Virtual prototyping in the construction industry

Autor(en): Feijo, Bruno / Scheer, Sérgio

Objekttyp: Article

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band (Jahr): 83 (1999)

PDF erstellt am: **20.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-62946

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Virtual Prototyping in the Construction Industry

Bruno FELJO

Professor PUC-Rio & Uerj Rio, RJ, Brasil

Bruno Feijó, born 1951, received his Aeronautics engineering degree from ITA (1975) and PhD degree from Imperial College (1988). He works in the areas of CAD, computer graphics and Information Technology.

Sérgio SCHEER

Professor CESEC, UFPR Curitiba, PR, Brasil

Sérgio Scheer, born 1957, received his civil engineering degree from UFPR (1980) and PhD degree from PUC-Rio (1993). He works in the area of CAD systems for civil engineering and mechanics.

Summary

The aim of virtual prototyping is to build a full virtual artifact in such a way that design and manufacturing problems are anticipated and discussed within a cooperative work environment. This paper presents virtual prototyping as the most adequate technology for the construction industry in the next decade.

Keywords: CAD, virtual prototyping, integrated design

1. Introduction

Virtual prototypes (i.e. complete 3D models) have been using in the mechanical industry for many years. Perhaps the most recent and impressive example is the Boeing 777 almost entirely represented by a 3D CAD model. Nevertheless, a virtual prototype is much more than a complete 3D model of the artifact. Virtual prototyping requires 3D models that are able of integrating several sectors of a company and demands high-end technology for virtual reality environments, virtual humans and distributed environments. Moreover, a virtual prototype works as a spatial database that can be queried by anyone in the enterprise through the computer network.

2. Virtual Prototyping

The objects of the virtual artifact have several types of attributes, such as geometric attributes, design intent attributes, manufacturing attributes, cost attributes, pointers to part numbers and documentation references. It is clear from Fig. 1 that the virtual prototype is distributed over several networks with different platforms, operating systems and design teams.

Virtual prototyping should consider geometry buses and object-distributed computing. A Geometry Bus allows designers to use different CAD programs in the network. ACIS [1] and CORBA have been proposed as a geometry bus and distributed object architecture for integrated CAD systems respectively [2].

Essentially, the Product Structure shown in Fig.1 is a collection of pointers to 3D models and 2D drawings. The data exchange format STEP can be used to present components as a text description or a 3D object. STEP files can be browsed in the intranet.

Virtual prototyping requires VR technology. Virtual Reality systems provide <u>immersive</u> <u>environments</u> where the user experiences a sense of immersion. This is the case of using a head-mounted display (HMD) or a BOOM (Binocular Omni-Orientation Monitor). Fig. 1 illustrates an

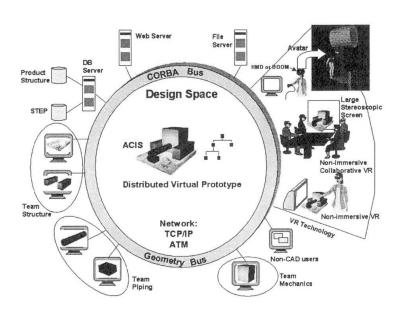


Fig. 1 Example of a distributed virtual prototype

immersive environment where a designer incorporates an avatar (*i.e.* a virtual copy of the user) using the system Jack for virtual humans. Designers can use virtual humans in a number of ways, such as: accident simulation, workplace assessment, human strength analysis, and check of maintenance procedures in areas of difficult access.

A more rigorous definition of virtual environments and a practical guide for engineers who want to explore the possibilities of the VR technology can be found elsewhere [3].

3. Conclusions

The search for quality in structural engineering in the

coming decade should consider its manifold activities, which are integrated amongst themselves, such as design, planning, construction, operation and maintenance. This integration should be considered during the design phase and the practice of virtual prototyping seems to be the most adequate approach to this question. Virtual prototypes also

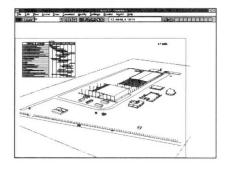


Fig. 2 Planning – 4th month

adequate approach to this question. Virtual prototypes also allow visibility to the public in real time through the internet – an important concern when environmental, social, human and aesthetic factors are critical.

Several previous experiences by the authors support the recommendations presented in this paper. For instance, the authors had a stimulating experience with a large Brazilian construction company (CBPO), where they developed a computer system integrating 3D models with planning networks [4]. This system revealed more adequate construction methods for a factory of metallic cans and lead to a schedule two months shorter than the one obtained by the conventional planning methods, as shown in Fig. 2.

4. References

- [1] Spatial Technology, ACIS 3D Toolkit Version 2.1, Spatial Technology Inc., USA, 1996.
- [2] Regli, W. C., "Intranet-enabled Computer-Aided Design", *IEEE Internet Computing*, Vol. 1, No. 1, Jan-Feb 1997, pp. 39-50. [Also in http://www.computer.org/ internet/ backissu.htm].
- [3] Feijo, B., "Virtual Environments for CAD Systems", In C. Tasso, E.R. Arantes e Oliveira (eds.), *Development of Knowledge-based Systems for Engineering*, Springer-Verlag, Udine, Italy, 1998, pp. 183-200.
- [4] Feijo, B., P.C.R. Gomes, J. Bento and S. Scheer, "CAD for process innovation in the construction industry", *Structural Engineering and Mechanics*, Techno-Press, Taejon, Korea, Vol. 4, No. 6, 1996, pp. 717-729.