with tests have previously been performed, cf. [l] and [3].

For ir * 0 the solution has not yet been verified by tests, so in fig. 12 only
the theoretical relationship between the carrying capacity and a couple of the
main paramétrés is shown. The variation with the relative shear span, —, is
analogous to that shown in fig. 14 for p 0
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4. UPPER-BOUND ANALYSIS OF THE EFFECT OF TENSILE STRENGTH

In beams provided with shear reinfrocement, the concrete in the beam web will be
completely cracked all the way through before failure occurs, so the concrete
cannot be assumed to have any tensile strength in a determination of the carrying
capacity. Therefore, in this section only beams without shear reinforcement will
be considered, since the cracking here will be less pronounced, which means that
the concrete can reasonably be assumed to have a certain, although minimum, tensile

strength.

4.1 Rectangular beam without shear reinforcement - concentrated load.

The failure mechanism shown in fig. 13 is chosen as the basis for the upper-bound
solution. At failure, the middle part of the beam undergoes the relative displacement,

6 vertically downwards in relation to the parts of the beam over the
supports, since we will only consider beams with such strong longitudinal reinforcement

that yielding will not occur in this. The failure line adopted is straight in
all cases, which is also shown by variational analysis to be the optimum form. The
best upper-bound solution is obtained by optimizing the angle 3

The solution arrived at is illustrated in fig. 14, where it should be noted that
the hereby calculated shear capacity becomes independent of the shear span when
this exeeds a certain limit, even though the concrete is only assumed to have a
rather low tensile strength. This indicates, as is well known, that if the shear
span is sufficiently long, then another failure mechanism, the flexural failure,
must be more dangerous than the shear failure.

Fig. 13. Failure mechanism. Fig. 14. Variation of shear capacity
with p and fj p f*h r c

If this had been a stringer beam with sufficiently strong stringers, the solution
illustrated in fig. 14 would be exact, since in this case a corresponding lower-
bound solution is found in [4].

4.2 Rectangular beam without shear reinforcement - uniformly distributed load.

Generalizing the failure mechanism from fig. 7 to that shown in fig. 15 for abeam
with such strong longitudinal reinforcement that yielding of this will not occur,
we find by optimation that y ^ h and x^ 0 The best value for and d
for use in the following has been calculated numerically. The results are shown in
fig. 16 and 17.
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Fig. 15. Failure mechanism.
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Fig. 16. Variation of carrying capa¬
city with p and —

h

p 0.00 p= 0,02

Fig. 17. Example of geometry of failure pattern at 3
h

Note from fig. 17 how the compression failures in the top of the beam move out
towards the supports, when the tensile strength is taken into account.

REFERENCES

[1] Nielsen, M.P., M.W. Brœstrup, B.C. Jensen and F. Bach :"Concrete
Plasticity". Dansk Selskab for Bygningsstatik. Special Publication.
Copenhagen, 1978.

[2] Thürlimann, B.:"Plastic Analysis of Reinforced Concrete Beams".
IABSE Colloquium, Copenhagen, 1979. Introductory Report, pp. 71-90.

13 J Roikjœr, M. C. Pedersen, M.W. Brœstrup, M.P. Nielsen og F. Bach:
"Bestemmelse af ikke-forskydningsarmerede bjaelkers forskydnings-
baereevne". Rapport Nr. I 62, Afdelingen for Bœrende Konstruktioner,
Danmarks tekniske H0jskole, 1978.

[4] Jensen, J.F., M.W. Brœstrup, F. Bach og M.P. Nielsen : "Nogle plasti-
citetsteoretiske bjœlkel0sninger". Rapport Nr. R 101, Afdelingen
for Bœrende Konstruktioner, Danmarks tekniske H0jskole, 1978.



4 79

II

Shear in Beams with Bent-Up Bars

L'effort tranchant dans les poutres avec des barres relevées

Schub in Balken mit aufgebogener Bewehrung

C. PEDERSEN
Ph. D. Student
Technical University of Denmark
Copenhagen Lyngby, Denmark

SUMMARY
The shear strength of reinforced concrete beams with bent-up bars as shear reinforcement is analysed
by means of the upper bound theorem of the theory of plasticity. The upper bound solutions are
compared with the results from a number of tests and good agreement is found.

RESUME
La résistance au cisaillement de poutres en béton armé avec des barres relevées est examinée par la
méthode cinématique de la théorie de la plasticité. Les valeurs extrêmes de la charge ultime sont
comparées avec les résultats d'essais et une bonne concordance peut être constatée.

ZUSAMMENFASSUNG
Der Schubwiderstand von Stahlbetonbalken mit aufgebogenen Stäben als Schubbewehrung wird mit
der kinematischen Methode der Plastizitätstheorie untersucht. Die oberen Grenzwerte für die
Traglasten werden mit Ergebnissen einer Anzahl von Versuchen verglichen, und eine gute Übereinstimmung
wird festgestellt.
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1. INTRODUCTION

The purpose of this investigation was to show the usability of the theory of
plasticity on this type of problem. In previous examinations by K.W. Johansen
and H.C. S0rensen it has been claimed that the contribution of bent-up bars to
the shear strength is independent of the inclination of the bar at the bending
point, (c.f. [57.l] and [72.1]). Furthermore, in these examinations (in which
a model with fixed concrete strut inclination is used) it is claimed that the
contribution of the bent-up bars to the shear strength of the beam is usually
over-estimated by 41%. However, no failures due to this have been found. It is
thus reasonable to ask if the plastic model for shear in reinforced concrete
(c.f. [78.2] and [75.l])gives a more precise description of the problem. This
paper is a short version of a similar paper in Danish, [78.3], which gives a
more profound description of the analysis.

2 BASIC ASSUMPTIONS

The reinforcing steel and the concrete are
both assumed to be rigid, perfectly plastic.
The yield locus of the concrete in plane
stress is shown in Fig. 1. The associated
flow rule is assumed to be valid. The state
of stresses in the beam is assumed to be
plane. f* denotes the effective concrete

cstrength and is related to the uniaxial
compression strength by the equation

f*
c

v f (1)

v is a positive figure less than 1 which
takes into account that the basic assumptions

are never fulfilled in practice,
that is, the concrete has not an unlimited
capacity of deformation under constant
stress and the state of stress is never
quite plane.

cr2(e 2)

m I

V-fï)
(0,-1)

1 *1 '

(1.0)

Fig. 1

,£2)

Yield Locus for Concrete
in Plane Stress.

3 THEORETICAL UPPER BOUND SOLUTIONS

The beam in Fig. 2 with only one bent-up bar in the shear span is considered.

<L

— c

pig- 2 Failure Mechanisms for Beams with only one Bent-up Bar.
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For the failure mechanism corresponding to yield line II it is easy to calculate
the external work and the internal work (dissipation) using the basic assumptions

(c.f. [78.2]). The following upper-bound solution is obtained by putting
the external work equal to the internal work.

l/ l+tg2a • /l+tg2ß - tg a - tg ß) + 1-Ç+Ç cos ip) +
c

E <f> sin ip (1)

The angles a and B are found by minimizing (1). Thiä yields the following values

tg a/h (2)

- r
/ 1+tg É

»in a < ^
o \

0

for r < -
for r > j

The reduced degree of longitudinal reinforcement is given by

r <j> 1-Ç+Ç cos (p)

For yield line I similar results can be obtained. In this case T

IV

(3)

(4)

and tg Xj/h.

Fig. 3 Failure Mechanisms for a Beam with several Bent-up Bars.

Fig. 3 shows a beam with several bent-up bars in the shear span. This beam has
to be investigated for each yield line I, II, III, IV and V. The investigations
are carried out using (1) to (4) with varying values of tg ß, Ç and F.

Alternatively, this beam is analysed by means of the usual expression for the
shear strength of a beam with inclined stirrups as shear reinforcement. The
shear strength is then given by

/l+A2 - X) + ip sin2ip (A+cot(p) 0 <_ ip <_ iji

v l+cos(p]/ i|i sin2ip (v-ip sin2<p) + iJj cos ip sin <p ^ ^
<P

(5)

v
2 COt 2

_ V 1+cosip^ ^ TT* 'JY — 2 sm2ip

where

i|i
CAf

b s f sin(pc

and K ö
/ l+A2

i2<p /l+A2
(6)
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Finally, a beam with combined stirrups and bent-up bars as shear reinforcement

Fig. 4 Reinforced Beam with Stirrups and Bent-up Bars.

For the failure mechanism corresponding to yield line I the following expression
for the shear force at failure is found

V n A f + Af tga + ^vf 1-SJ-n<ot+ß>
(7)

s ys y c cos a cos ß

From (7) it is seen that the contribution of the stirrups to the shear force is
independent of a. This means that a has to be determined as previously.o

4. COMPARISON BETWEEN CALCULATED RESULTS AND RESULTS OBTAINED BY TESTS

In this section, a comparison between results calculated by the preceeding
upper-bound solutions and results obtained by tests is drawn.

The results from the tests have all been found in the literature. The values
of v have all been determined so that accordance between theory and test was
obtained. Finally, these values of v are compared with the values recommended
in [78.2].

4,1 Tests by K. Özden arid K.W. Johansen

In [67.1], 4 tests with beams with bent-up bars and 2 tests on beams with
combined stirrups and bent-up bars are described. The beam T-ll has been omitted
from the present analysis because this beam showed typical brittle failure.

BEAM h b fc
<t> ao tg ß T/fc (T/fc>E

m m MPa ooII>
i

T5 0.2902 0.110 34.0 0.523 0° 1 .29 0.103 0 .1 33

T1 2 0.2744 0.110 34.0 0.549 0° 0.820 0.142 0.151

T16 0.2672 0.160 34.0 0.416 0° 0.468 0.191 0.113

Table 4.1.1 Calculated and Measured Results (v 0.60)

For the beams T-13 and T-14, the following results are found.

BEAM h b fc
<P a

o tg ß T/fc <t/£C>E

m m MPa v=0.70

T1 3 0.2718 0.110 31 .1 0.610 0° 0.828 0.177 0.165

T14 0.2714 0.110 31.1 0.627 0° 2.045 0. 120 0.129

Table 4.1.2 Calculated and Measured Results (v 0.70)
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4.2 Tests by F. Leonhardt and R. Walter

The results from 3 tests carried out by F. Leonhardt and R. Walter are described
in [63.1], One of the beams showed flexural failure and is omitted in this
analysis.
Strain measurements on the bent-up bars in the tests in [67. l] and [63.1]
indicate that no yielding has occured in these before failure. It is therefore
reasonable to assume that the yield line runs from the edge of the loading
plate to the first bending point of the longitudinal reinforcement.

BEAM h b fc
<t> ao tg 8 T/fc (Ty/fc'E

m m MPa v=0 75

TA5 0.335 0. 160 19.0 1 .433 0° 0.716 0.235 0.227

TA17 0. 345 0.160 25.2 0.777 0° 0.406 0.253 0.248

Table 4.2.1 Calculated and Measured Results (v 0.75)

4.3 Tests by K. Leksukhum and R. Smith

K. Leksuhkum and R. Smith [71.l] have carried out a number of tests on beams
with different types of web reinforcement. Here, the tests with bent-up bars
are analysed by means of (11) and the following results are found.

BEAM X fc
P fy

iC T/fc v

v=0.70 MPa MPa v=0.70

BI-1 2.60 4.67•10~2 22.8 1.12 4.91 « 10~2 0.1533 0. 150 0.666

BI-2 2.63 4.57*10~2 23.6 1 .12 4.75*10~2 0.1505 0. 136 0.554

BI-3 2.60 4 67 • 1 0*~2 24.8 1.12 4.52*10~2 0. 1463 0.141 0.639

BI-4 2.70 4.36•10~2 23.6 1.12 4.75•10~2 0.1505 0. 146 0.653

BI-5 2.88 3 87•10~2 20 .9 1.12 5.36 * 10~2 0.1611 0.163 0.719

BI-6 2.91 3.8010~2 24.7 1.12 4.53*10~2 0.1465 0.150 0.739

BI-7 2.34 5.63*10~2 24.4 1 .40 5.74•10~2 0.1675 0.181 0.837

BI-8 2.34 5.63*10~2 22.6 1 .40 6.19*10~2 0.1748 0.212 1 .090

BI-9 3. 00 3.59-10-2 23.6 0.70 2.97*10~2 0.1162 0. 114 0.675

BII-11 2.72 4.30*10~2 23.4 0.86 3.68*10~2 0.1307 0.146 0.871

Table 4.3.1 Calculated and Measured Results

4.4 Tests by P. Regan and M.H. Khan

In [71.2], two series of tests by P. Regan and M.H. Khan are described. Series
A had both stirrups and bent-up bars as web reinforcement, while series K had
only bent-up bars as web reinforcement. The results are shown in Table 4.4.1
which is shown on the next page.

4.5 Calculated values of v compared with the estimated values
In the preceeding sections, the values of v have been estimated so that agreement

between the measured results and the calculated results could be obtained.
In this section, these values of v are compared with the values calculated from
the formulae given in [78.1]. The values of v from the preceeding sections are
denoted US and the calculated values are denoted CA.

According to [78.1], the following expression can be used to calculate v when
the beam has stirrups as web reinforcement. The unit of f is MPa.

c
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As can be seen from table 4.5.1, the values of v from the tests by P. Regan and
M.H. Khan are somewhat smaller than the values calculated. This may be due to
the fact that the bending points in these tests are not placed symmetrically
about the vertical plane through the beam axis.

BEAM fc fy fYs
d <P V V V

u
NOTES

MPa MPa MPa win grd. kN kN

A2 34.54 276 275 12.7 45° 0.55 298 280 (1)

A3 31.85 276 275 12.7 45° 0.55 277 260 (2)

A4 32.31 269 275 9.5 45° 0.55 284 280 (2)

A5 35.38 276 275 12.7 30° 0.55 289 264 (3)

A6 30.54 276 275 12.7 60° 0.55 298 284 (4)

A8 27.85 276 275 12.7 45° 0.60 286 280 (2)

A10 34.54 276 275 12.7 45° 0.55 313 282 (3)

A13 30.08 346 275 12.7 45° 0.55 308 300 (2)

A14 32.62 346 275 12.7 4 5° 0.55 287 280 (2)

A15 31.77 434 275 12.7 45° 0.55 336 308 (2)

A17 24.85 640 275 12.0 4 5° 0.65 343 338 (2)

A18 26.85 620 275 8.0 45° 0.70 391 398 (5)

K1 24.15 427 - 15.9 26.5° 0.70 265 300 (6)

K2 27.62 276 - 12.7 45° 0.65 302 280 (2)

K4 31 .54 276 - 12.7 45° 0.55 198 178 (3)

Notes: The critical yield line runs from the edge of the loading plate to
1. the third bending point. 2. the second bending point
3. the third stirrup. 4. the second stirrup.
5. the fourth stirrup. 6. the edge of the bearing plate.

Table 4.4.1 Analysis of 15 Tests by Regan and Khan

BEAM US CA + BEAM US CA +

T5 0. 60 0.63 - A2 0.55 0.63 +

T12 0.60 0.63 - A3 0.55 0 .64 +

T1 6 0.60 0.63 - A4 0.55 0.64 +

T13 0.70 0 .64 + A5 0.55 0 .62 +

T14 0.70 0.64 + A6 0.55 0.65 +

TA 5 0.75 0.71 - A8 0.60 0.66 +

TA1 7 0.75 0.67 + A10 0.55 0.63 +

BI-1 0.66 0.69 - A13 0.55 0.65 +

BI-2 0.55 0.68 - A14 0.55 0 .64 +

BI-3 0.64 0.68 - A15 0.55 0.64 +

BI-4 0.65 0.68 - A17 0.65 0 68 +

BI-5 0. 72 0.70 - A18 0.70 0.67 +

BI-6 0.74 0.68 - K1 0.70 0.68 -
BI-7 0.84 0.68 - K2 0.65 0.66 -
BI-9 0.68 0.68 - K3 0.55 0. 64 -
BII-11 0.87 0.68 -

+ Stirrups and bent-up bars
- Only bent-up bars

Table 4.5.1 Estimated and Calculated Values of v



4 C. PEDERSEN 85

5. CONCLUSION

It appears that the theory of plasticity provides a model which gives a reasonably
good discription of the shear-strength of a reinforced concrete beam with

bent-up bars as shear-reinforcement. The calculated values of the shear-strength
are in good agreement with the measured ones.

The use of only bent-up bars is not advisable because of the risk of the concrete
being crushed at the bending point, but a combination of stirrups and bent-up
bars may be used with good results.

6. NOTATIONS

a Length of the shear span
A Area of the longitudinal reinforcement
A^ Area of one cross-section of the stirrups
b Web width
C Compression stringer force
f Uniaxial compression strength of the concrete
f* Effective strength of the longitudinal reinforcement

f Yield stress of the longitudinal reinforcement

f Yield stress of the stirrupsys
h Effective shear depth
n Number of stirrup cross-sections cut by a yield line
s Distance between bending points
T Tensile stringer force
v Relative displacement in a yield line
V Calculated failure load
V Measured failure load

u

a
a

x

o

1 Distance between the edge of the loading plate
and first bending point
Angle between vertical and displacement vector
Optimal value of a

T

v
X

r
ç

Angle between vertical and the yield line
Reduced degree of longitudinal reinforcement
Ratio between the area of the bent-up bars cut
by a yield line and A
a/h
The web effectiveness factor
Uniformly distributed shear stress

<f>E
c

Experimental shear strength

cp

i>

<l>

Inclination of a bent-up bar
Mechanical degree of shear reinforcement
The value of ip for which the yield line runs between
the edges of the loading plate and the bearing plate
Mechanical degree of longitudinal reinforcement
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The Stringer Method Applied to Discs with Holes

La méthode des „stringers" appliquée aux parois avec des ouvertures

Anwendung der Stringermethode auf gelochte Scheiben

J.C. KAERN
PhD Student
Technical University of Denmark
Lyngby, Denmark

SUMMARY
In this paper a simple method — the stringer method — is discussed for constructing lower-bound
solutions for reinforced concrete discs with holes. In the method normal stresses are concentrated in
lines, the stringers, forming an orthogonal net. The rectangular areas between the stringers are assumed
to carry pure shear only. The use of the method is described by simple examples. Further, the
problem of optimizing the statical and geometrical variables is dealt with.

RESUME
Des valeurs inférieures pour la charge ultime de parois avec des ouvertures sont obtenues à l'aide d'une
méthode simple. La paroi est divisée par un réseau orthogonal de „stringers". L'état de contrainte dans
les éléments rectangulaires limités par les „stringers" est supposé un état de cisaillement pur. Les
contraintes normales par rapport aux axes du réseau orthogonal sont concentrées dans les „stringers".
L'application de la méthode est décrite à l'aide d'exemples simples. Le problème du choix optimal des
variables statiques et géométriques est discuté.

ZUSAMMENFASSUNG
Untere Grenzwerte für die Traglast von gelochten Scheiben werden mit einer einfachen Methode
ermittelt. Die Scheibe wird mit einem rechtwinkligen Netz von Stringern in rechteckige Elemente
unterteilt. Es wird angenommen, in den rechteckigen Elementen herrsche ein Zustand reinen Schubes,
und die Normalspannungen bezüglich der Netzrichtungen werden als in den Stringern konzentriert
wirkende Kräfte zusammengefasst. Die Anwendung der Methode wird mit einfachen Beispielen erläutert,
und das Problem der optimalen Wahl der statischen und geometrischen Variablen wird erörtert.
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1. INTRODUCTION

In aeroelasticity it has for a long time been customary to apply the stringer
method for the calculation of thin sheets reinforced with stringers in the elastic
region. Within reinforced concrete design in the plastic region, the stringer
method was applied to cylindrical shells by Lundgren [l] and to discs by Nielsen
[2] [3].

In this paper it is demonstrated how the method provides a useful tool for treating
discs with holes. In addition, the method is concisely described in general

terms since it still seems to be rather unknown within the concrete field.

2. CALCULATION OF DISCS

Reinforced concrete discs are still often designed by calculating the stresses
according to the elastic theory. However, the reinforcement is generally designed
according to one or another plastic theory. Such a procedure has often great
disadvantages since the elastic stress field may have large stress peaks for which
a correct reinforcement is unpractical. Therefore, even when.elastic design is
used, the stresses are often only covered by reinforcement in some average manner.

Some simple and often-met design problems are relatively well dealt with by
experiments so that empirical formulas can be developed. For discs with holes, such
formulas have been developed by Kong [4],

A more rational method of design is furnished by the theory of plasticity.

If the lower bound method is applied, one needs a statically admissible stress
field. The necessary reinforcement can then be determined by standard formulas.
A number of statically admissible solutions for discs without holes have been
given in [2] and [3], Most of them are constructed by combining homogeneous stress
fields in triangular elements. This type of stress field could also be used in
discs with holes, but solutions for practical purposes have not yet been developed.

In the following it is shown how the stringer method can be applied to discs with
holes.

3. THE STRINGER METHOD

The basic idea of the stringer method is that the normal stresses are imagined
carried by stringers, i.e. lines along which concentrated tensile or compressive
forces are located. The stringers are supposed to form an orthogonal net. The

rectangular elements between the stringers are supposed to be subjected to
constant pure shear. Therefore, the stringer forces vary linearly between the net
points.

If necessary, the external forces of course have to be replaced by an equivalent
set of concentrated forces in the net points and constant shear stresses along
the boundaries of the rectangular elements.

The idealized system will normally be statically indeterminate. If the shear stresses
in the rectangular elements are considered to be the unknowns, it means that a

number of shear stresses can be chosen arbitrarily. When the statically indeterminate
shear stresses have been chosen, the other ones can be determined by equilibrium

equations. Knowing the shear stresses, the stringer forces can finally be
determined.
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A simple example as shown in Figure 1 illustrates this procedure. This figure
shows a disc with a hole 0,1,9,8. The disc may be imagined to be half of a deep
beam with the depth equal to 3 units and the span equal to 6 units. The thickness
is assumed to be 1 unit. In the middle section, the moment is supposed to be carried

by concentrated forces at the top and bottom. The external load is a concentrated

force of 3 units in the middle point at the top side. The disc has been
divided into stringers as shown in the figure. Vertical projection shows that the
shear stress in the element 8,9,12,13 is 3. Choosing the shear stress in 9,10,13,
14 to be zero and the shear stress in 5,6,9,10 to be 1,5, vertical projection
shows that the shear stress in 1,2,5,6 is 1,5. Horizontal projection shows that
the shear stress in 10,11,14,15 is 0, that the shear stress is 1,5 in 6,7,10,11
and that the shear stress is 1,5 in 2,3,6,7. Vertical projection through the 3

elements to the right is automatically satisfied. It is seen that in this case,
there are 2 statically indeterminate shear stresses. The stringer forces can now
easily be determined. The result is shown in the figure.

The stringer method can be explained in general terms by using Airy's stress function.

The function for the force system in the stringer theory is a number of
hyperbolic paraboloids, one for each rectangular element.

The stresses in rectangular coordinates x,y is generally
3zf

3y2

321

3x2

xy
3ZV

3x3y

(1)

(2)

(3)

ax and Oy being normal stresses (positive as tensile stresses), TXy the shear
stress and Y the Airy stress function, it is seen that the hyperbolic paraboloids
give constant shear stresses in the rectangular elements since 32>P/3x3y will be
constant. The jumps in the derivatives 3Y/3x and 3V/3y in the net points determine
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the concentrated stringer forces.

From the general theory of plane stress, it is known that the values of T and of
the derivatives 9Y/3x and dV/dy are determined along the boundary. Using the
properties of the stress function, it is easily shown that the number, N of statically

indeterminate shear stresses is

where

(2s - y) + (r - 3) (4)

m is the number of net points incl. the number of net
points in holes.

h is the number of rectangular elements where the shear
stress is zero.

s is the number of stringers running from boundary
to boundary (incl. boundaries along holes)

y is the number of external stringers, i.e. stringers
having a boundary on one side of the stringer along
the whole stringer.

r is the number of reactions.

In the case shown in Figure 1, we have m=16, h=2, s 8, y 4 and r 3,
giving N 2, as already found.

»

In the more complicated example shown in Figure 2, we have m=86,h=9, s=23,
y 4 and r 4, giving N 36.

The validity of formula (4) is demonstrated by the following arguments: The
stress function T is determined by m parameters. N is found as m minus the
number of requirements to the shear stress in holes and the number of requirements
to the stringer forces at the boundaries. For an internal stringer, there are two
boundary conditions since the stringer force is determined as differences between
first derivatives of the stress function. For an external stringer with a boundary
on one side along the whole stringer, the stringer force is not determined in an
analogous way, but a projection equation can be formulated giving one requirement.
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If the number of net points is large, the force system in the stringer method can
be used as an approximation of a continuous stress field. If the stringer forces
are distributed uniformly along Ax and Ay, Ax and Ay being the distance between
the net points in the x-direction and the y-direction resp. we find at the point
0 in Figure 2:

^ " 2<f0 + V7
a — (5)

(Ay)2
y - 21 + KY1 0 *5

a (6)
Y (Ax)2

(1-4 + y - (V2 + y
Txy

4Ax Ay

Note that these expressions are identical to the usually applied difference
approximations

In order to get a situation at the boundary equivalent to the situation at interiour
points, the boundary stringers may be placed at a distance Ax/2 and Ay/2 resp. from
the real boundary.

4. OPTIMIZED STRINGER SYSTEMS

The stringer is a practical tool which can offer a quick answer to the question
of how to reinforce a disc for given external loads. Therefore, the method is
especially well suited for hand calculations giving simple solutions to a
reinforcement problem.

In more refined calculations, one may wish to find the optimum value of the statically
indeterminate quantities, i.e. the values giving the smallest amount of

reinforcement. One may even wish to find the optimum lay-out of a stringer system.

As an example, consider a rectangular hole in a zone with pure shear. The question
how to reinforce the disc near the hole can be answered by considering a stringer
system as shown in Figure 3.

Fig. 3. ^ lo

If the shear stress outside the stringer system is and if the geometry of the
stringer system is, for instance, laid down as shown in the figure, the' shear
stresses and the stringer forces can be calculated as explained 'above. Here, the
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reinforcement is chos.en as a homogeous mesh and a constant reinforcement area
along the whole length of the stringer, but different in vertical and horizontal
directions. The necessary reinforcement may then be determined by the formulas
given in [2] and [3]. Because of symmetry, the shear stresses in the rectangular
element having the same number in the figure are equal. The shear stresses are
then statically determinate if x. and y are known. The total reinforcement volume
can then be determined as
to these quantities.

a function of x^ and y^ and then minimized with respect

The result of such an optimization is shown in Figure 4.a 4.

-
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Fig. 4.

In the figure, a * is the effective concrete compression strength of the concrete,
SL is the largest value of the stringer force in vertical stringers and the
largest stringer force in horizontal stringers. The optimal value of the geometrical
parameters x^ and y^ tends to infinity if x. approaches a^/2, which is the largest
shear stress which can be carried by concrete in plane stress conditions.

Similar optimizations can be carried out in other cases. Some results have been
described in [6].

If the stringer system has such a fine mesh that a continuous stress field can be
modelled, the optimization can be formulated as a linear programming problem,
provided that the yield condition for the reinforced material is linearized. Such a

procedure has been developed in [5], using, however, a difference approximation
for the stress components as a function of the net point values of the Airy stress
function. Therefore, these net point values can be used as optimization variables.
However, an optimization could just as well take place by means of the stringer
method, using the shear stresses as variables, whereby the boundary conditions
could perhaps be handled in an easier way than in the difference method.
This, however, has yet to be demonstrated.
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Plastic Analysis of Reinforced Concrete Panels in Frames

Analyse plastique d'éléments d'un cadre, composés de panneaux en béton armé

Plastische Berechnung von durch Rahmen umschlossenen Wandelementen aus Stahlbeton

P.A.C. SIMS
Senior Scientific Officer
Building Research Establishment
Watford, England

SUMMARY
Plastic analysis of reinforced concrete panels in frames is considered by assuming that recently identified

collapse modes for unreinforced panels are also applicable to reinforced panels.
Two of these modes, shear mode S and shear-rotation mode SR, are shown to be valid by obtaining
upper and lower bound solutions. The direct compression mode DC is shown to be valid only for a

very restrictive range of panels with considerable differences existing between the upper and lower
bound solutions.

RESUME
L'analyse plastique des panneaux en béton armé, éléments d'un cadre, est faite en supposant que les
modes de rupture récemment identifiés pour les panneaux en béton sans armature sont également
applicables aux panneaux en béton armé. La validité de deux de ces modes — le mode de cisaillement
S et le mode de cisaillement-rotation SR — est démontrée à l'aide des solutions cinématiques et statiques

correspondantes. Le mode de compression-directe DC n'est valable que pour une série très
limitée de panneaux, avec des différences considérables entre les valeurs inférieures et supérieures de
la charge ultime.

ZUSAMMENFASSUNG
Von der Annahme ausgehend, dass die vor kurzem gefundenen Kollapszustände für unbewehrte
Wandelemente auch für den Fall bewehrter Elemente anwendbar sind, werden Wandelemente aus
Stahlbeton, die durch Rahmen umschlossen sind, mit Hilfe der Plastizitätstheorie untersucht. Die
Gültigkeit von zweien dieser Zustände, kurz als Typ S (Schiebung) beziehungsweise SR (Schiebung-
Rotation) bezeichnet, wird mit Hilfe kinematischer und statischer Lösungen nachgewiesen. Wie
gezeigt wird, tritt der dritte betrachtete Zustand, Typ DC (direkte AbStützung), nur für eine sehr
beschränkte Auswahl von Wandelementen auf. Hier bestehen erhebliche Unterschiede zwischen den
erhaltenen oberen und unteren Grenzwerten für die Traglast.
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1. INTRODUCTION

Where wall panels are built in-line with frameworks, the resistance to in-plane
horizontal loads increases considerably due to composite action between the frame
and the panel. From the few known full-scale tests to destruction and many more
model tests on unreinforced panels at the Building Research Station [1] ,[2],
distinct collapse modes could be identified and idealised, Fig I.
A theory to distinguish between
these modes and their associated
collapse loads for unreinforced
panels has only recently been
published by Wood [3] based on
plasticity theory, which predicted
these modes in their correct
order of increasing relative
frame/panel strength.

The small number of tests
relating to reinforced panels
has meant that the different
collapse modes have not
necessarily been observed and thus
this paper extends Wood's
approach by assuming that the Fig 1 Idealised plastic failure modes
idealised unreinforced panel Ca) Shear mode S; (b) Shear rotation
modes can be applied to rein- mode 5Ä; (c) Corner crushing diagonal
forced panels. mode DC

2. PLASTICITY THEORY OF REINFORCED PANELS SUBJECT TO IN-PLANE HORIZONTAL LOADS

2.1 Yield criterion

2 Yield criterion for orthogonally reinforced panel elements

The yield criterion assumed is due to Nielsen [4], shown in Fig 2, and outlined
by^Morley f5J and Marti [6], It should be noticed that certain regions of thecriterion introduce indeterminacy into the calculation of stress components
corresponding to assumed strain rates via the flow rule. For upper bound
solutions these components are usually accompanied by zero components of thestrain-rate but for lower bound solutions, guided by the upper bound stressfields, this indeterminacy causes non-unique stress fields which satisfy equili-
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2.2 Composite shear mode S

Fig 3

Shear mode S
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All modes will be examined with equal plastic moments in the beams and columns.
The assumed mechanism (Fig 3b) has a dissipation of energy in the frame of 4Mp<)>

provided that the joints are rigid. For small displacements a rectangular frame
would not require any extension of the panel only pure shear. Reference to the
yield criterion, Fig 2, shows that the stress point associated with a strain-
rate CO, 0, - 4>) is

(- (i + ax) i nx 4 - (J - ax), - (J + ay) i ni - (i - a ; n + J ]' xy - 7
The energy dissipated in the panel is thus and the work equation leads
to an upper bound collapse load of

F 4M lü + \a„t B
p 2 a w

CD

The lower bound stress field is shown in Fig 3a where n and n are constrained
to lie within the ranges

" (J + ax) 4 nx i a); -Q+a) in ^ - Ci - ax ' 2 y y y

By considering the equilibrium of the beams and columns it can be shown that

F 4MpJH + itf^jp ie equation CD

Thus equation CD is an exact solution provided that M is not exceeded anywhere
in any of the beams or columns. Consideration of the bending moment in the top
beam shows that the minimum permissible plastic moment is reached when the shear
force at the left hand end is zero, ie 2M JB - i \n [er t B 0 (2)

P y ° w

Introducing Wood's [3J definition of f and m,

f F/C4M JH + Ja t B); M 8M la t B2
J p 2 a w " paw

then f 1 providing for the beam m ^

Similarly, examination of the column gives the condition as m >, 2|«Jtf2/S2

Thus if either of these conditions are violated, negative hinges could appear in
the beam and./or columns marking the termination of mode S. Hence it is the
accompanying direct stresses which are responsible for the change from the pure
shear mode.



98 II-SHEAR WALL PANELS IN FRAMES

2.3 Shear rotation mode SR

The negative moment hinge now appears at a point XB from the end E of the beam

(Fig 4). The inclined discontinuities CA and DB separate the end rigid regions
from the shearing region ABCD. Since CEA remains rigid it rotates to CE'A'
through an angle ()> and the original rectangle is distorted to CE'A* B'G'D.
However imposition of the boundary conditions requires a rigid body rotation of the
whole panel through an angle \p about C, so as to bring B' to B" As if)«a, B'B"
is virtually perpendicular to CB', Fig 5, from which it can be shown that

if) » A sin 0 oos aJ(H sin (0 -a)) (3)

A further consequence of the discontinuities CA and DB is that there is expansion

of the shear region in the y direction but none in the x direction.

From the displacement of a point P, Fig 4, the strain-rate in the shearing
region can be deduced as

e« 0i £y * °0t 9; £xy ~ * C4)

Region D of the yield criterion, Fig 2, is able to support these strain-rate
components and it can be shown that the stress point corresponding to (4) is
given by

n « - (1 - 2a - oos 0)72; n - isin 0)72
y y xy

with n^ lying within the range

- (1 + 2a + oos 0)72 $ n $ - 0 - 2a + oos 0)72
X XXSince the stresses and strain-rates are constant over an area BHQ - X) the

dissipation of energy in the panel can be expressed as

Dw ^a^t^BHO - X) Jsin 0 - (1 - 2- oos 0) oot ©J (5)

Adding the frame dissipation, again 4MJ; equating to the external work FA, and

substituting for if) from (3), leads to

f ^Bm/RO ~ x) +yj 1 + (BXJH)2 - (1 - 2a^)BX/pj/(l + mB/H) (6)

This equation is minimised numerically for X to obtain the best upper bound.

For the lower bound a stress point lying within region D of the yield criterion
will be assumed. Such a point requires two parameters n^ - - C and ny ~ ~ ^y
since the shear component will be determined from the yield criterion's equations.
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To ensure that the point remains within D, C and C must satisfyx y
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(7)

With this stress field the forces acting on the frame are as shown in Fig 5.
Even though the discontinuity would permit a change in the stress component
parallel to the discontinuity in the triangular regions, a continuous stress
field is assumed throughout. A negative plastic moment is enforced in the beams
at the ends of the discontinuities, resulting in the moment at the non-loaded
beam-column junction no longer being plastic. For the solution, in addition to
the three equilibrium conditions for each beam and column, there are two
conditions relating to the position of the minimum moment in the beam. Firstly
that this position has zero shear and secondly that this is a plastic moment.
Solving these results in

JT. 1 -yjmjZC (9) M JM 1 - 4C X2Jm
e v y

(9)

The columns must be checked to ensure that overstressing does not result and a
section distance YH from the bottom of the right hand column is examined for
minimum moment and zero shear. This results in

7 i {l + (B2jEz){CyJCx){X2 - m/2Cy)j

M /Af
max p

4C (1 - Y)2H2/mB2
X

(10)

(11)

Finally the expression for f is obtained as

f 2^(1 - 2X)BJH + V (1 ~ ay ~ C (a + C )J /(I + mBjH) (12)

f is maximised numerically for trial C and C values within the range defined
by equation (7) using the following strategy:^

- (à) X must be in the range
- (b) U/H from (9) must be within the range - 1 to + 1.e p
- (c) If Y from (10) is positive then \Mmaä/Mp\^ '•
- (d) If Y is negative then the value returned for ^max/^p i® ignored.
- (e) If either Ue/M or Mmax/Mp exceeds unity then a valid lower bound can still

be obtained providing f is divided by the largest of these values.

From equations (10) and (11) C merely affects the degree and position of the
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minimum moment in the columns. For a
given C any value of C is acceptable
which satisfies (7) and conditions (c)
and (d) above without generating (e) if
possible. This is usually achieved by
selecting the lower end value of the
range.

B/H m ax ay ^LB ?UB

1 0.2 0.1 0.1 0.8333 0.9060
1 0.5 0.1 0.1 0.9766 0.9861
1 0.3 0.05 0.05 0.8763 0.9251

2 0.25 0.1 0.1 0.9210 0.9210

2 0.6 0.05 0.05 0.9867 0.9867

Specimen results of the upper and lower
bound solutions are shown in Table 1.

2.4 Diagonal compression mode DC

Table 1 Comparison of mode SR

upper and lower bound solutions

The lower bound solution for this mode assumes that the distribution of load by
the frame to the panel is such as to cause a diagonal band stressed to its maximum,

leaving the remaining regions rigid and stress free. To allow for ortho-
tropic reinforcement, a band orientated as shown in Fig 6a has been assumed
allowing two parameters X and X. However this solution, in general violates

Constant moment -

Fig 6 Mode DC

(a) Lower bound forces and moments
(b) Upper bound mechanism
(c) Enlarged corner detail for

mechanism

-Mp °c'w5'"pÇ°Sp ^ |Fv
'+ "+ ^

tw sin _ ocavt

Iw sinpCOSp S*-»

C* xA'c° /
Waif element V/Unstressed

S region

global equilibrium requirements unless a band parallel to the panel diagonal is
assumed resulting in a very restricted set of panel parameters for which the
solution is valid. Thus a more general solution free from these restrictions,
is required and is currently under investigation. Where the solution is valid
X, X and / are given by

X 1 - m/2 (sin2 $ - a (13); 7=1- yjmB2/2HZ (cos23 - ax) (14)

/ 2^(1 - X)(aos2ß - ax)HjB + (1 - X)sin 3 cos ßj/(l + mB/H) (15)

Since the lower bound is restricted this is reflected in the upper bound
mechanism, Figs 6b and 6c, which has a parallel diagonal band containing a
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diagonally rigid region, so that crushing is confined to the triangular regions
at opposite ends of this band. This rigid region is allowed to shear and
expand transversely which is ensured by insisting that bb' and ff\ Fig 6c,
rotate but remain parallel. Details of this mechanism can be found in Wood's
paper [3j but modification is needed since the yield criterion requires the
strain-rate components to be in the direction of the reinforcement bars and not
parallel and perpendicular to the panel diagonal. Performing this transformation,

and determining the corresponding stress points and resulting energy
dissipation, in a similar manner to that for mode SR, results in

f [l + Bm/HO - X) - 2(1 - ax - ay)BX/H( 1 + (£/#)2)J/(l + mB/H) (16)

The minimum is found by differentiation and occurs when

X 1 -yjmO + B2IH2)/2(1 - ax - a (17)

For solution purposes these equations are evaluated separately to ensure that X
remains in the range 0<X<1.

3. COMPARISON OF THE UPPER AND LOWER BOUND SOLUTIONS

Plotted curves of the various solutions proved to be overlapping and confusing,
as indicated by the lower bound solutions for square panels having isotropic
reinforcement, Fig 7. The trend of solutions has thus been indicated by
tabulating the best solutions for ax 0.1, ay 0.1, with a code to indicate which
mode applies, Table 2. Unlike the unreinforced case, there are no analytical
expressions valid throughout the range of m, nor are there any analytically
exact solutions. For non-square panels mode SR solutions are numerically exact
to ten decimal places, providing that the lower bound has not been modified due
to column over stress. For square panels with isotropic reinforcement, mode SR
lower bound is numerically equal to mode DC upper bound until, again, column
overstress causes a rapid fall off in the SR lower bound, Fig 7, which is then
superseded by the mode DC lower bound. This result is due to the symmetry of
this case since a plastic hinge would be expected to form in the column also; a

fact confirmed by noting that the best lower bound for SR occurs when the
column overstress factor is unity.

m

Best lower bound for f Best upper bound for f
B/H - 1 B/R - 2 B/B - 1 B/H - 2

0.8 1.0 S 1.0 S 1.0 S 1.0 S

0.6 0.9910 SR 0,9944 SR 0.9910 DC 0.9944 SR

o.u 0.9510 SR 0.9693 SR 0.9510 DC 0.9693 SR

0.25 0.8755 SR 0.9210 SR 0.8755 DC 0.9210 SR

0.2 0.8333 SR 0.8938 SR 0.8333 DC 0.8938 SR

0.15 0.6778 DC 0.8566 SR 0.7764 DC 0.8574 SR

0.1 0.5785 DC 0.7940 SR 0.6961 DC 0.8069 SR

0.05 0.4286 DC 0.3684 SR 0.5714 DC 0.7331 SR

Fig 7 Lower bound solutions for square
panels with isotropic reinforcement

Table 2 Example of the best upper
and lower bound solutions

For rectangular panels and for square panels with orthotropic reinforcement, the
general solution is hampered by the restrictions placed on the validity of the
mode DC lower bound, but even where this solution is valid, eg Fig 7, there is a
considerable jump between the solutions for modes DC and SR, suggesting that
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there are better solutions for panels having small m values. For square panels
with orthotropic reinforcement, the trend from the number of cases evaluated to
date is that as well as both SR solutions being unequal, the equality between SR

lower bound and DC upper bound has disappeared.

4. CONCLUSION

An introduction of plasticity analysis to reinforced concrete panels in frames
has been achieved by assuming that the modes observed for unreinforced panels
are applicable. For single panels having equally strong beams and columns
analytically exact solutions for the pure shear mode S have been obtained for
all panels; numerically exact solutions for the shear-rotation mode SR have
been obtained for rectangular panels and for square panels having isotropic
reinforcement, and a very restrictive set of conditions has been determined for
which the diagonal compression mode DC is valid. This latter point suggests
that either there are better solutions for this mode or that a more suitable
mode exists.

5. NOTATION

A A area of reinforcement in the co-ordinate directions per unit widthx y c i° of panel.

Oy magnitude of the yield stress of the reinforcement bars,

membrane forces per unit width of panel element.•e y *zy

n N n N n N a A a„ a A ox x y xy xy x x Y y y Y

at, at, at at ataw aw aw aw aw
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Plastic Analysis of Torsion and Shear in Reinforced Concrete

Analyse plastique du béton armé soumis à la torsion et au cisaillement

Plastische Berechnung für Torsion und Schub im Stahlbeton

P. MUELLER
Dr.sc.techn., dipl. Ing. ETH
Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A.

SUMMARY
Collapse mechanisms for reinforced concrete beams in torsion, bending and shear are presented. The
mechanisms complete the truss model solution to an exact plastic solution. The shear strength of
deep beams and of beam regions near supports or point loads is explored.

RESUME
Des mécanismes de ruine pour des poutres en béton armé sous torsion, flexion et effort tranchant
sont présentés. Ces mécanismes complètent le modèle de treillis pour constituer une solution plastique
exacte. On étudie la résistance ultime à l'effort tranchant des régions d'appuis ou d'application des
charges et des poutres courtes.

ZUSAMMENFASSUNG
Kollapsmechanismen für Stahlbetonbalken unter Torsion, Biegung und Querkraft werden dargestellt.
Die Mechanismen vervollständigen die Fachwerkmodellösung zu einer plastizitätstheoretisch exakten
Lösung. Die Schubtragfähigkeit von Balken in Lasteinleitungsbereichen und von wandartigen Trägern
wird untersucht.
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1. INTRODUCTION AND ASSUMPTIONS

In recent years the theory of plasticity has considerably contributed to both
the understanding of shear transfer and the determination of the shear strength
in reinforced (prestressed or mild) concrete [1]. This paper reports on some
results of two studies [2,3] contributing to a rational and consistent plastic
theory for reinforced concrete beams, deep beams and shear walls. First
collapse mechanisms for beams in torsion, bending and shear are presented.
Second some plane stress problems related with the shear strength of beams near
supports and of deep beams are treated.

It is assumed that webs and flanges of beams and walls can be modeled as elastic-
perfectly-plastic membranes governed by the yield criterion derived from the no
tensile strength, square yield criterion for concrete (Figs. 1 and 2). The
states of stress and motion are described in terms of membrane forces per unit
length and in-plane velocities. In the next section it is moreover assumed that
the collapse is initiated by yielding of the reinforcement, i.e., the membranes
are plastified in yield regime I. For discontinuity lines of the velocity field
that are compatible with yield regime I, the term collapse crack is used.
Collapse cracks are straight lines. According to the flow rule for yield regime I,
they must open normally to their direction.

2. COLLAPSE MECHANISMS FOR BEAMS IN TORSION, BENDING AND SHEAR

2.1 One-Dimensional Beam Theory

The derivation of yield criteria and flow rules for the differential beam
element in terms of generalized stresses and strains (stress-resultants, curvature,
twist, etc.) marks the transition from solid mechanics to one-dimensional beam

theory. This transition is usually treated as a two-dimensional problem in the
plane of a cross-section. Interaction relations are established through an
investigation of possible states of stress and strain rates in a fully plastic
cross-section. To this end simplifying assumptions with respect to the states
of stress and deformation must always be made. The first usual assumption
is that the transverse normal stresses, which do not enter the equilibrium
conditions for a cross-section, are zero. The remaining assumptions are contained
in the constitutive equations relating the stresses and strain rates in a cross-
section to the generalized stresses and strain rates.

In the (static) truss model approach [1] it is assumed that the shear flow is
constant along the perimeter of a thin-walled closed cross-section subjected to
torsion or constant over the depth of a web subjected to shear. It is shown in
Ref. [3] that these assumptions are consistent with the following kinematic
assumptions for the deformed fully plastic cross-section.
-the cross-sectional shape is not distorted
-plane distribution of the longitudinal strain rates
-warping of the cross-section out of its plane is unrestrained in the case of

beams with closed, thin-walled cross-section subjected to uniform torsion and
bending; warping of the web is unrestrained in the case of beams with single-
symmetric thin-walled cross-section subjected to bending and shear.

Using these assumptions the corresponding interaction relations can also be
found readily via the power of dissipation of the cross-section [3]. The resulting

expressions for the distribution of the shear strain rates and for the
warping function are completely analagous in form to those found in elastic beam

theory for uniform torsion. While this sectional approach shows that the resulting

interaction relations fully comply with usual assumptions of beam theory,
it gives no indication under what conditions unrestrained warping can be assumed.
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2.2 Spatial, Discontinuous Collapse Mechanisms

Due to the simplifying assumptions of the sectional approach, it is often not
possible to find stress and velocity fields that satisfy the boundary, equilibrium

and compatibility conditions of plane stress theory and that exhibit the
stress and strain rate distribution found in the sectional approach. Indeed,
for beams in bending and shear, it has been demonstrated in Ref. [3] that only
the discontinuous collapse mechanisms shown in Fig. 3 can be associated with
the generalized strains of the sectional approach. For beams in uniform torsion
and bending such velocity fields exist, but they do not represent the shortest
possible mechanisms, which are again discontinuous.

The mechanisms shown in Fig. 3 represent also the basic elements of the discontinuous

collapse mechanisms for beams in torsion and bending with thin-walled
closed cross-section of polygonal shape. Fig. 4a shows the basic torsional
collapse mechanism for a beam with quadrilateral convex cross-section. The relation

between the inclination of the skew axis of rotation AE and the inclinations
of the collapse cracks ABC and EFG follows from the flow rule of perpendicular
collapse crack opening and from the assumption that the beam ends undergo rigid
body motion only. From kinematics it is easily found that the four collapse
crack tips and the axis of rotation must lie in one plane. Assuming an
unrestrained longitudinal extension of the mechanism, the same interaction relations
result as from the (static) space truss model approach [2,3]. Each mechanism
with axis of rotation in one of the four walls yields one interaction relation.
If all longitudinal reinforcement is yielding at collapse, any linear combination

of the four mechanisms is also feasible, in particular also a mechanism
with pure twist and elongation as shown in Fig. 4b.

It is worthwhile to relate the kinematic assumptions for the spatial mechanisms
to those of the more usual sectional approach. The assumption of a rigid body
motion of the beam ends corresponds evidently to the assumptions of a plane
distribution of the longitudinal strain rates and of no distortion of the sectional
shape. In both approaches these assumptions ensure that the power of the external

loads can be uniquely expressed in terms of the bending and torsional moments
and the rates of curvature and twist or skew rotation, respectively. The assumption,

finally, that the mechanisms of Fig. 4 can longitudinally spread in an
unrestrained manner, corresponds to the assumption of unrestrained warping for a

fully plastic cross-section. To illustrate the last statement, Fig. 5 shows a
beam in uniform torsion with uniform stirrup reinforcement. The yield strength
of the four longitudinal corner bars is Z within the test region L and much

higher outside. The longitudinal distancé between the points B and E, where the
open collapse cracks cross the corner bars, is denoted by i and the length
that would develop in a uniformly reinforced beam by X,^. For X, <_ L, the mechanism

is unrestrained, the shear flow is constant along the perimeter of the
cross-section and the beam acts in pure St. Venant or uniform torsion. For
I > L the mechanism is restrained and a higher ultimate torque results. The

exact collapse mechanism is characterized by X. L. The shear flow jumps at the
corners, the forces in the corner bars vary (Fig. 5b) and, hence, the beam acts
in nonuniform torsion.

It is common practice in reinforced concrete theory to treat solid cross-sections
as box-sections, because test results have shown that solid and box-shaped beams

with identical dimensions and reinforcement have practically the same ultimate
torque. It is worthwhile therefore to investigate the collapse crack propagation
into the core of the beam. Because the tips A, C, D, F of the two collapse
cracks and the skew axis of rotation lie in one plane (Fig. 5a), collapse cracks
propagate along the three planes ABC, DEF and ADCF into the core. While the
collapse cracks ABC and DEF are externally visible, the collapse crack along
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plane ADCF opens only Internally thus creating a cavity. Assume that a skew
bending crack opens along plane ADCF, while the front end of the beam rotates
about axis AD (Fig. 5a). As shown in Fig. 6, the two crack edges are then in
position ADCF' (Fig. 6a) and ADC'F (Fig. 6b). If the tetraeder ABCF rotates
about axis AC from position ACF' into position ACF and the tetraeder CDEF
about axis DF from position C'DF into position CDF, the skew bending crack
is completely closed again along its perimeter. There remain the
externally visible collapse cracks ABC, DEF and a cavity as shown in Fig, 6c,
All the interior collapse crack surfaces are planes, and opening occurs everywhere

normal to these planes. Consequently the core concrete does not contribute
to the power of dissipation. Clearly, there is no difference in torsional resistance

between box beams and solid beams with convex quadrilateral cross-sections,
when failure is initiated by yielding of the reinforcement. In both cases only
an outermost concrete layer is effective. This effective concrete layer, along
with the reinforcement, is modelled in the present approach as a two-dimensional
membrane. The membrane forces of the truss model and the in-plane velocity
components of the mechanisms Figs. 4 to 6 are compatible and represent therefore an
exact solution.

So far, only quadrilateral cross-sections have been treated. However, generalization

to arbitrary, convex, polygonal thin-walled cross-sections is straightforward.

Again, the basic mechanisms are characterized by a skew axis of rotation

in one of the walls as shown in Fig. 7a. Any other mechanism compatible
with yield regime I is a linear combination of such mechanisms. Starting from
the skew axis of rotation, a sequence of overlapping collapse cracks forms that
span over two walls (Fig. 7a and b). The relation between the inclination ß of
the axis of rotation and the inclinations of the collapse cracks follows
again from the flow rule of perpendicular collapse crack opening and from the
assumption that the beam ends undergo rigid body motion only.

Consider the tip of the collapse crack starting at corner i. Due to the flow
rule, the in-plane velocities u^, v^ must be related by (Fig. 7d)

ai *i Li ùi (1)

Because the front end of the beam undergoes a rigid body motion only, the
velocities in Eq. (1) are given by

û sinß z^ (2a)

v^ J) cosß r^ - w sinß x^ cosô.^ (2b)

where all terms are defined in Fig. 7. Finally, according to Fig. 7b, the
length of the mechanism in wall i is given by

x^ - cota^ + a^ ^ cota^_^ (3)

Introducing Eqs. (2) and (3) in Eq. (1) and noting that zi + ai cos<^ >

there results the following recurrence formula for x^
zi+l xi ai ri cote ~ zi (ai cotai + ai_i + z± x.|_i (*)

Eq. (4) merely states that the skew axis of rotation and the crack tips in
corner i and i+1 of wall i lie in one plane. Using Eq. (4) and starting with
x^ 0, the coordinates x^ of the front tips of each crack can be consecutively
calculated. The condition that the last collapse crack must meet again the skew
axis of rotation, finally yields

cotß
X r1 "— I Z± ai cota± (5)
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where A denotes the area enclosed by the cross-section and a.., are the depth
and the°z-coordinate of the middle line of wall i (Fig. 7d). For a beam with a
regular polygonal cross-section and equal stirrup reinforcement in each wall the
following simple relations hold: cot$ 2 cota, L. 2a cota. Using Eq. (5),
again the interaction relations of the space truss model can be derived [3].
The derivation has only involved the in-plane velocities. A study including
the velocity components normal to the walls reveals the following. The collapse
cracks, the corner lines and the straight lines joining the crack tips (Fig. 7b)
form the boundaries of the wall regions that move as rigid bodies. Contrary to
quadrilateral sections, vectors of relative rotation are not only present in the
lines joining the crack tips but moreover in the corner lines. The vectors of
relative rotation between the crack edges point from the starting to the end
point of the crack and have the same magnitude in both walls. Thus one collapse
crack opens indeed along one plane.

3. PLANE STRESS PROBLEMS

The critical cross-sections are often located at points of applications of
concentrated loads or at supports, where the simplifying assumptions of beam
theory are hardly met. In deep beams the effect of shear transfer through strut
action becomes significant. In these cases realistic theoretical values for the
ultimate strength in bending and shear can only be expected from a plane stress
approach that takes into account the variable concrete stress fields in the web.
For underreinforced beams with variable depth the exact collapse mechanisms are
basically the same as in Fig. 3. The corresponding concrete stress may vary,
however, significantly over the depth of a cross-section. The mechanisms
presented in the preceding section demonstrate that adjacent cross-sections can
theoretically not be designed independently. In engineering practice, however,
the needed reinforcement is always determined on a sectional basis. Thus the
conditions have to be established, on which a sectional design ensures stable,
statically admissible stress fields in the web.

These problems are treated in detail in Ref. [3] along with a discussion of the
general stress and velocity fields in fully plastic reinforced concrete walls.

Fig. 8 summarizes some results of an investigation on possible concrete compression

fields in a thin web near the base of a cantilever beam (Fig. 8a) and near
a concentrated load (Fig. 8b). The web is assumed to be in yield regime I.
The trajectories of the compression fields in the concrete form non-centered
fans and are determined from the boundary condition of zero transverse normal
stress along boundary AB and from the assumption that the concrete compressive
strength is reached along boundary BC (Fig. 8a) or CD (Fig. 8b). Results are
presented for several values for the ratio of the allowable nominal shear stress
and the effective concrete strength, t/k8 and for the selected inclination
a,, used to determine the stirrup reinfo?cement. The table in Fig. 8a shows
tna? the additional longitudinal reinforcement needed in section BC due to the
presence of shear may be of comparable order of magnitude as in the free span,
although codes do usually not require such additional reinforcement in this
case. The table in Fig. 8b presents values for the load transfer length e that
is needed to ensure stable, statically admissible stress fields in the web below
a concentrated load. These values may be of considerable magnitude. Clearly,
these results show that further study is needed in this area.
Fig. 9 shows a deep beam after attainment of the ultimate load. A lower bound
for the collapse load has been derived on the basis of the stress fields indicated

in Fig. 9b [3]. The stirrups and the distributed longitudinal reinforcement

are assumed to yield. The main longitudinal reinforcement is in tension
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everywhere and reaches the yield strength in the points A and A', The concrete
compression field consists of a central strut and two non-centered fans. The
concrete strength is reached in the strut and along the lines AC' and A'C. The
experimental ultimate load was 174.5 kips or 85% of the theoretical ultimate
load found from bending theory. The lower bounds derived from the stress fields
as outlined above are 168 kips and 182 kips depending on whether the concrete
cover of the reinforcement is assumed to be ineffective or effective, respectively.

Neglecting the cover is equivalent to a 30% reduction in concrete
strength. This reduction results only in a 8% decrease in the ultimate load.
Theoretically approximately 30% of the shear force is carried by strut action.
While this result indicates that the investigated stress fields may be realistic,
realistic collapse mechanisms have still to be found.

4. CONCLUSIONS

The collapse mechanisms for beams in bending and torsion or bending and shear
presented in this paper complete the (static) space truss model solution to an
exact solution within the framework of a membrane theory as outlined above. In
particular, they clarify the kinematic assumptions the resulting interaction
relations are based on. This is of importance insofar as, first, conclusions
with respect to the applicability of plastic theory can only be drawn from the
comparison of test results with an exact or sufficiently bounded value for the
theoretical collapse load. Second, kinematic assumptions can be verified more
easily experimentally than static assumption.

The spatial mechanisms show that the warping term in the sectional approach
reflects primarily the fact that the boundaries between rigid and yielding
regions cannot lie in a cross-section normal to the beam axis. The finite length
of the shortest possible mechanism implies that the interaction relations
actually describe the strength of a whole beam region. This has to be kept in
mind when detailing the reinforcement. The knowledge of the collapse mechanisms
helps to detect weak reinforcing details. The finite length of the collapse
mechanisms must also be appropriately considered in the analysis of test results
and the design of test specimens. While the length of the mechanism is important

for the reinforcement details, it is normally short compared to the beam

length. This means that warping restraints have only a very localized effect.
Such restraints have no effect at all on the strength of regions more distant
than the minimal mechanism length.

Results from an investigation on the general stress fields in the web of beams
and deep beam in bending and shear have been briefly summarized. They indicate
that further work is needed on regions of application of concentrated loads and
reactions and on deep beams. The lower bounds calculated for a deep beam
exhibiting strut action indicate that the effort might be worthwhile.
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Torsion-Bending-Shear in Concrete Beams: A Kinematic Model

Poutres en béton armé soumises à la torsion, à la flexion et au cisaillement. Une solution cinématique

Torsion-Biegung-Schub in Stahlbetonbalken. Eine kinematische Lösung

L. ELFGREN
Associate Professor of Structural Engineering
University of Luleâ
Luleâ, Sweden

SUMMARY
A kinematic solution according to the theory of plasticity is presented for reinforced concrete beams
loaded in combined torsion, bending and shear.

RESUME
La méthode cinématique de la théorie de la plasticité est appliquée pour déterminer la résistance des
poutres soumises à la torsion, à la flexion et à l'effort tranchant.

ZUSAMMENFASSUNG
Für Stahlbetonbalken unter Torsion, Biegung und Querkraft wird eine Lösung nach der kinematischen
Methode der Plastizitätstheorie dargestellt.
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1. INTRODÜCTICN

A kinematic model for beams loaded in combined torsion and bending has recently
been presented by Peter Müller and Bruno Thürlimann [1] - [3]. The model clarifies
some contradictions in the theory for torsion which have earlier been discussed by

the writer [4], [5].

In this paper the kinematic model of Müller-Thürlimann is extended to include the

effect of vertical shear as well. The extension is based on the same principles
as the writer has earlier used in a kinematic model for torsion-bending shear

based on skew bending [4] - [9].

The presentation below follows the same outline as the one in Bruno Thürlimanns

paper [1]. The same general assumptions are itade i.e. the concrete and the
reinforcement are rigid perfectly plastic materials. The concrete is governed by a

square yield criterion. The reinforcement bars have a yield stress of ± f^ and

carry forces in axial directions only. Local and bond failures are excluded.

2. KINEMATIC MDDEL

A kinematic model for combined torsion, bending and shear is presented in Figs. 1

and 2. In Fig. 1 general notations are given and in Fig. 2 the kinematic model is
presented. In the model, there are two cracks, ABC and DEF, see Fig. 2a. The right
half of the beam rotates around the axis AD through the crack ends in the top of
the beam. In the bottom of the beam a parallelogram, BŒF, is cut out. The rotation

around the axis AD is rotated w. The rotation is possible if the axis AD is
parallel to the diagonal CF in the paralleogram. This implies the condition that

see Fig. 2b. Further, the angle ß of the rotation axis AD follows from

the following geometric conditions.

b cot a. + h cot a~ - + h cot a, + b cot a.CF 4 2 AD 6 4

With and cot ß we obtain

hcot ß cot a4 + 2g (rot a2 + rob oig) (2.1)

In order to express the energy dissipation, the velocity components of point B

(equal to point E) are needed, see Fig.2c.
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Fig. 2 Kinematic failure model: (a) General view; (b) Model seen from above;

(c) Deformations in bottom; (d) Bending moment diagram.
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Wall 4 : w. hm sin 3 w, w. cot a,4x 4y 4x 4
(2.2)

Wall 2 : w„ - hw sin 3 w-> w0 cot ou2x 2y 2x 2

3. WORK EXPRESSIONS

Using the reinforcements shown in Fig. 1. the internat work in the cracks can be

written as

Lin hx{P3+P5> + tsh2x cot2a2 + Ps^x00^ + kh"6x «A, (3'1)

The external work carried out when the beam rotates around the axis AD can be

written in the following way. As a vertical shear force, V, is present, the bending

notent is varying. It has the value M at the reference point H in the middle

of the bottom parallelogram, BCEF, see Fig. 2b, where the longitudinal reinforcement

bars Nos. 3 and 5 are crossed by cracks. The distance in the longitudinal
direction of the beam between the point H and the midpoint G on the rotation axis

is a^, and consequently the applied bending moment at point G will be M + Va^.

The external work equation then takes the form

L (M + Va.) û sin 3 + T w cos 3 (3*2)
ex 1

where a1 from Fig. 2b with cot 3 frcm Eq. (2.1) can be written as

a1 b cot a4 + h cot a2 - b cot 3 ^(oot a2 - cot dg) (3.3)

The failure mechanism is goverened by the three inclinations a2, and ctg. In

the general case these three angles are independent of each other. This general

case is lengthy to handle. In order to simplify the deductions, the following
assumption will be made regarding the relationship between the angles

cot a2 - cot a,p + cot a^.

cot cot dip

cot dg cot cVp - cot av

(3.4)

The angles and Oy are here two independent variables.
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The assumption is motivated by the fact that the failure mechnism will in this
way correspond with a probable stress distribution in the beam.

The expression for the internal work in Eg. (3.1) can now be rewritten as

w sin 3 [h(P3 + P-) + -2pgh2 (2 cot2^ + 2 cot2^) + pgbh cot2aT]

w sin ß[h(P3 + P,-) + psh(b+h) cot2^ + p h2cot2oi^] (3.5)

In order to simplify the expression for the external work in Eq. (3.2), we

first rewrite the expression for cot ß in Eq. (2.1) and the expression for the
distance a1 in Eq. (3.3)

cot ß cot a_ + Tjr- 2 cot a_ cot a_ (3.6)T 2b T b T

a1 h cot Oy (3.7)

The external work can now be written

ü) sin ß[M + T oot + Vh cot a^] (3.8)

The internal work in Eq. (3.5) shall be equal to the external work in Eq. (3.8)

M + T—cot cpp + Vh cot Oy h(P3+Pç.) + pgh (b+h) cot2^ + pgh2cot2av (3.9)

4. MINIMIZATION

If T and V are fixed, the minimum value of M with respect to the angles aT and

Oy follows from differentiations of Eq. (3.9) with respect to cot aT and cot oiy

SM m bfh
S cot + T ~b~ 2psh(b+h)cot aT

SM t A *\\
S cot a..

0 gives cot aT 2Eh
•

^7 (4-1)

S

V " s

—— + Vh 2p h2 cot a,,cot a_ s

SM „ V 1

S^t^ ° glVSS 001 °V 2h
* ^ (4.2)
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For the case of pure bending (T V 0), pure torsion (M V 0) and pure
shear (M T 0), Eg. (3.9) with Eqs. (4.1) and (4.2) gives

/P +P /P +p

"fût ps ; vo 2h^h^s
Using Eqs. (4.1) to (4.3), Eq. (3.9) can now be rewritten as

JO/Mq + (T/Tq)2 + (V/VQ)
2

1 (4.4)

This is the same solution as has earlier been obtained with a static approach

[4], [6], [10]. Hence ther is an identity between the kinematic model presented
here and earlier presented static methods.

If the three inclinations a2, and ctg are retained as independent variables in
the work expressions, Eq. (3.9) can be written in the following way.

M + T(^oot a2 + cot + ^cot ag) + V^(cot a2 - cot ctg)

12 2 2
h(P2+P^) + 2Psh (cot a2+cot otg) + Psbh cot (4.5)

A minimization of M with respect to the angles a2, and ctg will then give

cot a2 + Ih^ cot + cot
Ps

COt a4 Ibh *
pT COt aT
^s

cot a6 (3Fh " cot «I - cot

(4.6)

Hence, the shear flow from torsion and shear are acting in the same direction
in side 2, and in opposite directions in side 4. This is in agreement with the

assumption in Eq. (3.4).

5. DISCUSSION

The inter-action equation presented, Eq. (4.4), is deduced for point H in Fig.

2c. As can be seen from the moment diagram in Fig. 2d, the bending moment is
higher in point G and in every point to the right of point H in the figure. The

failure mechanism presented for point H is for this reason not stable [3].
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A failure mechanism will start to develop in the area with the highest loads,
that is, in the right end of the beam element in Fig.2. However, in the right
end of the beam a support or a concentrated load may be situated. This will
influence and change the failure mechanism. High concrete stresses will occur and

they may cause the failure. For this reason the failure model will be more

complicated in the vicinity of a support or a concentrated load.

lb be correct according to the theory of plasticity, the effect of warping should
be considered [3]. However, Paul Lüchinger has shown that for a rectangular beam,

as is studied here, the effect of warping may be neglected [10]. If the warping
is considered, it will at worst give a slightly higher load-carrying capacity.

Although the presented kinematic model is not stable for mispan cross-sections,
it does give a rather good prediction of the type of cracks and deformations that
has been observed in tests see Fig. 3 [7], [8]. The model also gives an identical
load-carrying capacity as earlier presented static methods [4], [6], [10]. For
these reasons, the writer considers the presented kinematic model to be a step in
the direction of a better understanding of the interaction between torsion, bending

and shear. To be able to give a complété solution to the problem, the effects
of supports and of loading conditions must be studied. Here the concrete
compression strength must be entered as an essential parameter.

D

D

Fig. 3 Crack pattern and failure mechanism for a beam loaded in combined torsion,
bending and shear. (Beam 1-1A in [4] arid [7]). The beam is loaded in mid-span
with an eccentric point-load acting downwards. The numerals along the cracks
refer to the applied load when this part of the crack became visible (in Mp

MN/100). In the left part of the beam two failure cracks ABC and FED are
indicated as well as a rotation hinge AD, compare with Fig. 2. (The beam is
rectangular with b x h x I 100 x 200 x 3300 mm. The stirrup capacity is ps
0.236 MN/m. The relation between the bending moment M, the torsional moment T
and the vertical shear force V in the failure section is M:T:Vh 1:0.5:0.2)
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Reinforced Concrete Members in Torsion and Shear

Eléments en béton armé soumis à la torsion et au cisaillement

Stahlbetonelemente in Torsion und Schub

M.P. COLLINS
Professor
University of Toronto
Toronto, Canada

SUMMARY
Progress in developing a rational model (the diagonal compression field theory) capable of predicting
the behaviour of reinforced concrete members in torsion and shear is reported. The differences
between the diagonal compression field theory and the procedures based on plastic analysis are highlighted.

RESUME
Cet article rend compte du progrès dans le développement d'un modèle rationnel (théorie du champ
de compression diagonale) capable de prédire le comportement d'éléments en béton armé soumis à la
torsion et au cisaillement. Les différences entre la théorie du champ de compression diagonale et les
méthodes de l'analyse plastique sont mises en évidence.

ZUSAMMENFASSUNG
Es wird über den Fortschritt bei der Entwicklung eines rationalen Modells (Theorie des diagonalen
Druckfeldes) berichtet, mit dem das Verhalten eines Stahlbetonelementes bei Torsion und Schub
vorausgesagt werden kann. Die Unterschiede zwischen der Theorie des diagonalen Druckfeldes und den
Verfahren, die auf plastischen Berechnungen beruhen, werden herausgestellt.
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1. INTRODUCTION

During the past 10 years research aimed at developing behavioural theories for
reinforced concrete in torsion and shear comparable in rationality and
generality to the well known theory for flexure and axial load has been
conducted at the University of Toronto.

The unsatisfactory nature of the shear and torsion "theories" currently used
in North American design practice is evident if the ACI [1] chapter on shear
and torsion is compared with the ACI chapter on flexure and axial load. In
the flexure and axial load chapter a rational, simple, general method is
explained in a few paragraphs of text. On the other hand, the shear and torsion
chapter consists of a collection of complex, restricted, empirical equations
which, while leading to safe designs if properly used, lack any understandable
central philosophy. This lack, in the opinion of the author, is the source
of many of the complaints which arise from the profession about modern design
codes becoming unworkably complicated.

In this paper first the well known theory for flexure and axial load will be

briefly reviewed. Then the development of comparable theories for pure
torsion, torsion and bending, and shear and bending will be summarized. The

paper will conclude by contrasting the theories developed at Toronto with
those developed in Zurich and Copenhagen.

2. PLANE SECTIONS THEORY FOR FLEXURE AND AXIAL LOAD

Although the "plane sections" theory which is capable of predicting the
behaviour of reinforced concrete beams loaded in flexure and axial load is fully
described in many textbooks (e.g. [2]) it will be briefly illustrated here so
that the capabilities of the theory, and the assumptions on which it is based
can be more readily appreciated.

Assume that it is desired to find the moment-curvature relationship of a

rectangular reinforced concrete beam from the known cross-sectional
dimensions, Fig. 1(a), and the known stress-strain characteristics of the concrete,
Fig. 1(b), and the steel, Fig. 1(c). As it is assumed that "plane sections
remain plane" only two variables (say the concrete strain at the top, ect>
and the depth to the neutral axis, kd) are required to define the concrete
longitudinal strain distribution, Fig. 1(d). For a chosen value of ect a
trial value of kd can be selected and the concrete strain distribution will
then be fixed. The longitudinal concrete stresses, Fig. 1(e), can then be
found from the concrete strains by using the assumed concrete stress-strain
characteristics. Usually it is assumed that in compression the stress-strain
curve obtained from a test cylinder, Fig. 1(b), can be used and that in
tension the concrete is not capable of resisting stress. To determine the steel
stress it is assumed that the strain in the steel is equal to the strain in
the surrounding concrete, Fig. 1(d), and that the stress-strain characteristics
obtained from a tension test of a reinforcing bar, Fig. 1(c), can be used.
Knowing the stresses acting on the cross-section the resulting compression
force in the concrete, C, and tension force in the steel, S, can be computed,
Fig. 1(f). In the case of zero axial load, equilibrium requires that C equals
S and so if this is not the case the trial value of kd must be adjusted and
the calculations repeated. When the correct value of kd has been found the
moment, M, corresponding to the chosen value of ec^ can then be calculated,
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Fig. 1(g). This moment along with the curvature calculated from the strain
distribution, Fig. 1(d), will give one point on the moment-curvature plot.
Repeating the calculations for different values of e will produce the
complete moment-curvature relationship, Fig. 1(h).

Fig. 1 Plane Sections Theory for Flexure

It should be noted that the concrete strains used in the above calculations
are "average" strains rather than actual local strains. Thus the tensile
strain at the level of the steel, ecsi> will be the average of high local
values that will occur at crack locations and the lower values that will occur
between the cracks. In a similar fashion the calculated steel stress, fsi,
should be representative of the average stress in the steel.

In determining the magnitude and position of the resultant compression in the
concrete, C, Fig. 1(f)> it is sometimes convenient to replace the actual
stress distribution with an equivalent uniform stress distribution. Thus the
distribution shown in Fig. 1(e) could be replaced by a uniform stress of axfc
acting over a depth ßj kd where the stress block factors ctj and ßj have been
chosen so that the magnitude and position of C do not change. For a constant
width of beam, b, the values of ax and ßjWill depend only on the shape of the
stress-strain curve, Fig. 1(b), and the value of the highest concrete strain,
ect-



122 II - REINFORCED CONCRETE MEMBERS IN TORSION AND SHEAR 4

The simple "plane sections
remain plane" theory illustrated
in Fig. 1 can be applied to
quite complex problems. For
example, Fig. 2 compares the
predicted [2] moment-curvature
response of a reinforced concrete
beam subjected to reversed,
cyclic loading with the
experimentally determined response.
Apart from the plane sections
theory, only the stress-strain
characteristics of the
concrete and the steel under
reversed, cyclic loading were
required to make this
prediction.

Fig. 2 Predicted Moment-Curvature
Response Under Reversed
Cyclic Loading [2]

3. DIAGONAL COMPRESSION FIELD THEORY FOR PURE TORSION

The diagonal compression field theory for pure torsion, which has been
presented in more detail elsewhere [3], will be illustrated here by examining
the problem of predicting the post-cracking torque-twist response of symmetrically

reinforced concrete beams.

The theory assumes that after cracking the concrete can carry no tension and
that the torsion is resisted by diagonal concrete compressive stresses which
spiral around the beam at a constant angle a, Fig. 3(a). The outward thrust
of these diagonal compressive stresses tends to push the corners of the beam

apart which produces tension in the transverse hoops. The longitudinal
components of the diagonal compressive stresses tends to push apart the ends
of the beam which produces tension in the longitudinal steel.

Not all of the concrete is effective in providing diagonal compressive stresses
to resist the torsion. The concrete cover outside of the hoop centreline is
assumed to be ineffective because at higher loads this cover will spall off [3].
If the deformed shape of the twisted beam, Fig. 3(b), is examined it can be
observed that the walls of the beam do not remain plane surfaces. Because of
the curvature of the walls, the diagonal compressive strains will have
their maximum values at the surface, e^, and will decrease linearly with the
distance from the surface becoming tensile for depths below a certain distance,
t^. Thus in torsion as in flexure we have a depth of compression below which
we may assume that the concrete, being in tension, is ineffective. The outside
concrete spalls off and the inside concrete goes into tension, hence we are
left with a tube of effective concrete tj thick which lies just inside the
hoop centreline.

The diagonal concrete stresses will vary in magnitude over the thickness of the
effective concrete tube from zero at the inside to a value fds corresponding to



4 M.P. COLLINS 123

2A„

v- q/a

(a) Section

a, v tana At^/(os)
cr, v/tan a A, ft /(apt)

f vltana + i/tona) a^'

(c) Equilibrium

9 i-t£dston a s —1——

Vlt z / C ct+e,+c-s)

(d) Compatibility

(b)Wall Curvatures le) Predicted Torque-Twist Response

Fig. 3 The Diagonal Compression Field Theory for Pure Torsion

the strain e<js at the effective outside surface. As in flexure we can replace
this actual stress distribution by a uniform stress of ajf,!. acting over a depth
of ßjtj a where the stress block factors and ßj depend on the shape of the
concrete stress-strain curve and the value of eHs. The depth of this uniformly
stressed concrete, a, will define the path of the shear flow, q, Fig. 3(a) and
hence the terms A0 (the area enclosed by the shear flow) and p0 (the perimeter
of the shear flow path).

To illustrate how a solution can be obtained let us imagine that we wish to
find the response of a given beam to a given torsional load, T. We could
start by estimating the equivalent depth of compression, a. From a and the
known hoop geometry we could find Aq and p0, Fig. 3(a) and then from T, A„ and
a, the uniform shear stress, v, could be found. After a trial value for the
angle of inclination of the principal compressive stress, a, has been chosen
we can use the equilibrium equations, Fig. 3(c), to find the stresses in the
transverse hoop steel, f^, the longitudinal steel, fA, and the equivalent uniform

diagonal stress in the concrete, fj. These stresses and the appropriate
stress-strain curves for the concrete and the steel, e.g. Fig. 1(b) and 1(c),
can then be used to determine the tensile strains in the hoop steel, et, and
the longitudinal steel, e&, and the compressive diagonal surface strain of the
concrete, These strain values enable the direction of the principal
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compressive strain to be computed, Fig. 3(d), and hence allow the trial value
of a to be checked. It is assumed that the direction of principal compressive
stress coincides with the direction of principal compressive strain. After a

consistent value of a has been found the strain values can be used to compute
the twist of the beam, .ht» Fig. 3(b), (A_h and pu are the area enclosed by
the centreline of the hoop and the perimeter of this area, respectively.)
Once the twist is known the curvature of the walls, can be calculated,
Fig. 3(b). This curvature and the surface strains, define the equivalent
depth of compression, a, Fig. 3(b). If the calculated value of a does not
agree with the assumed value then a new estimate of a must be made and the
calculations repeated. When the correct value of a has been determined then
the response of the beam (i.e. the twist and the strains) at this given value
of torque will have been found.

While the calculations described above perhaps sound rather formidable, it is
possible to reformulate the expressions so that only one variable has to be
found by trial and error [3]. With the aid of a programmable pocket calculator
the complete torque-twist curve of a beam, Fig. 3(e), can then be found in
about the same time as it takes to find the moment-curvature curve, Fig. 1(h).

4. COMBINED TORSION, FLEXURE AND AXIAL LOAD

The recently developed [4] compression field theory for combined torsion,
flexure and axial load is essentially a combination of the plane sections theory
for flexure and the diagonal compression field theory for torsion. The theory
will be illustred here by discussing the manner in which the response of a beam
loaded in combined torsion and flexure can be predicted.

Say that we wish to find the response of a given beam, Fig. 4(a), to a given
torsional load, T, and a given flexural load, M. As in flexure the longitudinal
strain distribution will be defined by two variables, Fig. 4(b) which this time
we will choose as the top strain, ect and the bottom strain, e^. The calculations

commence by estimating and e^. From the estimated strain distribution
and the stress-strain curve of the steel the magnitude and position of the
resultant tension force in the longitudinal steel, S, can be calculated, Fig. 4(e).

For any element of concrete the longitudinal stress depends not only on its
longitudinal strain and stress-strain curve but also on the magnitude of the
coexisting shear stress. If tension is to be avoided then when shear stresses
are present there must also be longitudinal compressive stresses even when there
are longitudinal tensile strains, Fig. 3(c) and Fig. 3(d). Given the shear
stress, the longitudinal strain, the amount of transverse steel and the stress-
strain curves, the longitudinal concrete stress can be calculated. For convenience

the beam section can be divided into elements so that within each element
the longitudinal strain can be taken as approximately constant, Fig. 4(a). As
in the pure torsion calculations there will be a tube of effective concrete lying
just inside the hoop centreline but now the thickness of the tube will vary
around the cross-section. For each element an estimate is made of this thickness
(i.e. the equivalent depth of compression) and from these estimates AQ and hence
the shear stresses, v, in each element are calculated, Fig. 4(a). For each
element an estimate is then made of the angle of inclination of the principal
stress, a. Knowing a and v the transverse hoop strain and the diagonal
concrete strain ejs can be calculated from the equilibrium equations of Fig. 3(c)
and the stress-strain curves of Fig. 1(b) and Fig. 1(c). The estimate of a can
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then be checked from the basic geometric equation of Fig. 3(d), namely:

tan2a
eSL + £ds

et + eds
(1)

When a values satisfying Eq.(l) have been found then the longitudinal concrete
compressive stresses, can be calculated for each element, Fig. 4(d), and
from these the position and magnitude of the resultant concrete compressive
force, C, can be determined, Fig. 4(e).
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Fig. 4 The Diagonal Compression Field Theory for Torsion and Flexure

As well as giving the force C the calculations described above will have
produced the distributions of transverse hoop strains, Fig. 4(c), and diagonal
concrete strains around the section. These will enable the shear strains,
Fig. 3(d), and hence the twist of the beam to be evaluated. From the twist,

the longitudinal curvature, <)>n, and the transverse curvature, 4>^ (the top
and bottom faces of the beam will be curved transversely) the diagonal curvature,

cpd, can be calculated, Fig. 4(f). For each element and ejs enable the
thickness a to be calculated, Fig. 4(f). If the calculated values of a do not
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agree with the assumed values then new estimates must be made and the calculations

repeated. When the correct values of a have been found then the axial
force, N, and moment, M, corresponding to the assumed longitudinal strain
profile can be determined from the magnitudes and positions of the forces C and
S, Fig. 4(e). If N and M do not have the desired values (in our case N should
equal zero and M should equal the given value) then a new longitudinal strain
profile is chosen and the whole process is repeated.

While the trial and error procedure described above sounds very laborious it
luckily converges very rapidly and hence with the aid of a programmable calculator

or a small computer the moment-curvature and torque-twist curves, Fig. 4(g)
can be obtained relatively easily.

5. COMBINED SHEAR, FLEXURE AND AXIAL LOAD

The compression field theory has been applied to the loading cases of shear [5]
and shear combined with flexure and axial load [6]. As might be expected the
procedures are very similar to those for torsion and torsion and flexure. These
procedures will be illustrated here by discussing the manner in which the
response of a beam loaded in combined shear and flexure can be predicted.

Say that for a given beam, Fig. 5(a), we wish to find the deformations and
strains associated with a given shear load, V, and a given flexural load, M.
Once again the calculations commence by estimating the longitudinal strains ect
and Fig. 5(b), from which the magnitude and position of the resultant
tension force, S, in the longitudinal steel can be calculated, Fig. 5(e).

The beam is again divided into elements (this time full width strips) so that
within each element the longitudinal strain can be taken as constant, Fig. 5(b).
In torsion the effective width, a, was initially unknown but once we had assumed
a the shear stress could be directly calculated, Fig. 4(a). In shear the width
of the strips, b, is known (the side cover is again assumed to be ineffective)
but the relative magnitudes of the shear stresses in the various strips can not
be directly calculated. We need to make an initial estimate of the shear stress
distribution, Fig. 5(c), which should of course satisfy the basic equilibrium
requirement that the integral of the shear stresses over the total area must
equal the shear force, V. As in the case of torsion and flexure once we know
the longitudinal strain, e^, and the shear stress, v, in a given element we can
calculate the longitudinal concrete compression, oÄ. From the values of ct£,
Fig. 5(d), the magnitude and position of the resultant compression in the
concrete, C, can be calculated, Fig. 5(e) and hence the axial load, N, and moment,
M, can be determined, Fig. 5(e), and compared with the desired values.

How do we check the assumed shear stress distribution? To do this we examine a

section of the beam a small distance, Ax, away from the original section,
Fig. 5(f). The longitudinal strain distribution and the steel concrete stresses
corresponding with the loads at this new section must be found. With the
longitudinal stress distributions for these two sections known the shear stress at
any depth can be calculated, Fig. 5(g). If the calculated shear stress distribution

does not agree with the assumed distribution then the whole process is
repeated.

Once again the trial and error procedure described above converges very rapidly
and hence the predicted response (e.g. the relationship between the applied
shear and the maximum hoop strain, Fig. 5(h)) can be obtained relatively easily.
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(q) Cross-Section (b) Longitudinal (c) Concrete Shear (d) Longitudinal (e) Forces and
Strains Stresses Concrete Stresses Resultants

F+AF

Ax.b

(g) Free Body Diagram

Ultimate

t"—Hoop yield

(f) Beam Slice

&t
(h) Predicted Response

Fig. 5 The Compression Field Theory for Shear and Flexure

However, if the stress-strain curve for the diagonally cracked concrete is
assumed to be the same as that obtained from a cylinder test, Fig. 1(b), the
failure load of the specimen will be overestimated. While the more promising
approach appears to be the modification of the stress-strain curve to allow for
shear strains [7] the present procedure is to empirically limit the magnitude
of the principal diagonal compressive stress, f^, to a value fdu given by:

3.6 fi tf S (21
du 1 + 2 Ym/e0

^ '

where Ym is the maximum shear strain, + et + 2 e^, and eQ is the cylinder
peak stress strain, Fig. 1(b).

6. THE DIAGONAL COMPRESSION FIELD THEORY AND PLASTIC ANALYSIS

The plastic analysis procedures for reinforced concrete beams in torsion and
shear developed in Zurich [8] and Compenhagen [9] are concerned with predicting
the failure loads whereas the compression field theory summarized above attempts
to predict the complete load deformation response of the beams. Even if concern
is restricted to only failure load predictions there are a number of singifi-
cant differences between the two approaches. Some of these differences will
be illustrated below.



128 II - REINFORCED CONCRETE MEMBERS IN TORSION AND SHEAR 4

Shown in Fig. 6 is the observed relationship between failure torque and
amount of reinforcement for 6 beams (Ml -M6) tested by Hsu [10]. For all these
beams the concrete strength (28 MPa) and the steel strength (330 MPa) remained
essentially constant and the volume of longitudinal steel was 1.5 times the
volume of hoop steel. For small amounts of steel (Beams Ml and M2) both the
hoop steel and the longitudinal steel yielded at failure. For larger amounts
of steel (Beams M3, M4 and M5) only the hoops yielded at failure while for very
large amount of steel (Beam M6) the beam failed before any steel yielded. As

can be seen from Fig. 6 the failure torques and manner of failure for these
beams are predicted well by the compression field theory.

Also shown in Fig. 6

are the failure torques
predicted for these
beams by the provisioi
of the new CEB Code
[11]. These code
equations are based
on the Zurich plastic
analysis procedures.
The CEB equations
which assume that all
the steel yields at
failure of course
become unconservative
when the steel does
not yield at failure.
However, the
empirical equation
which is intended to
predict failures in
which the concrete
crushes before the
steel yields is very
conservative for
these beams. What
is more, it predicts
that as the amount
of reinforcing
steel is increased the Fig. 6 Torsional Capacity versus
torsional capacity will Amount of Reinforcement
be decreased. This
happens because for
these beams the amount of steel was increased (for Ml -M5) by increasing the
size of the reinforcing bars which had the effect of decreasing the distance
between the centres of the corner longitudinal bars and for this method Aq
(the area enclosed by the shear flow) is defined as the area enclosed by lines
joining the centres of the corner longitudinal bars.

To summarize, the compression field theory can predict the strains at failure,
the area enclosed by the shear flow, A„, the effective wall thickness of the
wall, a, the angle of principal compression, a, and the failure torque, Tu.
The plastic analysis procedures must assume the area A0, and the wall thickness,
a, and can only accurately predict a and Tu if all of the steel is yielding.

As a final point, Fig. 7 illustrates the effect of prestress on shear strength.
The results of four beams (SPO - SP3) tested by Sadler [12] all of which had the

At fty Ph

AohS/c
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same reinforcement are
shown. The main variable

between these four
beams was the magnitude
of the uniform pre-
compression, a, that
was applied by the
unbonded central Dywidag
bars.

The plastic analysis
procedures developed by
Neil son and Braestrup
[9] predict that pre-
stressing should not
influence the shear
capacity and that
Beam SP1 having the
highest concrete
strength, Fig. 7,
should have the
highest shear capacity.

The CEB

predictions [11]
for these beams as
well as not being
influenced by the
magnitude of the
prestress are not
influenced by the
concrete strength
hence all four beams are predicted to have the same strength.

In direct contradiction to the plastic analysis procedures the ACI Code [1]
predicts that prestressing would very substantially increase the shear capacity
of the beams. Beam SP3 is predicted to be 91% stronger than Beam SPO. The
compression field theory predicts a more moderate gain in shear strength with
prestress with Beam SP3 being predicted to be 29% stronger than SPO.

The experimental results showed that prestressing indeed increased the shear
capacity, Fig. 7, so that Beam SP3 was 31% stronger than Beam SPO. While the
trend of the experimental results was accurately predicted by the compression
field theory the actual shear strengths were considerably in excess of the
predictions. This was partly due to the conservative nature of the empirical
stress limit, Eq.(2), and may also have been caused by end restraint of the
test specimens [12].

7. CONCLUDING REMARKS

The research programme summarized in this paper has not yet resulted in a unified

beam theory capable of predicting the behaviour of any reinforced concrete
cross-section under any combination of loading. It is, however, believed that
significant progress has been made in achieving this ultimate objective.

At present predictions for members subjected to complex loading (say all six
stress resultants simultaneously) can be made with the aid of truss analogies
[13], and automatic design programmes based on such analogies [14] are in use.
These models, however, involve empirical assumptions as to what are the effec-

_ct

£

Fig- 7 Shear Capacity versus Level of Prestress

29/9
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tive areas of the various components of the truss and hence they are not
comparable to the "plane sections" theory for flexure which remains the
"standard" against which we wish to judge all other theories.
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Additional remark to pure torsion

HEES, G.

We tested bars with rectangular crosssections / 1 / and relations b/d
from 1 /1 to l/8. In the last case, there i s an inner region (lying
between the dashed lines) which can be regarded as a plate with constant

main bending

moments in the

direkt ion of 45°.

The calculated

stresses and

deformations of

this bending bars
and the measured

ones were neai—

ly equal. If we

changed the thicknes of the walls in the box-girder-mode 11 of Lampert

a little bit we calculated the same values. In the outer regions are

difficult stress relations and at the moment I am not able to describe

this problem. - If the relation of b/d is greater than 1/3, the influence

of the outer regions increases and therefore it is not possible to calculate

bending bars. But also the box-girder-mode 11 is not full sati sfactory.

/ 1 / Kraft, U. : Ermittlung des Torsionstragverhaltens von Stahlbeton¬

balken und Stahlbetonplatten mit Microbetonmodellen, Universitätsbibliothek

der TU Berlin, Abteilung Publikation, D 1000 Berlin 12
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SUMMARY OF DISCUSSION - SESSION 2

1. Limit State Design

With ambitious hopes for the future of plastic analysis as a means of structural
design, B. Thürlimannn had opened his introductory lecture on "Plastic Analysis
of Reinforced Concrete Beams" with a picture of the free cantilever construction

method being applied to a major prestressed box girder bridge.

J. Blaauwendraad profited from this example to question rhetorically the value
of plastic analysis in treating the major design problems encountered in the
actual design of such structures. As pointed out, the cross section may be

multicellular with cantilever flanges and not the academic rectangular boxes
which form the basis for the theory. Also the multitude of prestressing cables
needed in such a structure leads to considerable organisational problems in
reaching a satisfactory positioning of the cables within the geometric
restraints of the cross sections.

Further a major problem in designing such structures is the control of the
horizontal alignment and of the short- and long term deflections, in order to
ensure the required form of the finished structure. B. Thürlimann replied that
of course plastic analysis could not treat serviceability requirements.

In this way B. Thürlimann focused on the important fact that plastic analysis
is a rational means of treating the ultimate limit state conditions only. To
achieve a fully operational design basis, plastic analysis should be supplemented

by other analytical methods able to treat the requirements within the
serviceability limit states.

When developing a complete design basis, this dualism, reflecting modern design
principles, should not be forgotten.

2, Basics of Plastic Design

The further discussion focused on some of the basic problems still to be dealt
with in some detail before a broad acceptance of the modern rational theory of
plasticity can be achieved.

B. Thürlimann drew attention to the multitude of different effects covered by
the effectiveness factor Effects such as stress concentrations at the
intersection between stirrups and longitudinal reinforcement, effective wall
thickness in box- or solid cross sections subjected to torsion, distorsion of
the side walls of such box sections, and bond slip are just a few examples of
the role of "V. B. Thürlimann therefore recommended that much care should be
exerted in defining what was covered by ~0 so as possibly to separate the
different effects caused by V In this way a rational explanation of the
origin of the - values could answer for the different values of 1) presented
for each type of test. The criticism that "V is often just an empirical
calibration factor introduced to improve the relation between theoretical and
experimental results, could be dealt with in a more satisfactory manner.

Contrary to this opinion, M.W. Braestrup felt that the problem was more to make

a choice of the values for "0 than to make a calculation of The code could
specify the values to be used in the different types of load effects, as this
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is already done in several cases - just using another terminology than "effectiveness

factor", e.g. maximum concrete compression design strength being different

in bending, shear and torsion.

J. Witteveen discussed the deformability of concrete fundamentally necessary
for the application of lower and upper bounds in plastic theory. Extensive
research on plates has shown that in the yield lines considerable rotation can
take place under a constant or even slightly increasing moment. According to
Witteveen, the contributions on reinforced concrete shear walls and beams
presented so far at this Colloquium have given no proof that concrete in
compression has adequate deformation capacity for these structural elements to
indeed reach the plastic collapse load. After a certain deformation, concrete
in compression "softens", while it is well known from the plastic theory of
steel structures that "hardening" in Witteveen's terms is essential for the
formation of plastic zones. This strain softening of concrete in compression is
taken into account by introducing the effectiveness factor"^ Also J. Witteveen
therefore found that the fundamental weakness of the approach was the fact that

depends on many factors such as the type of structure, type of loading, type
of statically admissible stress field chosen, and the type of failure mechanism.

The freedom achieved with plastic analysis to choose the statically admissible
stress field and design accordingly has of course its price, but as pointed
out by B. Thürlimann the answer to this question depends on the case considered.
When, for example, applying the plastic hinge approach to design a frame, the
necessary rotation capacity of the hinges, and thus the necessary deformation
capacity of the concrete, depends completely on whether all hinges form at the
same time or whether there is a substantial difference in load level between
the formation of the first hinge and the last hinge. The experience, as
expressed by Thürlimann, is that concrete has a formidable ability to redistribute

stresses, and if the effective concrete compression strength is applied
sensibly, the design proves to be satisfactory.

The discussion on the origin and role of the\) -factor was concluded by re-
ferrring to the paper by H. Exner, "On the Effectiveness Factor in Plastic
Analysis of Concrete" presented in Session 1, this theme being a central subject
within the theory of plastic analysis of concrete and a field in which further
research should be encouraged.

3. Shear

A. Losberg discussed the possible influence of prestressed reinforcement on
the shear capacity of beams in plastic design. The preliminary results of
ongoing shear tests on simply supported beams with one cantilever, representing
the support region of continuous beams, was reported. The parameters varied
were the level of prestress and the existence or non-existence of stirrups in
the shear failure region behind the support near the cantilever. Furthermore
the prestressed reinforcement was in some of the test beams brought to yield
by external stressing just prior to shear failure in order to study the possible

decreased or vanishing effect of prestress upon the shear carrying capacity
when the prestressed main reinforcement yields prior to a shear failure.

According to Losberg, the test results show that the level of prestress has a
considerable influence on the shear carrying capacity, and that this effect
could be fully represented by an influence term of the traditional type.
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Furthermore there was no significant difference between the shear capacity of
beams with yielding support reinforcement and with non-yielding support
reinforcement.

Based on the contribution on "Shear in Beams with Bent-Up Bars" by C.M. Peder-
sen, A. Losberg noted that the effect of bent-up bars now seemed to be better
considered than previously. To Losberg's question on whether separate methods
were required to treat the effect of stirrups and of bent-up bars, Pedersen
reported that all the tests he had studied verified the theoretically predicted
result that there is no basic difference in the ability of stirrups and of
bent-up bars to carry shear, and that a distinction is thus unwarranted.

B.C. Jensen pointed out that the model applied by J.F. Jensen to treat the
lower bound shear strength of non-shear reinforced beams required that either
the longitudinal support reinforcement be situated half-way up the support
zone under two-dimensional hydrostatic pressure to ensure equilibrium, or a

longer support region would be needed to ensure adequate stress transfer between
the longitudinal reinforcement and the inclined uniaxial stress zone. J.F.
Jensen found that an additional moment transfer system at the support zone
could easily be achieved either by the concrete itself or supplemented by a few
additional stirrups behind the support region.

Another possibility, shown by P. Marti, was to introduce a stress field for
the part of the beam behind the support, which may for example be constructed
starting from a simple truss model. In this case a certain stirrup reinforcement

behind the support as well as a longitudinal reinforcement in the upper
part - or at the top of the beam - will be needed. In any case, a simple bending

failure mechanism may possibly be associated with an inclined collapse
crack beneath the centre of rotation.

4. Statically Admissible Stress Field

P. Marti also reminded the gathering that the problems of simply supported
rectangular beams under concentrated and uniformly distributed loads have
already been treated by D.C. Drucker in his 1961 IABSE article "On Structural
Concrete and the Theorems of Limit Analysis". In this article Drucker showed
that in these cases a compatible bending failure mechanism may always be associated

with the statically admissible stress field. According to Marti, the
same remark also applies to the class of complete solutions given by M.P.
Nielsen in his dissertation "On the Strength of Reinforced Concrete Discs".

S. ROSTAM
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