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Summary

The square-wave model of random actions with the Ferry-Borges & Castanheta combination
rule is sufficiently exact but too difficult for practical design. The Turkstra rule is simpler but
it gives lower bound estimates of action effects A new combination rule is also simple and

it gives safe estimates. Combination values of nondominant actions depend on their repetition
numbers relative to a specified reference period. The characteristic value of dominant action
will be changed if a design working life of the structure is different from the reference period

1. Introduction

1.1 Random variations and time variations

Both permanent loads G and variable actions 0 are random. It means that they are variable
in population of construction works:
• of similar destination if occupancy loads are concerned,
• in the same climatic zones for wind action, air temperature and insolation, snow or icing.
Characteristic values ,0^ are enhanced by means of load factors Yg and Yo for applications
in partial factor design. The load factors cover uncertainties due to random variations of the

permanent and variable actions.

Moreover the variable actions O are variant in time. Combination factors y/0 reduce
characteristic values of simultaneous actions, except the dominant one, because their maxima
will not probably occur in the same while. The characteristic values may be also reduced or
enhanced if a design period is different from the reference period of the maximal variable
actions.

The combination of design action effects Sj is always more than the design value of action
effect Ys$k thanks to geometric summation of the standard deviations according to rules of the
first-order second-moment probabilistic theory:
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Sd \c yaG k + ^cty y/aOlt ïcG + îc,Q' +ßs(lco + îccr) • (1)
j=1 J i=l j=\ J J i=l 7=1 J J i=l 3

where G, G^j. - mean and characteristic values of permanent loads,
O*, WoiQi.k ' combination values ofvariable actions,

<jj (jj - standard deviations for j=1,2,... m and i=l,2,... n,
ßs - a specified load index.

Some authors and codemakers mistake a reduction ofSj to the level 756/,with application of
combination factors ipa. Perhaps additional reduction factors could be introduced to the linear
combination of design values (1) in order to make the result Sj of partial factor design closer

to the result of probabilistic design yfS^ (2). Such a reduction factor 4, is foreseen for
permanent actions only by the draft international standard of ISO: (DIS2394, 7.5.1). In
addition another | factor could be defined for combination values ofvariable actions or a

global 4 for both kinds of actions.The combination factors i//for variable actions are better not
to be amalgamated with 4 factors. The actual value of the global 4 would depend on the
number m+n of actions Gj and Q, as well as proportions among them. The maximum value of
the 4factor occurs when only one action (either permanent or variable) is applied and 4= 1.

The minimum will occur when the moments of all m+n particular action effects are equal

£=
1+&V*

(3)
1 +ßsvsfm+n

where vs= o/Gj o+Q— const - coefficients ofvariation for j 1, 2 m, i 1, 2 n

Further considerations will be limited to combination factors y/Q applied to ultimate limite
states of structures in persistent and transient situations.The subscript o will be omitted.

1.2 Pre-standardization of combination factors

International committee about bases for design of structures ISO/TC98 created in 1989

a working group on combination of actions SC2AVG5. This was preceded by a state-of-art

report about load combination rules in codified design in ISO member countries {Mathieu &
Murzewski, 1988). The report has shown that the rules are so different and heterogeneous that
their harmonization is not possible.The load combination model ofFerry-Borges & Castanheta

(1971) was recommended by the Committee as the basis for new unified rules. A special issue

of International Journal "Structural Safety" devoted to load combinations was edited and

combination models and applications have been developed by Kanda, Murzewski, Nowak,
Östlund, Shiraki, Wen etc. (1993). During years 1989-94 seven drafts of new combination rules

were discussed and the last one was submitted as Annex F to the final draft of revised
international standard DIS2394: "Generalprinciples on reliabilityfor structures" (1995).
The Annex F after four modifications is a compilation of texts of drafts elaborated by the

Working Group, the former edition of the IS2394 and informative documents to Eurocode 1 :

"Basis ofdesign and actions on structures" (1993). The ISO draft standard will be refered
further on as DIS2394 with numbers of paragraphs of the main text or annexes. Similarly the
the Eurocode 1. Part 1 will be refered as EC1-1.
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Both Ferry-Borges & Castanheta model and the Turkstra rule are based on consideration of
variations ofactions in time. The Ferry-Borges & Castanheta model requires to calculate 2""'
combination cases for each structural element. The Turkstra model takes only n cases into
account. Combination factors y/oîthe Eurocode 1 are associated rather with the Turkstra rule
The combination factors yroî the Eurocode are specific for each variable action and they do

not depend on other actions of the combination. It is not so supposed by the draft international
standard (DIS 2394, F-3.1) The ISO principles are as follows:

• "One action is chosen as the dominating action and is introduced by means of its
characteristic value

• A second action is introduced with a reduced combination value 1//2Q2 > V2-' >

The combination factor y/2 depends on the characteristics ofboth the dominating action 0\
and the nondominating action.

• A third action is introduced with a further reduced combination value y/^Q^,,
The value of yr-$ depends of all three actions This process is repeated if necessary "

Involving 3 or more actions in one combination factor y/ seems to be too sophisticated.
Perhaps 2 actions are sufficient as Ferry-Borges and Castanheta have assumed in their
considerations but a practical combination rule should be still simpler as the Turkstra rule
is.The problem will be discussed here for linear combinations of action effects. Reduction
factors y/a for simultaneous actions will be analyzed for persistent and transient loading
situations at the ultimate limit states of construction works The subscript "o" will be omitted

2. Characteristics of variable actions

2.1 Stochastic process of actions

Two moments Q, erg2 ofprobability distribution should not be identified with "mean" Q(t)
and "variance" og2(t) determined during an observation time t for one selected construction
work The two moments will be equal one to another if the stochastic process of action is

stationary and ergodic. An action process will be stationary ifanticipated usage and
environmental conditions do not change during the working life period (Fig. I). Much more
difficult is to prove that the action process is ergodic. If it is even so, the random action Q(t)
has to be defined more precisely

• Ifmaximal values max Q(t) are measured during a total observation period tQ, the mean

max Q(t) always decreases with increasing t0 and the variance o2maxO'^ 0311 be constant
only for "stable" (in reference to maxima) short-term probability distributions of actions Q*

• If original short-term values Q*-Q(t*) are averaged in unit observation periods t* (e.g. 10

minutes for wind velocities) its variance Gq* decreases with t* according to an asymptotic
formula ~6/t* for r*-> oo where 6 is specific scale of fluctuation.

• If a random action is intermittent, the moments of its probability distribution are different
for two cases when only positive values are measured and when all values are measured
But if two exclusive actions occur periodically one after another, they may be characterized

together as a continuous action
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Fig. 1 Realizations ofa continuous stationary and ergodic stochasticprocess

Characteristic values of maximal actions öfe will be comparable if a constant reference period
trefis selected for any kind ofvariable action and any country A design period tj is not
necessarily equal to the reference period tref. The design period is identified with intended

working life specified for construction works (EC1-1, Table 2.1, DIS2394, Table 2.1)
which are classified as

• temporary for 1-5 years,
• short life for 25 years,
• ordinary for 50 years,
• long life for 100 years

Now the reference period tref is determined by codemakers of particular load standards

It is 50 years for wind action (EC2-4), the same for snow (EC2-3) although 1 year only
is recommended by the Eurocode (EC1-1,4.2 8). The reference period tref=50 years is better
because:

• it is equal to the design period tj for ordinary buildings and it is equal or close to
conventional characteristic values ofnational standard specifications,

• asymptotic distribution functions of extreme values can be taken for 50 or more years with
a much better accuracy than it would follow from the relation

F(Q \td) [F*(Q : t0)Y (4)

where F*(Q \ ta) - the CDF of short term (e g one-year or "point-in-time") random variables

r - tft0 - repetition number of the short-term values during the design period tj.
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There are objections relative to equation (4) It requires that the extreme values 0* be

independent in not always well defined unit observation intervals t0 and it happens that
• the occupancy loads and other actions are autocorrelated for time intervals which may be

longer than the short term periods t0,
• There are many distribution functions F* proposed for particular short-term actions and

statistical tests do not give precise solutions (Sedlacek, 1992)

The situation is different in the case of extreme values which happen in a longo- time period
e g tref= 50 years There are 3 types and only 3 asymptotic distributions of extreme values
the Gumbel (I), the Frechet (II) and the Weibull (III) No empirical tests are necessary to verify
this theorem ofRA.Fisher andL.H. Tippett (from Gumbel, 1954) The central parameter g
of any extreme value distribution has been called characteristic value in mathematical statistics

The characteristic maximum Q will be equal to the codified characteristic value 0^ (EC1-1,
15 3 14) if the prescribed probability ofnot been exceeded is exactly e"1=0,368.
The probability that it will be exceeded once and only once during tref is the same The
upcrossing events are rare and the Poisson law may be applied So the characteristic value O
will be exceeded on average once during the reference period of the Poisson sequence of
events

2.2 The Gumbel probability distribution of extreme actions

Preference should be given to the type I distribution for maximal actions during the reference

period A

F(Q) exp(- exp (5)
u

where Q - characteristic maximum in the sense of mathematical statistics,
u - the Gumbel deviation - a parameter characterizing dispersion

• The characteristic maximum 0 will be equal to the mode Q, i e the most probable value
during the reference period, for the Gumbel probability distribution,

fQ) dF(Q)/dO max -> df(Q)/dQ=0 ->• 0=0=£> -> F(Q) e"1 (6)

• The characteristic maximum Qt of the Gumbel distribution may be predicted for a period t
longer than 50 years so that only the model maximum increases (Fig 2)

Ot O + u ln(f/50), u, u const (7)

• The first and second moments of the Gumbel probability distribution are related to its
parameters in a simple way

0 0 ^ u Q, o2 w2 7t2/6 with C=0,5772 the Euler number (8)

The normal coefficient ofvariation v and the Gumbel one ware related as follows

v l> k/^6)/( 1 +Cu) l>/(0,780 + 0,450 u) (9)
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Fig. 2. Modal values Q ofextreme actionsfor the reference and designperiods

If f<50 years, equation (8) is not necessarily exact Short-term probability functions F*(Q)can
be quite different than their asymptotic distribution A concept which enables to simplify the
load model is to define a basic time interval 0 and relative repetition number r=t^/9 so
that the characteristic values be equal when estimated in two ways

Q-uhxr Q* —> r exp——— (10)
u

where Q* F*"1 (e_1) - inverse function to the CDF of short-term action from equation (4).

Thanks to the concept ofbasic time interval 6 no extensive statistical investigations are

necessary for probability functions of actions during 5-years, 1-year etc Only the characteristic
value Q* is needed

3. Combination rules for variable actions

3.1 Square-wave model of actions

It is assumed that random values of the same variable action Q, are independent in any two
basic time intervals 9„ 6j That is the essential feature of the square-wave model of random
action process The equations (4), (5), (6), (7), (8), (9) will be actual if the Gumbel probability
distribution is accepted for the variable actions and their combinations Explanations and

applications will be easier with this assumption however Ferry-Borges & Castanheta and

Turkstra have considered their combination rules in more general formats

Special numbering order ofvariable actions is important Actions 0\, O^, Qj Q„ are ordered
in sequence of their repetition numbers ri<t"2<'"3< rn- according to the Ferry-Borges &
Castanheta rule There are other numbering rules, e g an action which gives the highest effect
has number 1 and so on according to permutation rule recommended by some national
standards, e g the Polish standard PN-82/B-02000 The numbering order is not important for
applications of the Turkstra rule
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One variable action Qc, c= 1, 2, 3, is taken as dominant for each combination case Its
characteristic value will not be reduced (i e yc=\) unless the design period td is different from
the reference period trej But nondominant actions Q, are reduced with combination factors

y/,<\, i * c, and they do not depend on the design period td They depend on either the
reference period trefor a basic interval of another variable action Q} not necessarily the

preceding one The international draft standard does not give exact advice for this point

There is no difference between the Ferry-Borges & Castanheta, the Turkstra and the new
combination rule in the case of two variable actions only The differences can be shown when
at least three simultaneous variable actions Qy, 02,03 occur

C=1^C=3

à xxxxx c 4
i

0<XX$S c=2 777T77' ' ''////*'/ '// 0/y> ///'/////////////S'xxxxx ; •*. *• • .'v t
01 J 2 'ref

c =1

Fig. 3. Three variable actions with different basic time intervals

3.2 The Ferry-Borges & Castanheta combination rule

The combnation rule is such that after the dominant action has been chosen, another variable
action is selected, not necessarily the next as a sub-dominant one It is selected from actions
with shorter basic intervals Then again a sub-sub-dominant action may be selected etc if there
are more variable actions in the combination An extension (Murzewski, 1983) of the original
Feriy-Borges & Castanheta combination model consists in numbering not only actions

/=1,2, 3, n but also their combinations c=l,2, 3, 2"~l in such a way that periodic
order of the combinations is revealed A current number m= 1, 2, 3, helps to indicate the
column where dominant action can be found from the matrix ofcombination factors [%c\
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y/lc 1+ u, ln( t(/treß for c 2' (m-1/2)
y/,c 1 - Uj In(tre/0,) for c < 2' (m-1/2)
y/tc 1 - u, In(0/0, for c > 2' (m-1/2) and y>z
ViC 1 - m, ln(rrey^) for c < 2' (m-1/2) and y</

01)

where u, u,/Qj - the Gumbel coefficient of variation.

There are 2"~l combinations to check for each structural element in the case of the Ferry-
Borges & Castanheta rule. It is perhaps too many for practical design. However still more
combinations (if ri>2) are required to be checked for each structural element, namely n\, in the

case of the permutation rule. But only n combinations are necessary with the Turkstra rule.

3.3 The Turkstra combination rule

The concept of Turkstra is that all nondominant actions are taken in their instantaneous values.

If the square-wave model {Fig.3) and the Gumbel probability distribution are assumed, the
values VicQi, i* c, are determined for their basic time intervals 9t.
The combination factors y/ic are as follows for dominant and nondominant actions:

Vic 1+ °i Htd^reß for c '

The Turkstra combination factors Vic f°r some nondominant actions are lower
than corresponding factors according to the Ferry-Borges & Castanheta rule
Thus the Turkstra rule will underestimate the action effects.

3-4 New combination rule

A new rule for combination of actions provides also only n different combinations of actions
as the Turkstra rule does but it gives safe upper bound estimates of action effects. The concept
of the new combination rule is such that maxima of nondominant actions, VicQi f°r » * c are

determined during the basic interval 8C of dominant action if this time is longer than the basic

interval Oj of the action Oh

V,c 1 - v, In(tre/d,) for c * i (12)

Vic 1+ vi Htd 'reß for c=' »

Vu- 1 - o. \n(tre/d.) for c>j
y/ic 1 - vt In{0/6t for c<i.

(13)

The new combination factors for some nondominant actions are higher than corresponding
factors according to the Ferry-Borges and Castanheta rule. That is why it gives always a safe

upper bound of the load effect
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3.5 Numerical example

Combination factors y/lc are calculated and shown in Tables 1, 2, 3 for three variable actions

Ql - occupancy load, Q2 - snow in winter or temperature increase in summer, Q3 -wind
Snow and elevated temperature are exclusive events with durations ofno more than half a year
that is why they are taken as one variable action with two variants It is a new concept how to
treat intermittent actions with long periods ofabsence

The Gumbel coefficients ofvariation of the actions are equal U]=t>2=i>3=0,160,
they correspond to the normal coefficients ofvariation (9) vj=v2=v3=0,160 rc/Vö"=0,188,
The coefficients are equal because there are equal load factors 1,50 (EC1-I, Table 9 2)

If also the load index is accepted (EC1-1, Table A 2 and A3 2) ß$ 0,7-3,8 2,66
the value v 0,188 agrees with the Eurocode load factor ys 1 + 2,66 • 0,188 1,50

The design period is equal to the reference period td trey- 50 years
[ 6\= 5 years for occupancy load,

and the basic intervals of the variable actions are : ^ ß2= 1 year for snow/temperature,
I #3= 1 week for wind

The new y/, values are more likely than yq=0,7 and y/2=y/2=Ofe which would follow from the
Turkstra and the Eurocode combination factors (EC1-1, Table 9 3) 6^=2,32 and 02=^=0,83

c

I

1 2 3 4

1 1 0,775 1 0,775
2 0,843 1 0,618 0,618
3 0,614 0,614 0,544 1

Table I Combination factor matrix according to Ferry- Borges & Castanheta

c 1 2 3

1 1 0,775 0,775
2 0,618 1 0,618
3 0,235 0,235 1

Table 2. Combination factor matrix according to Turkstra

c

i
1 2 3

1 1 0,775 0,775
2 0,843 1 0,618
3 0,544 0,614 1

Table 3. Combination factor matrix according to the new rule
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4. Conclusions

4.1 One reference period trej- for all variable actions and a well defined characteric value <2&

are necessary to make reasonable comparison, unification or differentiation of numerical
values. The value trej= 50 years should be mentioned as a standard in Eurocode 1. It is better
than trej-= 1 year for reasons explained in sub-chapter 2.1.

4.2 The codified characteristic value Qk should be equal to the characteristic extreme value Q
in the reference period trej-as it is defined in mathematical statistics: a ffactile with intended

probability of not been exceeded: e"1 0,3678... instead of the recommended value 0,98
(EC1-1,4.2.8). So defined characteristic value Qk Q may be easily changed if the design
period td differs from the reference period trej-

VdQk U + v ln(V're/)] Q (14)

vs/
Equations (8) and (9) relate the modal value Qk Q and the Gumbel coefficient ofvariation

v u/Q with the normal parameters: Q and v

4.3 A value YoVcßk may be introduced to ultimate limit states design with the load factor y0.

Yq 1+ (C +ßsm/\'6) u with C 0,5772... (15)

The product YQ¥d gives a little different value than the exact design value Qd according to
probabilistic theory

Qd Qk {1 + [C + ßsriV6 + \n(td/treß u]} (16)

4.4 The new combination rule (13) gives safe estimates for combination values ofvariable
actions. They are upper bounds for the Feny-Borges & Castanheta combination values. The

new combination rule requires n trials to evaluate the maximum action effect for each

structural element, so many as the Turkstra rule does but less than 2""1 according to the Ferry-
Borges & Castanheta. The exemplary combination factors y/IC (Table 3) have been determined

for likely basic intervals 6.

4.5 A joint effect of independent permanent and variable actions is reduced thanks to
geometrical summation of standard variations. No general rule can be found how to take

advantage of that in partial factor design except perhaps a simple rule given for the case of
a permanent load combined with one variable load (Murzewski, 1993). No reduction factor is

used in the design (like £ from DIS2394, 7.5.1) i.e. the upper bound value £= 1 is used.

4.6 Uncoupled reliability-based format may solve the above problem and simplify the design.

Separate load and resistance indices ßg ,ßR can be calibrated in two ways:

• conventional way (EC1-1, A-3) such that constant split indices ß$ ß^ are specified for
each safety class of construction works with the same propoportion ßgl ßR const.

The joint reliability index ß may be variable for each design case,
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ß asßs+aRßR (17)

The sensitivity factors a$ aR depend on proportions of standard deviations <J</oR or
coefficients ofvariation vs/vR ;

• optimal way such that the/?s and ßR values depend on the safety class and the
coefficients ofvariation v$ and vR of the action effect or resistance, respectively
The separate indices ß$ and ßR may be derived from minimum failure probability taken

as the objective function of the optimization procedure (Murzewski, 1989,1994,1995b )<

The commonly known approach to probabilistic design (Rshanitsin, 1978; Madsen, Krenk &
Lind, 1986, Ihoft-Christensen &Murotsu, 1986 is based on maximum failure frequency as

the objective function The split indices ß$ ßR and design values Sd Rd are coupled in result

of such calibration method, i e ßs depends on vs and vR and vice-versa - ßR depends on both

vs and vR
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