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A comprehensive and systematic procedure for optimum aseismic design of structures based on
fuzzy set probabilistic theories is proposed. A case study is performed on an actual typical school
building in reinforced concrete, at Kobe, Japan.

RESUME

La contribution propose une procédure globale et systématigue pour le dimensionnement optimal
de structures, vis-a-vis des séismes, sur la base de la théorie probabiliste «Fuzzy Set». Une étude
a été réalisée pour un batiment scolaire typique, en béton armé, a Kobe, Japon.

ZUSAMMENFASSUNG

Es wird ein umfassendes und systematisch aufgebautes Verfahren fir die Bemessung von
erdbebensicheren Bauwerken vorgestellt, welches auf der «fuzzy set»-Theorie beruht. Als
Beispiel dient das Projekt eines typischen Schulhauses aus Stahlbeton in Kobe, Japan.



142 OPTIMUM ASEISMIC DESIGN OF STRUCTURES A

1. INTRODUCTION

The aseismic safety and quality of architectural structures should be assured
from a comprehensive viewpoint. The Authors have already proposed an evaluation
flow chart for seismic damages of structures [1] which is composed of three
parts, i.e., EARTHQUAKE, STRUCTURE and DAMAGE as shown in Fig.l. By using this
chart, the followings have become able to be performed easily;regional evaluation
of seismic damages [1], aseismic reliability analysis [2] and fuzzy optimum
aseismic design [3] of structures. The third fuzzy optimum design was carried
out based on fuzzy set theory [4] and maximizing decision method {5] which en-
abled us to employ rationally multi-objective functions and subjective evalu-~
ations in the optimum aseismic design of structures [6][7].

In this paper, to make the fuzzy optimum design method mentioned above more real
and practical, probabilistic expressions are applied to EARTHQUAKE in Fig.l,
because occurrences and intensities of earthquakes belong essentially to natural
scientific phenomena beyond human control. On the other hand fuzzy set con-
ceptions are suitable to STRUCTURE and DAMAGE, because the design of structures
and the evaluation of structural damages belong essentially to human decision
making problems. The purpose of this paper is to propose such a new optimum
aseismic design method of structures and to present a case study on a real type
R/C building.

2. FUNDAMENTAL THEORY AND PROCEDURE

A probabilistic expression of EARTHQUAKE is able to be given by probabilistic
density function of magnitude M and epicentral distance A[km], f,(M,A) , which
is induced from the past observed earthquake occurrences [2]. When STRUCTURE is
defined deterministically by a design parameter, y , DAMAGE is calculated by a
passage probability, p,, which indicates the probability that a damage parameter,
X , exceeds a critical one, x. , more than one time in the future, i.e.,

P =P (xzx [v). (1)
In this paper, the damage parameter, x , is calculated through the earthquake
limit response analysis proposed by the Authors [1], and the passage probability,
Px » 1is computed by the following two methods for comparison:

(1) Method based on classical |probability theory
The passage probability at the next earthquake, Px , is given by

Py = Q{ fo(M,A) dM dA, (2)

where (0 is the region with M above and A below the critical M-A curve on which
X = X, as shown in Fig.2. When ng is the expected number of earthquake occur-
rences in the next t, years, the passage probability in the next t, years, px ,
is given by

Px = 1 - (l-p;i)no >

where n is the total number of earthquake occurrences in the past t years.

(3) in which ng =n tg / t, (4)

(2) Method based on Benjamin's probabilistic model

By usingBayesian theorem Benjamin proposed a probability of obsexrving n, future
Poission events in time ty having observed n events in time t, p{noltg,n,t] [8].
When zero is substituted into n; in it, the non-passage probability in the
region 2 where x 2 X (See Fig.2) in the next t, years becomes p[0|t,,np},t].
Therefore, the passage probability in the next t, years is given by

b =1-pl0 to,mp,tl=l- (It /6)” PxH). ()

Finally, an optimum aseismic design of structures is able to be performed by the
following maximizing decision equation as shown in Fig.3:

mp(y¥) = M$x (my A mpx)’ (6)
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where m, and mpy are the membership functions of design parameter y and passage
probablllty Px » respectively. Here, the membership functions are supposed to be
the satisfaction degrees from architectural, structural and economical points

of view. In the case study, here, number of shear walls y is adopted as a
structural design parameter, and damage factor DF, the maximum response displace-
ment xp and duration until fracture tf are employed as damage parameters. The
physical meanings of these characters will be explained later. Consequently, the
total procedure of the proposed optimum aseismic design of structures is able to
be shown in Fig.4. The maximizing decision is performed by means of and/or tree
as shown in Fig.5 [3].

3. STRUCTURE

A case study is carried out in regard to the first story of a typical R/C school
building at Kobe in Hyogo prefecture, Japan, which is the same structure as
adopted in the past evaluation studies [1]}[2)[3] (See Figs.6,7), and is ideal-
ized to be a one degree of freedom system. The calculation conditions are given
as follows: yield shear force Ty,slipping shear force Tg, yielding lateral dis-
placement Xy and hysteresis loop area A(xy) are calculated as follows [2][3];

Ty=[(1-x, )% +28.p, (1-2d)) Jopobh’/H,  xy=ey/3(1-2dp)h,
Tg= (ZBsp —x1) (1-2d1) opobhZ/H , A(xa)=(ST+9Tg) (xa=xy) /4, D
where  x7=N/oppbh, (8) BgPa=0aybh/opoa. (9)

The restoring force characteristic of shear walls is considered as shown in
Fig.9%. Ultimate shear force Ty, displacement X, and the i-th hysteresis loop
area A(xi) are calculated as follows:

Ty=opoLt sinbcosb/2, xu=0.002L/cosze,
2 2
A(xy) ITux=(x1/xy) "~ (xi_1/%x,) /2.

Design parameter, y ,i.e., the number of shear walls is counted by & unit shear
wall within a span between C31,C; and C3 columns in the span and ridge directions.

} (10)

4., EARTHQUAKE
4.1. Earthquake Ground Motion Spectrum [1][2][3]

When M,A and predominant period T, of surface ground are given, earthquake
ground motjon spectra are glven as Shown in Fig.10, and ground motion duration
tol[s] is calculated by tg =100-5 . The average slip velocities faults of
interplate- and intraplate—type earthquakes are assumed to be d=15 and 50[cm/s],
respectively. Out of the source region, the earthquake ground motion spectra are
calculated by multiplying the wvalues in Fig.1l0 by (AB/A)

4.2, Probabilistic Expression of Earthquake Occurrences

Cumulative distribution functions are approximated to the distributions of ob-
served interplate- and intraplate-type earthquakes within the circles with radii
2000 and 200([km] round Kobe City in Japan, respectively. By differentiating them
probability density distributions fo(M,A) are calculated as follows [2]:

fo(M,A)=0.1583(e ™ - '9) 1.322:1077(A-2000) for interplate-type, (11)

f (M,A)=1.778- +10~ (8 M) +1 573-10 8A2 for intraplate-type, (12)
and shown in Fig.ll. Numerical calculations of M and A are carried out by the
following mesbes; AM=0.1, AA=100[km] for interplate-type earthquakes and AM=0.1,
04=10[km] for intraplate-type earthquakes.
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5. DAMAGE
5.1. Earthquake Limit Response Analysis [(11[21[3]

According to the principle of the maximum response, the momotonic maximum dis-—
placement xn is given, when velocity and acceleration pulse spectra (v-pulse and
o-pulse spectra) are in contact with the ground motion spectrum as shown in
Fig.12, where the approximated bi-linear pulse response spectra are used for
simplicity. T7,Ty,Vy) and vp2 at the corners are calculated as follows:

Elastic response displacement:

T1=4/w, vm1=wxp/2, (13) Ty=2/w, vm2=wmxp/2, (14)
Plastic response displacement:

T1=bduyvw/2uy-1, vpi=wxyv2uy-1/2,(15) T2=2up/wvZup-l, vm2=TwxyvY2up-1/2.(16)

where w=JE7E, (17) T=2tp, (18): k is modulus of elasticity; m is mass;
up=xm/xy (19) in the velocity pulse spectrum, and Uu=Xm/Xy (20)
in the acceleration one. The physical meanings of these characters are shown
graphically on the left hand side in Fig.l12.

Response displacement x; and the number of response cycles N, are given at the
crossing point of a finite resonance response acceleration capacity spectrum
Cha and the earthquake ground motion spectrum (See Fig.13) as follows [1][3]:

Cha= A(xy)/1.2m + 2T,/3m, (21) Ne=to/Te, (22)

where T,=2m/v/mx3/Ta is equivalent elastic natural period and T, is restoring
force amplitude.

5.2. Damage Parameters and Critical Values

One of damage parameters, the maximum displacement xy is able to be calculated
as the larger of the ones by pulse response analyses. Damage factor DF is calcu-
lated as follows [L][3]:

In the case of monotonic responses by pulse response analysis;

(1) DF of colummns; DFpc=xp/xy, (23)

where xu= OyH’/6 + RH(OB ~0y) /2, (24) @y=2¢,/(1-2d))h, (25)

op=0.004/(x1-d1)h, (for concrete) (26)

¢B=150¢yl(1—xl—dl)h, (for reinforcing bar) (27)

(2) DF of shear walls; DF.=x,/x, (28)
In the case of cyclic response by finite resonance response analysis;

(1) DF of columns; DFCW=NC/NB (29)

where NB=108[1-xlh@a(0'004+dlh¢a)], (for concrete) (30)

NB=[300®yx0.53/4/{(1—2d1)h®a—2€y}]4/3, (for reinforcing bar) (31)

o, = Z(Xa—xy)hﬁ + by (32)

(2) DF of shear walls; DF.,=xp/xB, (33) where xp=Max(xi)}.

In the both monotonic and cyclic cases, DF is assumed to be zero for elastic
range of columns xpy,X <Xy (=0 H2/6), and non-cracked range of shear walls

Kps XX (= 2(1+1/6)0b0H/2-106). In the each case of monotonic or cyclic
response the maximum values of DF is adopted as DFy or DF., respectively. The
duration until fracture t§ is calculated as follows:

tg = for DF < 1, te = NpT for DF 2z 1. (34)

e
The effect of tp derived from pulse response analysis on tg are neglected here.

The critical values of DFy,DF.,x, and ty are assumed to be 1.0,1.0,H/100 and
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300(s], respectively. H is the clear height of columns. DF=1.0 means the fracture
of structures. At the displacement, x;=H/100, window glasses surrounded by almi-
nium sashes are cracked. It is supposed that 300(s] is sufficient for refuge time.

5.3. Passage Prbability

The passage probabilities of DFy, DF¢ and xp, i.e., Pppm»> PpFe and Pyp are able
to be derived from Eqs.(3),(5). As for tg, the non-passage probability pef
(t£2300[s]) is also able to be given by using Egs.(3),(5). Supposing that DFy,
and DF. are statistically independent, the passage probability of the damage
factor ppp is calculated as follows [2]:

PDF = PDFm * PDFc ~ PDFm - PDFc (35)

6. FUZZY OPTIMUM ASEISMIC DESIGN

6.1. Membership Functions of Satisfaction Degree [3]

According to the architectural demand that buildings without shear walls are
prefered and reffering to the real number of shear walls in the typical R/C
school building shown in Fig.7, the satisfaction degree of the number of shear
walls my is supposed as the following membership function (See Fig.l4):

for span direction; vyg6: my=0 , 6<ygl3: mY=1.24(y-l3)2,, v>13: mY=1. (36)
for ridge direction;y=0: my=0 , O<y<4 : mY=12.76(y-4)2 s ¥>4 @ my=1. (37)
Acoording to economic and mental demands, the satisfaction degreesof the passage
probabilities, mpp, my, and myf are supposed to have several patterns as shown
in Fig.15 (a)-(e), which reflect the mentalities of cool, pessimistic, opti-
mistic, emotional and ordinary man, respectively. The Authors adopted the satis-
faction degree type in Fig.l1l5 (e) and the following is assumed in this paper:

mxm=-4(px—0.5)3+0.5, (38) where py=pxm, PpF and ptf

6.2. Maximizing Decision

Now, using the and/or tree such as shown in Fig.5, the maximum satisfaction
degree mp(y*) has become able to be calculated. Calculations are performed in
the following 16 cases:(l) Ridge and span directions of the building shown in
Fig.7, (2) Interplate- and intraplate-type earthquakes, (3) Predominant natural
periods of surface groud, Tg=0.1 and 0.8[s], (4) Classical probability theory
and Benjamin's probabilistic model for passage probability. Figs.16,17 show the
total distributions of satisfaction degrees of v, ppp, pPxm and prf with respect
the number of shear walls, y. The peak values of m in the hatched zone is

mp(y *) and y at the point is y* which are shown in Table 1.

7. DISSCUSSION AND CONCLUSIONS

As the result of applying fuzzy set and probability theory to the optimum
aseismic design of a typical R/C school building, the following are made clear.

1)Using the simple evaluation procedure for aseismic damages of structures pro—
posed by the Authors, it is possible to show clearly the relations among the
satisfaction degrees of y, DF, X, and tf by scanning the design parameter, Y.
2)In the cases of hard surface ground (Tg=0.1[s]), span direction and inter-
plate earthquake, the maximum satisfaction degree is higher than in the case of
soft surface ground (Tg=0.8[s]), ridge direction and intraplate earthquake,
respectively. This tendency is reasonable and the same as the ones of the differ-
ent type evaluations which the Authors have already carried out [1][2][3].
3)The final satisfaction degree is almost decided by the ones of the number of
shear walls and the duration until fracture.

4)In the local range of y, the satisfaction degree of the damage factor of the
building decreases as y increases. This tendency is against our experimental
ones. This reason is that the damage factor is decided by two different damage
factors of columns and shear walls, DF. and DF.
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5)In the case of the interplate~type earthquake the satisfaction degrees of the
maximum displacement, and the duration until fracture by the method based on
Benjamin's probahilistic model are lower than by the method based on classical
probability theory, because the passage probabilities based on Benjamin's
probabilistic model are higher than theones,based on the classical probability
theory (See Figs.16,17). Even if zero is substituted into n in Eq.(6), there
exist the passage probabilities pyp, ppy and non-passage probability Pif.
6)The reason why the number of shear walls in the ridge direction at the maxi-
mizing decision point is nearly zero is that its satisfaction degree is
supposed according to the architectural demand that very few shear walls are
prefered in the ridge direction.
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