Festigkeits-Versuche an Holzgestängen: Bericht an die Obertelegraphendirektion [Fortsetzung]

Autor(en): Häusler, W.

Objekttyp: Article

Zeitschrift: Technische Mitteilungen / Schweizerische Telegraphen- und

Telephonverwaltung = Bulletin technique / Administration des télégraphes et des téléphones suisses = Bollettino tecnico /

Amministrazione dei telegrafi e dei telefoni svizzeri

Band (Jahr): 1 (1923)

Heft 4

PDF erstellt am: **31.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-873078

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Tednische Mitteilungen

der schweizerischen Telegraphen- und Telephon-Verwaltung

BulletinTechnique

Bollettino Tecnico

dell'Amministrazione dei Telegrafi e dei Telefoni svizzeri

de l'Administration des Télégraphes et des Téléphones suisses

Herausgegeben im Auftrage der Obertelegraphendirektion Publié par ordre de la Direction Générale des Télégraphes Pubblicato per ordine della Direzione Generale dei Telegrafi

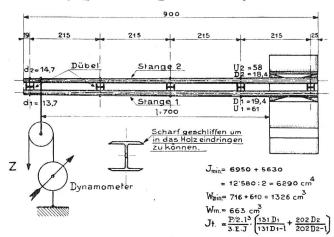
Festigkeits-Versuche an Holzgestängen.

(Bericht an die Obertelegraphendirektion.)

Von W. Häusler, Bern.

Fortsetzung.

Versuch Nr. 4.

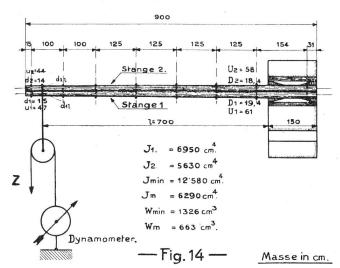

Dieser Versuch wurde an einer Kuppelstange mit 5 Eisendübeln aus 8 cm langen T-Stücken (N. P. Nr. 10) ausgeführt (Fig. 13).

Aus der Tabelle (s. unten) ist ersichtlich, dass mit Eisendübeln aus T-Stücken keine Verstärkung erzielt wird, weil dieselben zu schwach sind, um den auftretenden Schubkräften in Längsrichtung genügend Widerstand zu leisten. Im übrigen bietet dieser Versuch das gleiche Bild wie derjenige in Nr. 3. Wenn x imaginär wird, so ist das berechnete J_t unter den möglichen Minimalwert gesunken, d. h. die Durchbiegung ist zu gross, weil die Einspannung nachgegeben hat (Nr. 2), oder weil sich der abnehmende Elastizitätsmodul geltend macht. (Nr. 12 und 13.)

Versuch Nr. 5.

Dieser gelangte an einer normalen Kuppelstange mit 8 Schrauben zu $\frac{3}{4}$ " Durchmesser zur Ausführung (Fig. 14). Das Trägheitsmoment bestimmt sich aus

$$m J_t = rac{P/2 \; l^3}{3 \; E \, f} igg[rac{D_1}{d_{1 \; I}} + rac{D_2}{d_{2 \; I}}igg] \; cm^4 = rac{P/2 \; l^3}{3 \; E \; f} imes 2,56 \; cm^4$$


Masse in cm.

- Fig. 13 -

8.	1). 200 1108	HerealHollicite				3
No.	Zug am Dynamom.	Stangen- Zug	Ausbiegung	Verschiebung am Kopfende	Verschiebung am Fussende	Bemerkungen
	kg	kg	em ·	mm	mm	
1	150	100	10	0	0	Dynamometer zeigt entlastet 100 kg an.
2	200	200	24	0	5	
3	250	300	35	0	10	
4	300	400	42	0	12	* ,
5	350	500	51	0	15	
6	400	600	60	0	18	Eisendübel werden deformiert.
7	450	700	67	0	18	
8	500	800	84	6	22	
9	0	0	10	0	5	(1)
10	500	800	88	0	22	
11	550	900	99	0	24	
12	600	1000	114	0	26	**************************************
13	650	1100	129	14	28	
14	690	1180			33	Bruch der Stange No.1 an Einspannstelle
15	0	0	40	0	12	

Berechnet

No.	Korri- gierter Kraft- hebelarm cm	Träg- heits- moment cm ⁴	Vergrösse- rungsfaktor d. Trägheits- momentes einer einzeln. Stange C	Abstand der neutralen Achse cm	Abstand der äussersten Faser- schicht em	Wider- stands- moment Wt cm³	Vergrösse- rungsfaktor des Wider- stands- momentes C ₁	Biegungs- moment cm/kg	Span- nung kg/cm²	Bemerkungen
1	700	14850	2,23	2,02	11,47	1295	1,95	70000	54	
2	700	12400	1,98	imag.			-	140000	-	
3	699	12680	2,06	0,44	9,9	1280	1,93	210000	164	
4	699	14100	2,24	1,67	11,12	1270	1,92	280000	220	PGrenze
5	698	14400	2,29	1,82	11,27	1280	1,93	349000	273	
6	697	14600	2,32	1,92	11,37	1285	1,93	418000	325	
7	697	15300	2,44	2,21	11,66	1315	1,98	488000	371	
. 8.	695	13800	2,2	1,52	10,97	126 0	1,90	556000	442	
9	700	_	_							Diese Spannungen
10	695	13200	2,1	1,1	10,55	1250	1,87	556000	445	korrigieren sich nach dem am
11	693	13100	2,08	1,0	10,45	1250	1,87	624000	500	nach dem am Schlusse berech-
12	691	12500	1,99	imag.		-		691000		neten mittleren
13	688	12000	1,99	imag.			-	756000	-	Verstärkungsfak-
14	680		_		-		_	802400	_	tor.

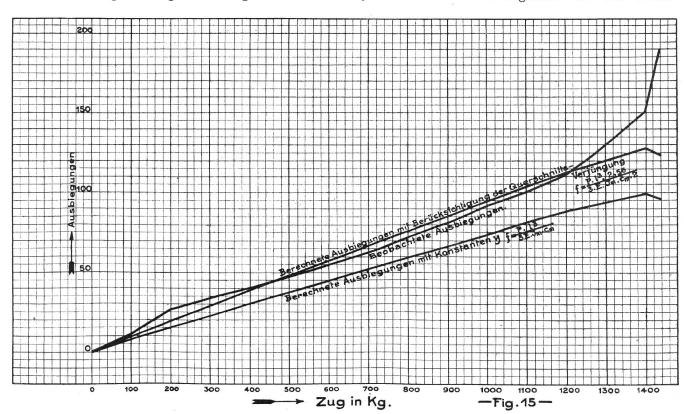
Auch bei diesem Versuch zeigt sich, dass die Kuppelschrauben die gegenseitige Verschiebung der Stangen nicht verhindern können. Trägheits- und Widerstandsmoment sinken daher fast auf den minimalen Wert. Die 8 Schraubenbolzen vermögen keine wesentliche Verstärkung zu erzeugen. Der Verstärkungsfaktor ergibt sich hier durch Vergleich Verstärkungslaktor eigibt sich $\frac{1}{590}$ der Bruchbelastungen zu $C_2 = \frac{1420}{590} = 2,4.$

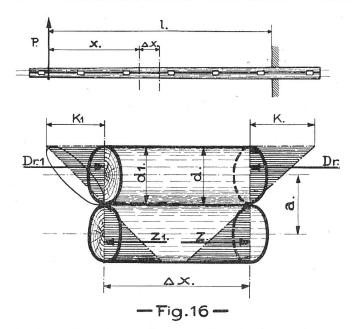
wird grösser als der in obiger Tabelle berechnete, weil die Kuppelstangen etwas stärker waren, als die bei Versuch 2 verwendete Einzelstange. Aus der Berechnung geht hervor, dass die Beobachtungen 2 und 3 sehr ungenau sind, d. h. die gemessene Durchbiegung ist zu gross infolge Nachgebens (Zusammendrückens) der Bretterzwischenlagen in der Einspannung. Das Verhalten der Durchbiegungen

No.	Zug am Dynamom.	Stangen- Zug	Ausbiegung	Verschiebung am Kopfende	Verschiebung am Fussende	Bemerkungen
	kg	kg	em	mm	mm	·
1	150	100	10	0	0	Entlastet zeigt Dynamometer 100
2	200	200	26	2,5	4	kg an.
3	250	300	33,5	2,8	6	3
4	300	400	39,5	3	8	
. 5	350	500	47	3,5	9	
6	400	600	55	5	10	
7	450	700	62	5,5	12	
8	500	800	72	6	15	
9	550	900	80,5	6,5	15	
10	0	0	13	. 0	2	
11	550	900	82,5	8	16	
12	600	1000	91,5	8,5	18	
13	650	1100	100	10	18	
14	700	1200	111	12	20	
15	750	1300	129	14	22	
16	800	1400	150	15	26	Fasern reissen.
17	810	1420	190	16	32	Bruch.

Berechnet

No.	Korrigierter Kraft- hebelarm	Träg- heits moment cm ⁴	Vergrösse- rungsfaktor d. Trägheits- momentes einer einzeln. Stange C	Abstand der neutralen Achse cm	Abstand der äussersten Faser- schicht cm	Wider- stands- moment Wt cm³	Vergrösserungsfaktor des Wider- stands- momentes C ₁	Biegungs- moment cm/kg	Span- nung kg/cm²	Bemerkungen
1	700	14620	2,33	1,92	11,37	1290	1,92	70000	54	
2	700	11250	1,80	imag.		_	_	140000		(a)
3	699	13040	2,08	0,95	10,40	1255	1,9	210000	167	
4	699	14750	2,35	1,97	11,42	1290	1,95	279900	216	PGrenze
5	698	15410	2,46	2,26	11,21	1315	1,98	349000	265	9
6	698	15800	2,51	2,41	11,86	1330	2,04	418000	314	
7	697	16300	2,59	2,59	12,04	1355	2,05	488000	360	
8	696	16000	2,55	2,49	11,94	1340	2,02	556000	415	
9	695	16000	2,55	2,49	11,94	1340	2,02	626000	468	
10	700		1				-			
11	695	15600	2,48	2,32	11,77	1330	2,01	626000	470	Diese Spannungen
12	694	15600	2,48	2,32	11,77	1330	2,01	694000	520	korrigieren sich nach dem am
13	693	15600	2,48	2,32	11,77	1330	2,01	762000	570	Schlusse berech-
14	691	15200	2,41	2,16	11,61	1310	1,98	830000	635	neten mittleren
15	688	14000	2,23	1,61	11,06	1265	1,91	894000	705	Verstärkungsfak-
16	684	12800	2,04	0,22	9,67	1320	2,00	958000	720	tor.
17	674	9750	1,55	imag.				958000		*


ist aus Fig. 15 ersichtlich. Das Misstrauen der Verwaltung gegen die Annahme eines allzugrossen Verstärkungsfaktors für Kuppelstangen ist also, wie obige Resultate zeigen, gerechtfertigt.


Aus den Versuchen 3—5 geht klar hervor, dass die

Aus den Versuchen 3—5 geht klar hervor, dass die Kuppelungsanordnung den auftretenden Schubkräften nicht gewachsen ist. Die gegenseitige Stangenverschiebung beträgt am Fussende 30—50 mm. Um diesen Mangel beseitigen zu können, ist es notwendig, die in der Längsrichtung der Stangen wirkenden

Schubkräfte zu bestimmen. Zu diesem Zwecke schneiden wir aus den mit P belasteten, mit Dübeln gekuppelten Stangen ein Stück von der Länge \triangle x heraus.

An diesem Balkenstück von der Länge \(\times \) x werden oberhalb der neutralen Achse Druckspannungen von verschiedener Grösse und unterhalb derselben Zugspannungen auftreten. Denkt man sich die sämtlichen Druckspannungen in beiden Querschnitten zusammengefasst zu den Druck-

kräften D_r , bezw. D_{r1} und beachtet man, dass $D_r > D_{r1}$ ist, da die Biegungsmomente mit zunehmendem x ebenfalls wachsen, so muss $D_r - D_{r1}$ diejenige Kraft sein, die bestrebt ist, die eine Stange auf der andern in der neutralen Faser zu verschieben. In gleicher Weise lassen sich unterhalb der neutralen Achse die Zugspannungen zusammenfassen zu einer Gesamtzugkraft $Z-Z_1$ die gleich D_r-D_{r1} ist, aber entgegengesetzte Richtung hat. Wenn die Spannungen aufgetragen werden, so sind D_r und D_{r1} gleich dem Inhalt der Spannungskeile, die einen schief abgeschnittenen geraden Kreiszylinder darstellen. Der Inhalt des letztern ist

$$egin{aligned} V &= rac{\pi}{4} \, rac{d^2}{4} \left(rac{h_1 + h_2}{2}
ight) \, ext{und da} \, \, h_1 = 0 \, ; \ V &= rac{\pi}{4} imes rac{h_2}{2}, \, \, ext{oder} \ D_r &= rac{\pi}{4} imes rac{k^2}{2} imes rac{k}{2} \, ext{und } D_{r1} = rac{\pi}{4} rac{d^2_1}{2} imes rac{k_1}{2}, \end{aligned}$$

folglich

$$\mathrm{D_{r}}-\mathrm{D_{r1}}=rac{\pi\;\mathrm{d}^{2}}{4} imesrac{\mathrm{k}}{2}-rac{\pi\;\mathrm{d}^{2}_{1}}{4} imesrac{\mathrm{k}_{1}}{2}$$

Werden die entsprechenden Momente mit M und M_1 bezeichnet, so ist für gekuppelte Stangenquerschnitte

$$k = rac{M}{W} = rac{M}{5 \pi d^3} ext{ und } k_1 = rac{M_1}{5 \pi d_1^3},$$

also ist auch.

$$D_{r}-D_{r1}=\frac{4}{5}\left(\!\frac{M}{d}-\!\frac{M_{1}}{d_{1}}\!\right)\,kg$$

Für die ganze Länge wird $M = P \cdot l$ und $M_1 = P \cdot 0$ = 0, folglich

$$\mathrm{D_{r}}-\mathrm{D_{r1}}=rac{4}{5} imesrac{\mathrm{P}\,.\,l}{\mathrm{d}}\;\mathrm{kg}.$$

Das gleiche Ergebnis erhält man, wenn man das Biegungsmoment Pl durch den Abstand a der Wir-

kungslinien von D_r und Z dividiert; man muss nur beachten, dass D_r und Z nicht mit den Schwerachsen der Stangen zusammenfallen. Diese Kräfte wirken vielmehr in den Schwerpunkten der Spannungskeile. Es wird nun

$$a = d + 2 \eta, \tag{2}$$

wobei η den Schwerpunktabstand für einen schief abgeschnittenen geraden Kreiszylinder bedeutet.

$$\eta = \frac{r^2}{4} \times \frac{\operatorname{tg} \alpha}{h} \text{ und } \operatorname{tg} \alpha = \frac{h}{r}, \text{ also } \eta = \frac{r}{4}$$

$$\operatorname{und} 2 \eta = \frac{d}{4}.$$

Setzt man diesen Wert in (2) ein, so erhält man

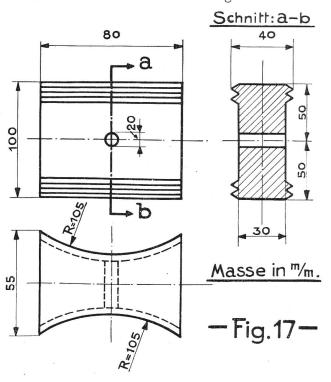
$$a = d + \frac{d}{4} = \frac{5}{4} d,$$

somit beträgt die Schubkraft in Längsrichtung

$$S = D_r - D_{r1} = \frac{P \cdot l}{\frac{5}{4} d} = \frac{4}{5} \frac{P \cdot l}{d} \text{ kg.}$$

Bestimmen wir die Schubkraft für Beobachtung Nr. 16, so erhalten wir

$$S = \frac{4}{5} \frac{1400 \times 700}{18,9} = 41\,500 \text{ kg}$$


und die Schubbeanspruchung der 3/4" Bolzen

$$t = \frac{4 \times 41500}{3 \times 9 \times \frac{\pi d^2}{4}} = 2170 \text{ kg/cm}^2$$

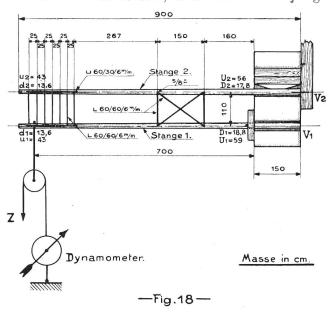
Die Schubspannung soll im allgemeinen nur $^{4}/_{5}$ der zulässigen Inanspruchnahme gegen Zug oder Druck betragen. Die letztere beträgt daher

$$m k = rac{t}{0.8} = 2720 \; kg/cm^2$$

und überschreitet somit die Streckgrenze.

Der Lochleibungsdruck der Schraubenlöcher beträgt

$$\label{eq:L} L = \frac{S \times 125}{700 \times 1,9 \times 18,9} = 208 \ kg/em^2,$$


was zu gross ist und Grund zu Stangenverschiebungen geben könnte.

Da die Vergrösserung des Bolzendurchmessers bestimmte Grenzen hat, sollen bei weitern Versuchen die Faserschichten der neutralen Achse durch Zwischenlegen von Guss-Stücken nach Fig. 17 zur Mitarbeit herangezogen oder die Schraubendistanzen auf ca. 50 cm reduziert werden. Mit Rücksicht auf die grossen Vorräte an Traversen und Mittelstücken für Kuppelstangen kommt für die Telegraphenverwaltung nur die Vermehrung der Schrauben in Betracht.

Vergleichen wir nun einmal die Preise von Kuppelstangen mit denjenigen von stärkern Einfachstangen.

Wie aus nachstehender Berechnungs-Tabelle ersichtlich ist, sind Kuppelstangen gegenüber dickern einfachen Stangen mit gleicher Festigkeit unwirt-

schaftlich. Wenn für die Kuppelstangen das minimale Widerstandsmoment, d. h. zwei mal dasjenige

Stangenlänge in Metern	8	9	10	11	12	13	8
Volumen der gewöhnlichen einfachen Stangen in m ³	0,1414	0,1809	0,2138	0,264	0,305	0,368	0,1414
Preis für gewöhnliche Stangen in Fr	26	33	40	50	60	70	26
Kubikmeterpreis in Fr	184	183	187	189	196	190	184
Mittlerer Kubikmeterpreis in Fr		185		188		<u> </u>	185
Widerstandsmoment einer Kuppelstange an der Einspannstelle	$W_{\min} = 2 W_1$ 884	Wmin = 2 W ₁ 1054	$\frac{\text{Wmin} = 2 \text{ W}_1}{1245}$				$= \frac{W_{\text{max}}}{4 W_{\text{1}} \text{cm}^3}$ $= \frac{1768}{1768}$
Der dem W entsprechende Durchmesser einer dickern einfachen Stange in cm an Einspannstelle	20,8	22,1	23,3			_	26,2
Durchmesser der dickern einfachen Stange am Fussende in cm	22	23	24				27
Durchmesser der dickern einfachen Stange am Kopfende in cm	16	17	18			_	22
Volumen der dickern einfachen Stange in \mathbf{m}^3	0,2268	0,2827	0,3463	No. on A. of		_	0,3768
Preis der dickern einfachen Stange in Fr	42	52	64			-	70
Preis der Befestigung von 8 Traversen auf dickern einfachen Stangen in Fr.	18,4	18,4	18,4		-		18,4
Traversenpreis in Fr	48	48	48	Name of W			48
Totaler Preis für dickere Stangen in Fr	108,4	118,4	130,4				136,4
Preis der beiden zu kuppelnden Stangen in Fr	52	66	80				52
Preis der Befestigung von 8 Traversen auf Kuppelstangen	29,6	29,6	29,6				29,6
Traversenpreis in Fr	48	48	48			_	48
Preis der 9 Kuppelschrauben samt Unterlagplatten .	18	18	18			-	36
Arbeitszeit zur Ausführung der Kuppelung	3 Std.	3 Std.	3 Std.				6 Std.
Arbeitslohn zur Ausführung der Kuppelung	7,20	7,20	7,20	No. constitute.			9,60
Totaler Preis für Kuppelstangen	154,8	168,8	182,8			*********	182,4
Mehrpreis in % gegenüber einer dickern einfachen Stange	42,6%	42,5%	40,4%			_	33,5%

einer Einzelstange angenommen wird, was den tatsächlichen, durch die Versuche nachgewiesenen Verhältnissen entspricht, so ergibt sich für sie eine Preiserhöhung von rund 40 % gegenüber einer dickern einfachen Stange mit gleicher Festigkeit. Selbst wenn es durch Vermehrung der Kuppelschrauben gelingen sollte, den Verstärkungsfaktor im Maximum auf 4 zu erhöhen, ergäbe sich immer noch ein Mehrpreis von 33 %.

Versuch Nr. 6.

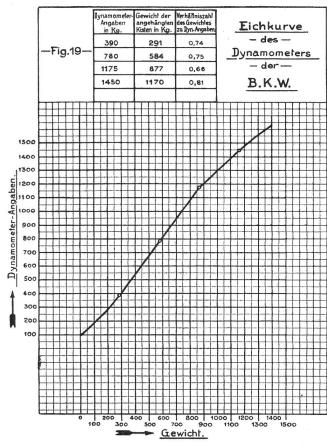
Doppelstange mit niedrig eingebautem Kreuz und aufmontiertem Isolatorengerüst (Fig. 18).

Die am Ende der Versuche vorgenommene Eichung des Dynamometers hat die in Fig. 19 dargestellte Kurve ergeben. Die Angaben des Dyna-

mometers werden im folgenden nach dieser Eichkurve korrigiert, weil dasselbe anfing, verschiedene Ruhestellungen einzunehmen.

Die elastische Formänderung der Doppelstange ist aus Fig. 20 ersichtlich.

Die Traversenbefestigung wurde nach Fig. 21 deformiert


Da die Lappenvernietung zu schwach ist, trägt sie auch nicht viel zur Tragwerkverstärkung bei; sie dürfte ganz weggelassen werden, da sie die Herstellungskosten der Traversen erheblich verteuert.

Versuch Nr. 7.

Doppelstange mit Kreuz ohne horizontale Verbindungstraversen. Einbauhöhe \sim $^2/_3$ (700—150) $^{\$}$ cm (Fig. 22).

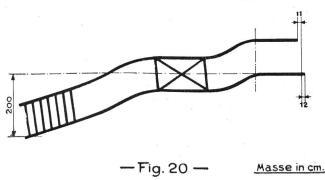
Die elastischen Formänderungen sind gleich denjenigen im vorhergehenden Versuch.

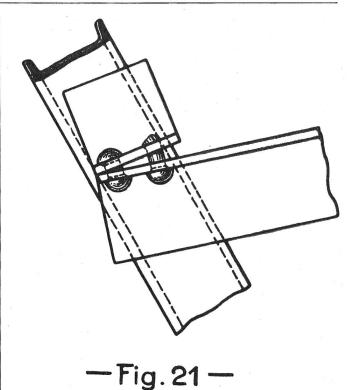
No.	Zug am Dynamom.	$egin{array}{c} \mathbf{Stangen} - \ \mathbf{Zug} \end{array}$	Ausbiegung in	Verschiebung der Stg. Nr. 1	Verschiebung d.Stange Nr.2	Bemerkungen
1101	-					Domorkungon
	kg	kg	em	V ₁ mm	V ₂ mm	
1	150	120	1,5	0	0	
2	200	220	8,5	0	3	
3	250	340	14,5	1	5	
4	300	430	19,5	2	6	
5	350	530	29	2	18	ř
6	400	600	39,5	2	32	Stange No. 2 verankert.
7	450	670	47	2	38	
8	500	740	52	2	40	
9	0	0	24	2	35	Entlastet.
10	500	740	54	2	45	
- 11	550	820	61	2	50	
12	560	840	71	2		
13	0	0	31	2		Entlastet.
14	560	840	71,5	2	70	
15	600	890	75,5	2	75	~
16	650	960	79	2	80	
17	700	1040	87	2	90	
18	750	1110	98	2	105	Festklemmungsbalken ausgewiche
19	0	0	23	2	90	Entlastet. Zugstange neu veranke
20	150	120	5	0	50	$V_2 = 50 \text{ mm } V_1 = 0 \text{ Ausb.} =$
21	200	220	13,5	0	50	, , , , , , , , , , , , , , , , , , ,
22	250	340	23,5	0	50	w *
23	300	430	30,5	0	50	
24	350	530	40,5	0	50	8
25	400	600	45	20	50	10 108
26	450	670	58	20	55	
27	500	740	62	20	55	
28	550	820	65,5	20	57	
29	600	890	70,5	20	62	-
30	650	960	75	22	70	
31	700	1040	81	22	75	
32	775	1150	87	25	80	9
33	800	1180	96	25	90	
34	850	1260	109	40	97	, ·
35	850	1260	118	45	97	
36	900	1340	127	45	97	
37	950	1400	139	60	97	e
38	1000	1480	170	100	100	9
39	1050	1560	179	110	105	
40	1100	1630	200	120	110	Bruch der Druckstange 50 cm über d Einspannstelle. Bruch der Zugstan an der Einspannstelle.

Die Kreuz-Befestigungsschrauben sind zu schwach und sollten durch stärkere ersetzt werden (¾ "). Die Schrauben-Löcher in den Stangen sind in der Richtung der Kreuzdiagonalen deformiert. (Siehe Fig. 23).

Versuch Nr. 8.

Doppelstange mit normaler Kreuz-Einbauhöhe gleich wie in Versuch Nr. 7 (Fig. 24).

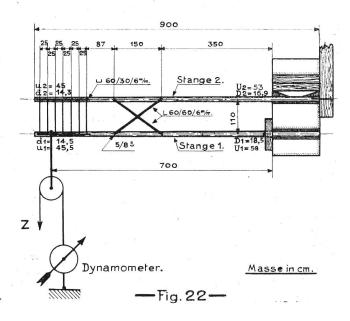

Die Kreuz-Befestigungsschrauben sind in der Richtung der Diagonalen ca. 5 cm verschoben.


Versuch Nr. 9.

Doppelstange mit einer Horizontaltraverse (Fig. 25).

Durch direkten Vergleich der Zugkräfte, die in den Versuchen 6—9 den Bruch herbeiführen, mit denjenigen in Nr. 2 ergeben sich folgende Verstärkungsfaktoren gegenüber einer einfachen Stange.

Für Stange Nr. 6 erhalten wir $c_2 = \frac{2 \times 815}{590} = 2,76$.



Stange Nr. 7 kann nicht verglichen werden, da der Stangenbruch nach Abscheren der Kreuz-Befestigungsbolzen erfolgte; folglich wird e grösser als $\frac{1840}{590} = 3,12$. In Versuch Nr. 8 erreicht c_2 den Wert $\frac{1800}{1800} = 3,1$. Die letzte Probe, Doppelstange mit

Horizontaltraverse, ergibt $c_2 = \frac{1180}{590} = 2.0$, ein

Resultat, das von vornherein zu erwarten war. Aus diesen Zahlen kann geschlossen werden, dass die maximale Verstärkung erreicht wird, wenn das Kreuz in ca. ²/₃ Stangenhöhe eingebaut ist, und dass eine Horizontaltraverse keine Erhöhung der Gestängsfestigkeit ergibt. Aus Probe 7 und 8 geht

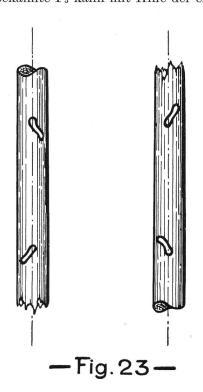
	Zug am	Stangen-	Ausbiegung	Verschiebung	Verschiebung	
No.	Dynamom.	$\mathbf{Z}\mathbf{u}\mathbf{g}$	in	d.Stange Nr.1	d.Stange Nr.2	Bemerkungen
	kg	kg	cm	V ₁ mm	V_2 mm	
1	150	120	2,5	0	0	
$\frac{1}{2}$	200	220	3,5	0		
					0	
3	250	340	7,5	0	0	
4	325	480	9,5	3	0	
5	350	530	11	3	0	
6	400	600	13,5	6	0	
7	450	670	16,5	7	0	
8	500	740	19,5	10	0	
9	550	820	26,5	15	3	
10	0	0	11	12	3	9
11	200	220	16	12	3	
12	300	430	19	12	3	
13	400	600	22	12	3	
14	500	740	25,5	12	3	
15	550	820	29	12	3	
16	600	890	32	12	3	a a
17	650	960	35	15	3	
18	700	1040	40	18	3	
19	750	1110	45	19	3	
20	800	1180	50	20	22	v s
21	850	1260	56	20	22	
22	0	0	28	<u>-</u>		
23	850	1260	59	22	20	
24	910	1350	62	22	20	
25	950	1400	65	24	20	
26	1000	1480	67	24	22	
27	1050	1560	70	24	22	
28	1050	1560	78	24	22	
29	1100	1630	81	24	22	
30	1150	1760	84	24	22	
31	1180	1750				Schr. Bolzen am Kreuz abgeschert.
32	0	0	40			Neuer Bolzen angebracht
33	1000	1480	88			
34	1100	1630		26	24	
35	1150	1700	97	26	24	-
36	1200	1800	112	36	30	
37	1230	1860				Einspannung ausgerissen.
38	0	0	42	36	10	Einspannung wieder hergestellt.
39	1100	1630	111	40	16	1
40	1150	1700	115	45	20	4
41	1200	1800	122	46	20	
42	1220	1840			7 3 4	Kreuzbolzen abgeschert. Zug am Dy- namom. sinkt auf 830 kg. Bei 900 kg Zug am Dyn. Bruch der Druck- stange an der Einspannstelle.

hervor, dass die wagrechte Verbindungstraverse des Kreuzes ohne Nachteil weggelassen werden kann, was eine beträchtliche Materialersparnis bedeutet. (Für 5000 Kreuze ergäbe sich eine Eisenersparnis von 60,000 kg).

Die Wirkung der Kreuzverstrebung ist aus Fig. 26 ersichtlich. Nach dieser wird die Druckstange immer grössere Spannungen aufweisen als die Zugstange, weil bei der erstern das Biegungsmoment durch das Moment Druckkraft mal Ausbiegung vermehrt wird, während bei der letztern das Umgekehrte zutrifft. Dies wurde durch die Versuche bestätigt, da die Druckstange immer zuerst brach.

Setzen wir voraus, dass die Kreuzdiagonalen keine Längeänderungen erfahren, so folgt daraus die Gleichheit der Durchbiegungen in den Knoten I und 2; 3 und 4; 3 und 6; 4 und 5; 5 und 6; 4 und 6; 3 und 5.

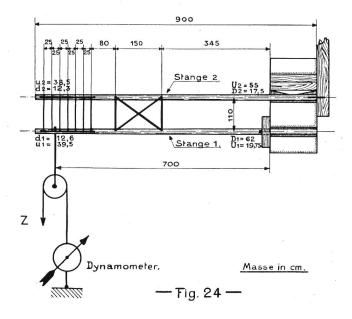
Die Ausbiegungen in den erwähnten Punkten können aber nur gleich sein, wenn auch die Kräfte, die sie hervorrufen, gleich sind. $X = P_1 - X$; -Y + Z = -W - Z; W + U = Y - U, daraus Z = U.

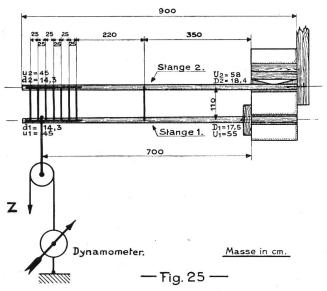

Y kann nur gleich W sein, wenn Z=U=0 ist. Die Gleichgewichtsbedingungen für eine Stange ergeben sich daher nach Fig. 26 zu

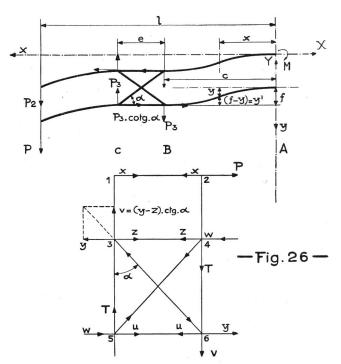
No.	Zug am Dynamom. kg	Stangenzug in kg	Ausbiegung in cm			Bemerkungen
1	150	120	2	0	0	
2	200	220	7	0	0	
3	250	340	11,5	0	0	,
4	300	430	12,5	0	0	
5	350	530	18	0	5	
6	400	600	21	0	5	*
7	450	670	25	0	5	
8	500	740	30	0	5	
9	550	820	34	0	8	
10	600	890	38	0	12	
11	650	960	42	0	15	
12	0	0	13	0	17	
13	700	1040	49	0	22	
14	750	1110	54	0	24	
15	800	1110	58	0	25	
16	850	1260	62	0	26	
17	900	1340	68,5	0	28	
18	950	1400	73	0	30	
19	1000	1480	73 77	0	$\frac{30}{32}$	
20	1050	1560	81	0	$\frac{32}{32}$	*
21	1100	1630	85	0	$\frac{32}{34}$	
22	1150	1760	91	0	36	
23	1190	1790	107	0	38	
24	1200	1800		0	_	Bruch der Druckstange an der Eir spannstelle (Ast).

$$\begin{split} &2 \, P_3 \, \, \cot g \, \alpha - X = 0 \\ &P_2 - P_3 \, + \, P_3 - Y = 0 \\ &P_2 l - P_3 \, (c + e) + P_3 \, c \pm 2 \, P_3 \, \cot g \, \alpha . \, f - M = 0. \end{split}$$

Wir haben 3 Gleichungen und 5 Unbekannte, somit ist das System statisch unbestimmt.


Das unbekannte P3 kann mit Hilfe der elastischen


Linie bestimmt werden. Die Differentialgleichung der Biegungslinie von A—B lautet:


$$\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}}+a\,\frac{\mathrm{d}y}{\mathrm{d}x}+\frac{2\;P_{3}\;\mathrm{cotg}\;\alpha}{E\times\mathrm{J}x}\times\mathrm{y}^{1}=-\frac{P_{2}\;(\mathit{l}-\!\!-\!\!x)-\!\!-\!\!P_{3}e}{E\times\mathrm{J}x}$$

wobei a = o und Jx mit wachsenden x abnimmt, somit in Funktion von x auszudrücken ist. Die Gleichung der Tangente des Biegungswinkels setzt man gleich null, indem für x = c eingesetzt wird, woraus sich P_3 ergibt. Nun ist es möglich, die Gesamtdurchbiegung zu berechnen. Das Minimum

derselben erhält man, wenn y total nach c differenziert wird. Es ergeben sich sehr komplizierte Formeln. Nährungswerte erhält man, wenn das Trägheitsmoment konstant angenommen wird.

No.	Zug am Dynamom. kg	Stangenzug in kg	Ausbiegung in em	$Verschiebung d.Stange Nr.1 V_1 mm$	Verschiebung d.Stange Nr.2 V_2 mm	Bemerkungen
		1	1		<u> </u>	
1	150	120	4	0	0	
2	200	220	21	0	0	, ,
3	250	340	27	0	0	9 0 00 00 00 00 00 00 00 00 00 00 00 00
4	300	430	30	0	2	W
5	350	530	40	0	3	
6	450	670	40,5	0	4	a a
7	500	740	58	0	5	a .
8	550	820	65	0	6	*
8	600	890	74	0	6	
10	650	960	80	0	6	
11	700	1040	92	0	8	
12	750	1110	104	0	10	
13	790	1180	131	0	10	
14	800	1180		0 0	_	Bruch der Druckstange 1 m ob Einspannung (Ast).

(Schluss folgt.)

Die Fundierung von Freileitungstragwerken und ihre Berechnung.¹

Von G. Sulzberger, Ingenieur, Bern.

Eine Untergruppe der Kommission für die Revision der Bundesvorschriften betreffend Starkstromanlagen vom 14. Februar 1908 beschäftigt sich mit der Revision der Bestimmungen über die Fundierung der Freileitungstragwerke und ihrer Berechnung. Die nachfolgenden Zeilen geben ein Referat wieder, das der Verfasser auf Wunsch der genannten Untergruppe abgefasst hat und dessen Veröffentlichung gewünscht wurde, um weitere Kreise für diese Frage zu interessieren.

Unser Herr Präsident hat unsere Aufgabe ganz allgemein folgendermassen umschrieben: « Unsere Gruppe soll die Unterlagen für eine den tatsächlichen Verhältnissen möglichst entsprechende Berechnungsart von Tragwerkfundamenten schaffen, wobei neben der Bearbeitung der einschlägigen Literatur auch die Durchführung von Versuchen an Mastfundamenten ins Auge gefasst wurde. »

In näherer Ausführung dieser Formulierung unserer Aufgabe möchte ich folgende Forderungen, die bei der Verfolgung unseres Zieles wegleitend sein müssen, aufstellen:

1. Die Sicherheit der Tragwerksfundamente gegen

¹ Mit Ermächtigung des Verfassers und des Sekretariates des S. E. V. aus dem "Bulletin des Schweiz. Elektrotechnischen Vereins" abgedruckt.