
Nonlinear analysis of reinforced concrete as a
minimization problem, by a finite element
representation of the stress field

Autor(en): Valente, Gianfranco

Objekttyp: Article

Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der
Arbeitskommissionen

Band (Jahr): 34 (1981)

Persistenter Link: https://doi.org/10.5169/seals-26906

PDF erstellt am: 26.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-26906


% 437

Nonlinear Analysis of Reinforced Concrete as a Minimization Problem, by a Finite Element
Representation of the Stress Field

Analyse non-linéaire du béton armé comme problème varationnel, pour les éléments finis qui
définissent le champ des contraintes.

Nichtlineare Berechnung von Stahlbeton als Minimierungsproblem, mit Finite-Elemente-
Darstellung des Spannungsfeldes

GIANFRANCO VALENTE
Prof. Ing.
University of Rome
Rome, Italy

SUMMARY
In previously published papers [4], [7], [8], [9], the approach to the limit analysis of reinforced
concrete bodies was formulated as a minimax problem, whose solution could be achieved by
means of an appropriate algorithm based on the discretization of the structure into finite
elements. This algorithm was implemented in a computer program including an incremental
method, where the steps amplitude is defined by crack development. In this paper, the problems
connected with the numerical performance of that procedure are taken into account. Finally, the
experimental data on concrete rings for determining tensile strength of concrete obtained by
Malhotra [5] are compared with numerical results of the proposed method.

RÉSUMÉ
Dans les publications précédentes [4], [7], [8], [9], l'approche des états-limites de béton armé
était formulée sous forme d'un problème variationnel, dont la solution pouvait être approximée
par éléments finis. La discrétisation dans le temps était définie par le développement successif
des fissures. Cette publication-ci prend la performance numérique de cette procédure sous la
loupe. Ensuite la méthode proposée est appliquée à la détermination de la résistance à la
traction de béton non-armé. Les résultats numériques correspondent aux données
expérimentales de Malhotra [5].

ZUSAMMENFASSUNG
Grenztragfähigkeitsanalyse von Stahlbeton wurde als Minimaxproblem behandelt auf der
Grundlage finiter Elemente. Diese Methode wurde in ein Computerprogramm implementiert,
wobei die Inkremente durch die Rissentwicklung bestimmt sind. In diesem Bericht wird die
numerische Behandlurg beschrieben und auf das Beispiel der Betonringzugprüfung angewandt.
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1. SYMBOLS

They are as follows:

NC number of concrete nodes,
NS number of steel nodes,
NEC number of concrete elements,
NES number of steel elements,
NVS number of aligned bars couples,
KK total number of equilibrium equations,
NN number of linearly independent equations,

number of kynematic independent parameters,
LL number of static independent parameters,
MM total number of static parameters,
NF total number of failure functions.
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2. INTRODUCTION

The author have developed a finite element method for finding lower bounds on the
limit load for reinforced concrete with perfectly plastic steel and perfectly
brittle concrete. Let the two dimensional domain R be subdivided into elements
triangular for concrete and linear for steel bars.
Stress and velocity components relevant to the problem under consideration are
assumed to have linear distribution within each element, and to be continuous
across the elements boundaries. In this way a family of stress fields is considered,

whose generic member is identified by the values that the stress components

assume at the nodal points. The bound stresses between steel and concrete
and the dowel effect are taken into account. Let the stress values be collected
in a vector 0.
Vector 0 has MM « 3 NC + 5 NES components
(plane stress components 0X, 0y and TXy for concrete nodes; normal, shear and bond

stresses 0^, Oj, T^, Tj and Tj for steel bars).
A family of velocity fields is also considered whose generic member is identified
by the values of the velocity components at the nodal point; values collected in
a vector u. The total number of equilibrium equations is KK » 2 NC + NVS + NES

and the dimension of vector u is NN " KK - NV.

Now a somewhat restricted equilibrium condition is imposed to the stress fields
previously defined, by means of the virtual work theorem, taking as a virtual ki
nematic field any member of the family of velocity fields previously defined, to
gether with the strain rate field kinematically consistent with it.
The virtual work equation may then be written as

J Q O - P u" P2 " 0 (1)

The first term in Eq. (1) is the internal virtual work, 0 being the equilibrium
matrix, assembled as shown in Fig. 1, depending upon the assumed stress and velo
city distribution. The second and the third terms are the external virtual work
due to external load p^ and to prestressing loads P2, P is the multiplier of
external load p^ alone.

MMI i
4 I 1

MMC 3#NC T MMS= 5*NES î

NVS

NES

NODES EQUILIBRIUM

STRESSES CONTINUITY FOR STEEL BARS

Td«CCi-0j)>,

Fig. 1 - Matrix Q
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Obviously, Eqs (1) are necessary, but not suffient conditions for equilibrium,
because all the virtual kinematic filed have not been considered, but only a

subset of them. Now let it be consider checking the yield condition (with analytical

representation of concrete experimental data by Kupfer, Hlsdorf and Rusch

[3], von Mises critérium and comparison with maximum bond strength for steel)

f£ - ^(pç) <1, (i 1, NF), (NF NC + 3 • NES) (2)

the limit analysis problem is solved by the unconstrained minimization of the
nonstrictly convex function

$(g£) max^ [ fi(g£)] (k « 1, LL) (3)

where cr*are the LL » MM - NN undependent parameters. The irregular function $ is
replaced by a sequence of every-where regular approximation of this function:

Zi "TP"" <"

In this paper, the numerical problems are examined more accurately then in
previous papers [ 7], [8], [9].

3. EQUILIBRIUM MATRIX FOR A STEEL ELEMENT

It may be obtained by taking into account a rectangular element composite with
two triangular elements. If the equilibrium matrices for triangular elements
having linear distribution for stress and strain fields, and if a side of this rec
tangular element approaches to zero, then the equilibrium matrix for a linear e-
lement is obtained for the nodal stresses O^, Oj and Tj

4. FREE AND DEPENDENT PARAMETERS

The matrix Q has zero rows, for the boundary kinematic condition, and since the
problem:

3 2 p El + ?2

has solutions, such general solution can be obtained in the form
* «* * ^O 0o + 9 CT* (4)

where

CT*
p o*2 + g*2

where ct^ is a particular solution, CT is linearly independent vector and Q are
arbitrary parameters.
The program is able to find the rank, designate the rows and the columns which
provide a nonsingular square submatrix of that rank, and give the value of the
determinant of that submatrix by using the Gaussian elimination process shown
by Ralston [2].
When any of the divisors q^j, (diagonal element in Qp) is small in magnitude com
pared with other elements qjj of same matrix, then a serious round off error may
be incurred.
To avoid these divisions, a technique called positioning for size is used. At
the i-th stage of calculation (i » 1, •••, NN) it consists of the following:
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- rows are interchanged to get nonzero rows in the first NN positions,
- columns are interchanged in order to locate that element of greatest absolute

magnitude.
- then the elements in the i-th row are calculated by the so-called back substitution.

- the rows and columns interchangings are memorized in two vectors IROW and ICOL.

Finally, the matrix assembled as in Fig. 3 is obtained

Fig. 2 - Resolutive matrix Q

*where, NN is the rank of QD » L U and of the dependent parameters, LL MM - NN

is the free parameters number. The triangular matrix at the right side of Fig.
3 represents the gradient coefficients for the free parameters and are computed

£
by partial derivatives of plastic power $(0

5. TESTS CHECKING

The tests (g), (i), (j) and (1) in the flow-chart of Fig. 2 are a very tiklish
and important elements of the computer program.
The test (1) in the loop 1 permits to find the new cracks pattern for the stres
ses field which minimizes the plastic power $.
Let the following terms be considered:

el ' I 1 ~ ^max I' ^max ^i *"i (i l> NC)

e2 " I 1 " I (7)

E max (E|, e2) (8)

where <p+ is the maximum value of function computed between the not cracked nodes

with positive value of the first principal stress.
To take into account the value e2 is very important because only the cracking in
the nodes subjected to tension may produce substantial variation of the stress
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FIG. 3. - Flowchart of the process; cycles ® © and © constitute
logical outline of limit analysis by nonlinear programming
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field.
From a computational viewpoint, a new crack in a node produces a reduction of
the failure domain only in the tension-tension or tension-compression zones.
Then, if the point of the stress state was in this zone in the neigh-bouring of
the yield line, after the cracking it will shift brusquely causing a substantial
change in the whole stress field for the equilibrium of the same.
The value e is used to calculate the following prescribed small positive value
£ depending on the ratio between the two principal stresses

-1 £, for (02 + 3 O^) < 0 (9)

- c2 - ci 02
e C2 + r — £, for o2 > 0, a2 < 0 (10)

al

£ C2 £ for 0-p O2 ^ 0 (11)

A node will became cracked if it is:
<P > 1 - £ (12)

It agrees to assume for c^, C2 the following values

cx « 1,5 -f 2,0 ; c2 3 4 6 (13)

In such a way, the biaxial tension stress states are penalized greatly than the
biaxial compression stress states with linear interpolation for middle states.
Smaller values will be selected for c-^ and C2 parameters if it is deemed to follow

the cracking phenomenon with greater accurancy; obviously, this behaves much

more steps in the evolutive process.
The process is illustrated in the following Fig. 4

Fig. 4 - Computation of the parameter c (0^, C^)



444 ANALYSIS OF R C AS MINIMIZATION PROBLEM i
The test (h) for the loop 2 checks that two surface \)Ja and $ are enough close
between themselves. When the minimum on the surface has been ottained, the
collapse multiplier for the node i-th having Vmax max Vr (K 1, NC) is
computed. The failure function is a fourth order polinominial and the condition:

¥>i (Pi a) - 1 (14)

leads to four roots. Related to the Fig. 5 two kind of solution are possible:
- for the stress state represented by the point A, four real roots are obtained,
- for the stress state B, two real roots and two complex roots are obtained;
the true solution is the smaller real positive root (like points Â2 and B^)

Fig. 5 - Solution of the fourth order polinomial

The error on this value of Pa is computed by the aim of the following Fig. 6.
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This error is deduced by the following relationships:

Pa - 7" f(di) (15)

Apa=7T Adl=l2 Adl <16>

Adx - (V - <l>a) (dj. - d)/(<fi - 1) (17)

Apa pa (<P - >Pa) (1 - Pa)/(V> ~ 1) (18)

The test (h) consists in the checking:

Apa/Pa < etol (19>

Where Etol (s a prescribed small positive quantity. The test (i) in the loop 3

checks that the minimum position of the surface i|Ja has been ottained, this happen
when between the initial and final values iJ/0, ii^ is

2 Wo " <h)/W0 + "W * slim (20)

This condition, in spite of its simplicity, displays itself to like better than
other more complex, like gradient modulus.
The test (g) in the loop 4 checks that the minimum of the line has been attained;

it is admitted that this test is satisfied when a value i|»a less then all
the preceding values on the line is obtained. The loops 2 3 and 4 are
better shown by the paper of Fletcher and Powell [l]
The value S^£m is a prescribed small quantity; for Etol " 10-^ f 10"^, the better

computational value was:

Slim - 10"6 * 10"7 (21)

6. RUNNING TIME FOR THE EVOLUTIVE PROCESS

This computer time necessary to the program running may be subdivided into three
parts :

- data memorization,
- computation of equilibrium and non singular matrices Q and [ Qq Q* a*] respectively

- minimization times for each step.
The first two computer times represent a derisive part of the total time, then
the third part is the more important time.
In the following Fig. 7 the computer times for a single minimization in absence
of cracked nodes is represented.
This time is placed near the relationship:

t 10-2 (1 + 75 a) LL NC (22)

where Etol " 10 a is the prescribed small value for pa in the minimization.
If cracked node exist, and if NCI is the number of the nodes having the tensile
first principal stress before the cracking, the minimization time is greather
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Fig. 7 - Minimization time in absence of cracked nodes.

then the aforementioned time according to the relationship:

t - 10"2(1. + .75 a) LL NC(1. + 3.5 NC1/NC) (23)
These relationships are obtained:
- by the numerous computer solutions of analogous problems for bodies with material

according to Von Mises yield critérium,
- by the numerical solution of the famous beam tested by Bresler and Scordelis

and of the concrete ring specimen numerical solved.
These computer times are related to UNIVAC 1100.

7. STORAGE USED

By the aforementioned notations this computer storage is defined by the following
relationship:

55 • NC + 4 • NEC + 37 • NES + 5 • LL + 22 • NL + 8 NC • NL + (2 • NC +

2 • NS) (3 • NC + 4 • NES + 2 • NL) + LL2/2 + 2 • NF + 20.000 (22)

8. NUMERICAL EXAMPLE

In the Malhota paper [5] regression analysis were carried out to establish
correlation between inside diameter ring tensile strength and 4x8 in. (10x20 cm) cy-
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linder compressive strength. All the reported data had been carried out using two
kind of specimens like in following Table 1:

Table 1 - Ring specimens data

Specimen
N.

Inside
diameter high wide Piu Ot £

1 6 in (15cm) lj in. (3.8cm) 1^ in (3.8cm) 21.040 54.704 9.408

2 12 in (30cm) 3 in (7.5cm) 3 in (7.5cm) 20.960 54.496 8.992

kg/cm2 2k°/cm %

The Author found the following relationship:
Y - .063X + 17.5 kg/cm2

where Y and X are the inside diameter ring tensile strength and the cilinder com

pressive strength, respectively. Besides this the Author says that the tensile
stresses in the ring section vary linearly from a maximum of 2.6 P^ at the inter
nal periphery to 1.6 at the outside periphery, where P£ is the applyed hydrostatic

pressure.
In the subsequent discussion, Pandit [6] says that none of the existing methods
for the determination of the tensile strength of concrete campare favorably as
regard reproducibility or reliability with the compression test.
The aforementioned specimens have been represented by the finite element mesh in
the following Fig. 8.

Fig. 8— Finite element mesh
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For these specimens the tensile and compressive strengths were 50. and 500. kg/cm2
respectively and the ultimate hydrostatic pressures were those shown in Table 1.
By admitting that the maximum tensile stress in the ring section is 2.6 P^u at
the inside periphery, there is the tensile stresses in the Table 1.
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