Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 7 (1934-1935)

Artikel: Unitäre Matrizen in Galoisfeldern.

Autor: Frame, J.S.

DOI: https://doi.org/10.5169/seals-515587

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Unitäre Matrizen in Galoisfeldern

Von J. S. Frame, Zürich

§ 1. Die meisten einfachen Gruppen lassen sich am bequemsten durch Matrizen in einem Galoisfeld definieren, dessen Charakteristik p ein Teiler der Gruppenordnung ist. Wir wollen uns hier mit einer zweifach unendlichen Schar solcher Gruppen beschäftigen, indem wir die Matrizen einer Klasse von konjugierten Elementen in einer besonders durchsichtigen Normalform schreiben, und daraus diese Gruppen geometrisch als Permutationsgruppe von gewissen Vektorscharen in einem "Galoisfeld-Raum" interpretieren. Wir legen als Koeffizientenbereich ein Galoisfeld $GF(q^2)$ von q^2 Elementen zugrunde, wobei $q=p^s$ eine Primzahlpotenz bedeutet. Ferner definieren wir zu jedem x ein konjugiertes: $\overline{x}=x^q$, und bemerken, daß $\overline{x}^q=x^{q^2}=x$ ist. Zur Abkürzung setzen wir $\sum_{i=1}^m \overline{a}_i b_i=(a\mid b)=(\overline{b\mid a})$, und $Q_m=q^m-(-1)^m$.

Es sei jetzt G_m^* die Gruppe der "unitären" Matrizen vom Grade m in diesem Galoisfeld; d. h., die Gruppe der Matrizen T, welche die Form $(x \mid x)$ ungeändert lassen. Ihre Matrizen haben die Gestalt (t_{ij}) , wo $\sum_{k=1}^{m} \overline{t_{ik}} t_{jk} = \sum_{k=1}^{m} \overline{t_{ki}} t_{kj} = \delta_{ij}$. Kurz gesagt, es ist T^{-1} die transponierte k=1 Matrix von \overline{T} . Für die Determinante gilt die Gleichung $T \cdot \overline{T} = 1$.

Schreiben wir $a'=a\,T$, wenn $a_i'=\sum\limits_{i=1}^m a_i\,t_{ij},\ i=1,2,\cdots m$, dann gilt $(a\,T\mid b\,T)=(a\mid b)$ für T aus G_m^{\bigstar} . Nach Dickson¹) beträgt die Ordnung dieser Gruppe

$$g_m^{\star} = \prod_{k=1}^m q^{k-1} Q_k = q^{\binom{m}{2}} \prod_{k=1}^m Q_k.$$

Die Matrizen von der Determinante 1 bilden einen Normalteiler G_m vom Index q+1, und von der Ordnung $g_m=g_m^{\star}/(q+1)$. Das Zentrum Z_m dieses Normalteilers hat die Ordnung d, wo d der g. g. g. T. von m und q+1 ist. Die Faktorgruppe $H_m=G_m/Z_m\equiv HO\ (m,\,p^{2\,s})$, von der Ordnung $h_m=g_m/d$, ist nach dem Beweis von Dickson eine einfache Gruppe, abgesehen von den drei Fällen $HO\ (2,\,2^2)$, $HO\ (2,\,3^2)$, und $HO\ (3,\,2^2)$. Ferner ist $HO\ (2,\,p^{2\,s})$ isomorph mit der linear-gebrochenen Gruppe $LF\ (2,\,p^s)$ von der Ordnung $q\ (q^2-1)/d$. Von den übrigbleibenden

¹⁾ Dickson: Linear Groups.

Fällen ist $HO(3, 3^2)$, mit 6048 Elementen, die kleinste Gruppe dieser Familie.

§ 2. Jeder Vektor $(a_1, a_2, \dots a_m)$, für den $(a \mid a) = 0$ ist, entspricht einer unitären Matrix von der Form

$$M(a; \varepsilon) \equiv M(a_1, a_2, \cdots a_m; \varepsilon) \equiv (\delta_{ij} + \varepsilon \overline{a}_i a_j),$$

wo $\varepsilon = -\bar{\varepsilon}$ eine "rein-imaginäre" Zahl des GF bedeutet. Hierbei ist $M(xa; \varepsilon) = M(a; x\bar{x}\varepsilon)$, so daß die q+1 Matrizen $M(\Theta a; \varepsilon)$ übereinstimmen für $\Theta \overline{\Theta} = 1$, und der Nullvektor entspricht der Identität. Einige wichtige Eigenschaften dieser Matrizen geben wir zunächst in einer Reihe von Sätzen an.

Satz 1. Die Matrizen $M(a; \varepsilon)$ und $M(b; \varepsilon)$ sind dann und nur dann vertauschbar, wenn $(a \mid b) = 0$; oder wie wir auch geometrisch sagen können, wenn die Vektoren a und b senkrecht aufeinander stehen. Wir bemerken, daß nach Annahme $(a \mid a) = (b \mid b) = 0$ ist.

Beweis: Das Produkt

$$M(a; \varepsilon) \cdot M(b; \varepsilon) = [\delta_{ij} + \varepsilon (\overline{a}_i a_j + \overline{b}_i b_j) + \varepsilon^2 \overline{a}_i b_j (b \mid a)]$$

ist dann und nur dann symmetrisch in a und b, wenn $(b \mid a) = 0$ ist. Zwar haben wir dann $\overline{a}_i b_j (b \mid a) = \overline{b}_i a_j (a \mid b)$, und folglich $(a \mid a) b_j (b \mid a) = (b \mid a) a_j (a \mid b)$. Wegen $(a \mid a) = 0$, folgt $a_j (b \mid a) (a \mid b) = 0$, für alle a_j .

Satz 2. Die Matrizen M (a; ω ε), wo ω das GF (q) durchläuft, bilden eine Abelsche Gruppe G_a , vom Typus (p, p, \cdots p), die isomorph ist mit der additiven Gruppe des GF (q). Es gilt die Gleichung:

$$M(a; \omega_1 \varepsilon) M(a; \omega_2 \varepsilon) = M[a; (\omega_1 + \omega_2) \varepsilon].$$

Insbesondere ist $M(a; \varepsilon)^n = M(a; n \varepsilon)$. Jede Matrix ist daher von der Ordnung p. Der Gruppe G_a wird eine Vektorschar (a) zugeordnet, die die sämtlichen Multipla eines Vektors a enthält.

Der Beweis des Satzes folgt sofort aus der Zusammensetzung der Matrizen.

Satz 3. Es gilt $T^{-1}M(a; \varepsilon)$ $T=M(aT; \varepsilon)$, für T aus G_m^{\star} . Ferner ist $T^{-1}G_a$ $T=G_{aT}$.

Beweis:
$$\sum_{k,l} \overline{t}_{ki} \left(\delta_{kl} + \varepsilon \overline{a}_k a_l \right) t_{lj} = \delta_{ij} + \varepsilon \left(\sum_{k=1}^m \overline{a}_k \overline{t}_{ki} \right) \left(\sum_{l=1}^m a_l t_{lj} \right).$$

Satz 4. Für m > 2 bilden die sämtlichen Matrizen M $(a; \varepsilon)$, $a \neq 0$, eine einzige Klasse von konjugierten Elementen der Gruppe H_m ; für m = 2, dagegen, zerfallen sie in d Klassen.

Beweis: Für m=2 kann der Vektor (a_1, a_2) nur in $(k a_1, \overline{k} a_2)$, $k \neq 0$, unter G_2 übergeführt werden, und zwar vermittels der Matrix $\begin{pmatrix} k + \overline{u} \overline{a_1} & -u a_2 \\ \overline{u} \overline{a_2} & \overline{k} + u a_1 \end{pmatrix}$, wenn gilt: $k u a_1 + \overline{k} \overline{u} \overline{a_1} = 1 - k \overline{k}$.

Nach Satz 3 ist daher die Matrix M $(1, \alpha; \varepsilon)$ konjugiert zu denen, und nur denen von der Form M $(\overline{x}\overline{\Theta}, x\Theta\alpha; \varepsilon) = M$ $(\overline{x}, x\Theta^2\alpha; \varepsilon)$, wo $x\Theta = \overline{k}$, $\Theta\overline{\Theta} = 1$ ist. Für p = 2, und daher d = 1, gibt es nur eine Klasse. Für p > 2, sind M $(1, \alpha; \varepsilon)$ und M $(1, 1/\alpha; \varepsilon)$ nicht miteinander konjugiert, sondern sie liegen in d = 2 verschiedenen Klassen von den Typen M $(\overline{x}, x\alpha^{4m+1}; \varepsilon)$ und M $(\overline{x}, x\alpha^{4m-1}; \varepsilon)$, wo $\alpha\overline{\alpha} = -1$ ist. Inverse Matrizen M $(\alpha_1, \alpha_2; \varepsilon)$ und M $(\alpha_1, \alpha_2; -\varepsilon)$ sind dann und nur dann konjugiert, wenn -1 ein Quadrat im GF (q) ist; d. h. wenn $q \equiv 0$, 1, oder 2, (mod 4) ist. In diesen Fällen sind die Klassen selbstinvers, wie man es bekanntlicherweise in den Gruppen LF $(2, p^s)$ findet.

Ist m>2, p>2, und $a \neq 0$, so gilt nicht für alle $j, k=1, 2, \cdots m$ die Relation $\overline{a_j}a_j + \overline{a_k}a_k = 0$. Gelte sie paarweise für a_i, a_j, a_k , so müßte $2\ \overline{a_i}a_i = 2\ \overline{a_j}a_j = 2\ \overline{a_k}a_k = 0$ und daher $a_i = a_j = a_k = 0$ sein. Es sei also $\overline{a_j}a_j + \overline{a_k}a_k = b_jb_j \neq 0$. Übt man die Transformation

$$(x_{j}', x_{k}') = (x_{j}, x_{k}) \begin{pmatrix} \overline{a}_{j} & /\overline{b}_{j} & -a_{k} / b_{j} \\ \overline{a}_{k} / \overline{b}_{j} & a_{j} / b_{j} \end{pmatrix}; x_{i}' = x_{i}, i \neq j, k$$

auf den Vektor $(a_1, \cdots a_j, \cdots a_k, \cdots a_m)$ aus, so geht er in $(a_1 \cdots b_j, \cdots 0, \cdots a_m)$ über. Für m > 2, p = 2 kann man dieselbe Transformation gebrauchen, wenn man es nicht mit den Vektoren a, wo $\overline{a_1} a_1 = \overline{a_2} a_2 = \cdots = \overline{a_m} a_m$, zu tun hat. In diesem Falle kann man aber erst (a_1, a_2) in $(ka_1, \overline{k}a_2)$ überführen, wo $k\overline{k} \neq 1$ ist, und dann in derselben Weise fortfahren wie für p > 2. In ähnlicher Weise kann man alle Komponenten bis auf zwei in 0 transformieren. Mit einer geraden Permutation bringt man diese zwei in die ersten beiden Stellen, und wie im Falle m = 2 transformiert man diesen Vektor in $(1, \beta, 0, \cdots 0)$. Der wird aber jetzt in einen bestimmten Vektor $(1, a, 0, \cdots 0)$, durch die Transformation: $x_2' = (a/\beta) x_2, x_3' = (\beta/a) x_3; x_i' = x_i, i \neq 2, 3$, transformiert. Entsprechend, nach Satz 3, ist für m > 2 jede Matrix $M(a_1, \cdots a_m; \varepsilon)$ mit der Matrix $M(1, a, 0 \cdots 0; \varepsilon)$ in G_m konjugiert. Daher bilden diese Matrizen auch in H_m eine einzige Klasse, weil man die Vektoren nur bis auf einen Faktor Θ , Θ , $\overline{\Theta} = 1$, zu bestimmen braucht. Hiermit ist Satz 4 bewiesen.

Satz 5. Die Anzahl der in $GF(q^2)$ von 0 verschiedenen Lösungen der Gleichung $(a \mid a) = 0$ beträgt $Q_m Q_{m-1}$. Entsprechend gibt es $Q_m Q_{m-1} / Q_1$ von der Identität verschiedenen Matrizen $M(a; \varepsilon)$, und $Q_m Q_{m-1} / Q_2$ Abelsche Gruppen G_a .

Beweis: Die Formel gilt für m=1. Nehmen wir an, sie gelte für m-1, m>1. Wenn $a_m=0$, gibt es nach Induktionsannahme $Q_{m-1}Q_{m-2}$ Lösungen $a \neq 0$. Wenn $a_m \neq 0$, hat man $q^{2m-2}-1-Q_{m-1}Q_{m-2}$ Werte von $a_1, \cdots a_{m-1}$, so daß $\sum_{i=1}^{m-1} \overline{a_i} a_i \neq 0$ ist, und damit ist a_m bis auf einen Faktor Θ , $\Theta \overline{\Theta} = 1$, bestimmt. Die Richtigkeit des Satzes folgt aus der Identität:

$$Q_m Q_{m-1} \equiv Q_{m-1} Q_{m-2} + (q+1) (q^{2m-2} - 1 - Q_{m-1} Q_{m-2}).$$

Satz 6. Die Gruppe H_m besitzt eine Darstellung als Permutationsgruppe P_m von $Q_m Q_{m-1}/Q_2$ Symbolen G_a , durch die Abbildung, wobei T der Permutation $(G_a \to G_{aT})$ entspricht. Für m > 2 ist diese Gruppe transitiv.

Der Satz folgt sofort aus den vorangehenden Sätzen.

Satz 7. Ist eine Matrix aus G_m , m>2, mit der Gruppe G_a vertauschbar: $G_a=G_{aT}$, so transformiert sie den zum Vektor a orthogonalen Raum in sich selbst, und vertauscht auch die übrigbleibenden Vektoren unter sich. Ich behaupte, die Untergruppe U_a der Permutationsgruppe P_m , die G_a invariant läßt, ist transitiv in den q^{2m-3} zu (a) nicht orthogonalen Vektorscharen, und transitiv auch in den $q^2Q_{m-2}Q_{m-3}/Q_2$ zu (a) orthogonalen Vektorscharen außer (a) selbst.

Beweis: Aus $(a \ T \mid b \ T) = (a \mid b)$ folgt der erste Teil des Satzes. Wir untersuchen zunächst die Transitivität von U_a in den zu (a) nicht orthogonalen Vektorscharen (c), (c'), usw. Es seien $(a \mid a) = (c \mid c) = (c' \mid c') = 0$; $(c \mid a) = k \ (c' \mid a) \neq 0$. Nach Satz 4 gibt es eine Matrix S aus G_m , so daß $a \ S = a_0 \equiv (1, \alpha, 0 \cdots 0)$ ist. Wir setzen $b = c \ S$, $b' = c' \ S$. Die Matrix

$$T: \begin{pmatrix} b_{1} \Phi + k \Phi & b_{2} \Phi + a k \overline{\Phi} & b_{3} \Phi & \cdots & b_{n} \Phi \\ \overline{a} b_{1} \Phi + \overline{a} k (\overline{\Phi} - 1) & \overline{a} b_{2} \Phi + k (1 - \overline{\Phi}) & a b_{3} \Phi & \cdots & a b_{n} \Phi \\ t_{31} & a t_{31} & t_{33} & \cdots & t_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ t_{n1} & a t_{n1} & t_{n3} & \cdots & t_{nn} \end{pmatrix}$$

wò $(1 + \overline{a} \beta) \Phi = (\overline{k} b_1 + \overline{k} \overline{a} b_2) \Phi = 1$, $a \overline{a} = \beta \overline{\beta} = -1$ ist, transformiert: $a_0 : (1, \alpha, 0 \cdots 0)$ in $k a_0 : (k, k \alpha, 0, \cdots 0)$, und $b_0 : (1, \beta, 0 \cdots 0)$ in $b : (b_1, b_2, b_3, \cdots b_n)$.

Die Bedingungen für die Existenz von T sind:

$$(a_0 \mid b_0) = (k a_0 \mid b) = 1 / \Phi \neq 0; \quad (a_0 \mid a_0) = (b_0 \mid b_0) = (b \mid b) = 0.$$

Man kann mit T^{-1} einen beliebigen solchen Vektor b, $(a_0 \mid b) \neq 0$, in b_0 , und mit einem geeigneten T' diesen b_0 in einen beliebigen b' mit den-

selben Eigenschaften überführen, indem man die Schar (a_0) invariant läßt. Die Transformation ST^{-1} T' S^{-1} führt c in c' und a in ka über, wie wir es wollten.

Für m=3 gibt es keine Vektoren, die zu einem bestimmten orthogonal sind, außer dessen Multipla. So haben die Permutationen der Untergruppe U_a in diesem Falle nur zwei transitive Bestandteile. Für $m\geq 4$ gibt es jetzt eine Matrix V

$$V: \begin{pmatrix} 1 & 0 & -\frac{\overline{v}x}{x} & v\beta\overline{x} & 0 & \cdots & 0 \\ 0 & 1 & -\frac{\overline{v}x}{x} & v\beta\overline{a}x & 0 & \cdots & 0 \\ \frac{vx}{x} & vax & 1 & 0 & 0 & \cdots & 0 \\ -\frac{\overline{v}\overline{\beta}x}{y} & -\frac{\overline{v}\overline{\beta}ax}{y} & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

aus G_m derart, daß sie a_0 : $(1, \alpha, 0, \cdots 0)$ in sich, und $(x, x\alpha, 1, \beta, 0 \cdots 0)$ in $(0, 0, 1, \beta, 0 \cdots 0)$ transformiert, wo $a\overline{a} = \beta\overline{\beta} = -1$ ist. Jeder zu a_0 orthogonale Vektor läßt sich aber in der Form $(x, x\alpha, b_3, b_4, \cdots b_m)$ schreiben. Nach dem Beweis von Satz 4 kann man mit einer Transformation auf m-2 Variable den Vektor $(b_3, b_4, \cdots b_m)$, $b \neq 0$, in einen geeigneten Vektor $(1, \beta, 0, \cdots 0)$ überführen. So kann man jeden zu (a_0) orthogonalen Vektor in einen beliebigen anderen solchen überführen, wenn sie nur nicht Multipla von a_0 sind, indem man die Schar (a_0) ungeändert läßt. Ähnlich wie oben gilt der Satz auch für eine beliebige Vektorschar (a).

Es gibt $q^2 (Q_{m-2}Q_{m-3}+1)$ — 1 von Null verschiedene, zu (a_0) orthogonale Vektoren b mit $(b \mid b)=0$, oder nur $q^2Q_{m-2}Q_{m-3}$, wenn man die Multipla von a_0 nicht mitzählt. Entsprechend gibt es $q^2Q_{m-2}Q_{m-3}/Q_2$ zu (a_0) orthogonale Scharen ausser (a_0) , und Q_mQ_{m-1}/Q_2 — $q^2Q_{m-2}Q_{m-3}/Q_2$ — $1=q^{2m-3}$ zu (a_0) nicht orthogonale Scharen. Hiermit ist Satz 7 vollständig bewiesen.

Satz 8. Die Permutationsgruppe P_m von Satz 6 hat für m>3 genau drei irreduzible Komponenten im algebraisch abgeschlossenen Körper der Charakteristik 0. Die Gruppe P_3 hat nur zwei irreduzible Komponenten, wovon einer die Identität und der andere eine Darstellung vom Grade q^3 ist.

Beweis: Der Satz folgt aus Satz 7, indem wir Satz 103 aus der Gruppentheorie von A. Speiser anwenden. § 3. Bevor wir diese Permutationsgruppen P_m weiter studieren, wollen wir jetzt die Normalform $M(a; \varepsilon)$ etwas verallgemeinern, um einige andere Klassen von konjugierten Matrizen darzustellen, deren charakteristische Wurzeln sämtlich gleich 1 sind. Nach Speiser¹) ist diese Bedingung notwendig und hinreichend dafür, daß die Ordnung einer solchen Matrix eine Potenz von p ist.

Satz 9. Die Matrizen

$$M(a; \alpha; \varepsilon) \equiv (\delta_{ij} + \overline{a}_i a_j - \overline{a}_i a_j + \varepsilon \overline{a}_i a_j)$$

mit $(a \mid a) = (a \mid a) = (a \mid a) + \varepsilon + \overline{\varepsilon} = 0$, bilden für $(a \mid a) \neq 0$, m > 3, eine einzige Klasse von $Q_m Q_{m-1} Q_{m-2} q^{m-2} / Q_1$ konjugierten Elementen der Gruppe H_m , deren Ordnungen p oder p^2 sind, je nachdem p > 2 oder p = 2 ist. Für m = 3, dagegen, zerfallen sie in d Klassen. Die Matrizen $M(a; \alpha; \varepsilon)$, die einem gemeinsamen Vektor a entsprechen, multiplizieren

sich wie die Matrizen
$$\begin{pmatrix} 1 & -\alpha & \varepsilon \\ 0 & 1 & \overline{\alpha} \\ 0 & 0 & 1 \end{pmatrix}$$
, wenn man $\overline{\beta} \alpha$ durch $(\beta \mid \alpha)$ ersetzt.

Beweis: Aus der Zusammensetzung der Matrizen folgt

$$M\left(a;\alpha;\varepsilon\right)\ M\left(a;\beta;q\right)=M\left[a;\alpha+\beta;\varepsilon+\eta-(\beta\mid\alpha)\right].$$

Insbesondere gilt auch die Gleichung

$$[M (a; \alpha; \varepsilon)]^n = M [a; n \alpha; \binom{n+1}{2} \varepsilon + \binom{n}{2} \bar{\varepsilon}],$$

so daß die Elemente von der Ordnung p, bzw. 4 sind, wie es behauptet wurde. Es gilt ferner die Gleichung

$$M(a/x; \alpha \overline{x}; \varepsilon x \overline{x}) = M(a; \alpha; \varepsilon) = M(a; \alpha + k a; \varepsilon + k - \overline{k}).$$

Infolgedessen hat man, beim Zählen, sämtliche Matrizen $M(a; \alpha; \varepsilon)$ wenn man zu α nur modulo a verschiedene Werte, und dann nur einen Wert aus jeder multiplikativen Schar (α) angibt. Anders betrachtet, kann man dieselbe Matrix immer so ausdrücken, daß ε einen beliebigen der $q^2 - q$ Werte annimmt, für die $\varepsilon + \bar{\varepsilon} \neq 0$.

Es sei T eine Matrix aus der Gruppe G_m^{\star} . Dann ist

$$T^{-1} M(a; \alpha; \varepsilon) T = M(a T; \alpha T; \varepsilon).$$

¹⁾ Speiser, A., Theorie der Gruppen von endlicher Ordnung. Zweite Auflage, 1927, Satz 200, S. 221.

Mit geeignetem T aus G_m^* können wir a und a in beliebige a T, a T transformieren, unter den Bedingungen

$$(a \mid a) = (aT \mid aT); \quad (a \mid a) = (aT \mid aT); \quad (a \mid a) = (aT \mid aT).$$

Innerhalb der Gruppe G_m können wir die Lösung a T beliebig, aber dann a T zuerst nur bis auf einen Faktor Θ , Θ $\overline{\Theta}=1$, bestimmen. Es sei, z. B., $a=(1,a,0,\cdots 0),\ a=(0,0,1\cdots 0)$. Dann können wir, im Falle m>3, a in sich und a in irgend ein $\Theta^k a$ überführen; für m=3, dagegen, a und a nur in $\overline{\Theta}^k a$ und $\Theta^{2k} a$ überführen, was aber derselben Matrix entspricht wie a und $\Theta^{3k} a$. So erhalten wir Q_1/d verschiedene Werte von Θ^{3k} , die konjugierten Matrizen entsprechen, und d verschiedene Klassen, die nicht miteinander konjugiert sind.

Zusammengezählt haben wir $Q_m Q_{m-1}$ Werte von a, und zu jedem davon q^{2m-4} modulo a verschiedene Vektoren a für die $(a \mid a) = 0$ ist. Davon genügen aber $Q_{m-2} Q_{m-3} + 1$ der Gleichung $(a \mid a) = 0$. Es bleiben $q^{2m-4} - 1 - Q_{m-2} Q_{m-3} = Q_{m-2} (q^{m-2} - q^{m-3})$ Vektoren a, für die $-(a \mid a) = \varepsilon + \overline{\varepsilon} \neq 0$ ist. Bis auf Vielfache bleiben $Q_{m-2} q^{m-3} / Q_1$ Werte von a. Mit a und a ist jetzt $\varepsilon + \overline{\varepsilon}$ bestimmt, aber ε kann q Werte annehmen. So, wie behauptet, ist die Anzahl dieser Matrizen gleich $q^{m-2} Q_m Q_{m-1} Q_{m-2} / Q_1$.

Weitere Verallgemeinerungen der Form $M(a; \alpha, \varepsilon)$ werden komplizierter, weil sie vieler Relationen zwischen den Vektoren bedürfen. Wir geben nur ein Beispiel davon:

$$\begin{split} X &= (\delta_{ij} + A_{ij} + \bar{b}_i c_j); \ X^n = (\delta_{ij} + n \ (A_{ij} + \bar{b}_i c_j) + \binom{n}{2} \varepsilon \left(\frac{\bar{b}_i}{x_i} \frac{c_j}{x_j}\right) + \binom{n}{3} \bar{x}_i x_j) \\ \text{wo } A_{ij} &= \bar{a}_i \alpha_j - \bar{\alpha}_i a_j; \ x_i = c_i - b_i = a_i \ (a \mid b) - a_i \ (a \mid b) = \sum_k b_k A_{ki} = \sum_k c_k A_{ki} \ \text{und} \ (a \mid a) = (a \mid a) = (a \mid a) = (b \mid b) = (b \mid c) = (c \mid c) = \varepsilon + \bar{\varepsilon} \\ &= 0 \ \text{ist.} \end{split}$$

§ 4. Die geometrische Vorstellung, die wir in § 2 betrachtet haben, bietet ein Mittel dafür, die Charaktere der Permutationsgruppe P_m und die Klasseneinteilung von H_m zu untersuchen. Wegen der in den Sätzen 6 und 7 gegebenen Transitivitätseigenschaften sehen wir ein, daß zu einer Matrix, die eine Schar, bzw. zwei zueinander nicht orthogonale, bzw. zwei zueinander orthogonale Scharen invariant läßt, es eine konjugierte Matrix gibt, die dasselbe für beliebige Scharen mit denselben Orthogonalitätsverhältnissen macht. Führt die Matrix T die Vektoren a_0 in $k_1 a_0$, b_0 in $k_2 b_0$ über, so ist $(a_0 \mid b_0) = (k_1 a_0 \mid k_2 b_0) = \overline{k}_1 k_2 (a_0 \mid b_0)$. Ist $(a_0 \mid b_0) \neq 0$, so folgt $\overline{k}_1 k_2 = 1$. Ist ferner eine dritte Schar (c_0) unter T

invariant, z. B., ist $c_0 T = k_3 c_0$, mit $(a_0 \mid c_0) \neq 0$, $(b_0 \mid c_0) \neq 0$, so muß $k_1 = k_2 = k_3 = \Theta$ sein, $\Theta \overline{\Theta} = 1$. Dann werden auch alle Linearkombinationen von a_0, b_0, c_0 mit demselben Faktor multipliziert, und die zugehörigen Scharen bleiben invariant.

Fassen wir insbesondere die Gruppe P_3 ins Auge. Die d Elemente des Zentrums von G_m , die der Identität in H_m entsprechen, haben die Spur

$$Q_3=q^3+1$$
. Dazu gibt es in $H_m\left(Q_1\left/d
ight)-1$ Klassen von $inom{Q_3}{2}-inom{Q_1}{2}=$

 $Q_3 q^2/Q_1$ Elementen mit der Spur Q_1 , die mehr als zwei Scharen invariant lassen. Als Vertreter dieser Klassen nehmen wir reduzible Matrizen, die die Scharen $a_0: (1, a, 0)$ und $b_0: (1, \beta, 0)$ mit einem Faktor Θ^n , n=1, $2, \cdots (Q_1/d)-1$, $\Theta \overline{\Theta}=1$, die dritte Koordinate x_3 mit Θ^{-2n} multiplizieren. Ähnlich gibt es in $H_m (q-2) Q_1/2 d$ Klassen von je $Q_3 q^3$ Elementen, die a_0 und b_0 mit verschiedenen Faktoren versehen. Sie haben die Spur 2. Klassen mit der Spur 1 haben Vertreter in der Untergruppe, von der Ordnung $h_3-Q_3Q_2/Q_1=q^3Q_1/d$, der mit einer bestimmten Matrix $M(a;\varepsilon)$ vertauschbaren Matrizen. Eine Klasse enthält die Matrizen $M(a;\varepsilon)$ selbst. $(Q_1/d)-1$ Klassen von je $Q_3Q_2q^2/Q_1$ Elementen, deren Ordnungen qQ_1 teilen, entsprechen den obigen Klassen von der Spur Q_1 , wobei jetzt aber die Scharen (a_0) und (b_0) nicht mehr invariant sind. Es bleiben mit der Spur 1 die d Klassen von Q_3Q_2q/d Elementen von der Ordnung p, bzw. 4, die wir in § 3 untersucht haben. Endlich gibt es zwei verschiedene Arten von Klassen mit der Spur 0. Dies sind einerseits

$$\frac{\left(q+1\right)\left(q-2\right)}{6d} + \frac{1}{3} - \frac{1}{d} \right) \text{ Klassen von je } h_3 d / Q_1^2 \text{ Elementen, und dazu}$$
 eine Klasse von h_3 / Q_1^2 Elementen, deren Ordnungen $q+1$ teilen; und anderseits
$$\frac{q^2-q+1-d}{3d} \text{ Klassen von je } Q_2 Q_1 q^3 \text{ Elementen, deren Ordnungen } \frac{q^2-q+1}{d} \text{ teilen.}$$
 nungen
$$\frac{q^2-q+1}{d} \text{ teilen.}$$

Betrachten wir jetzt die irreduzible Komponente von P_3 vom Grade q^3 , so haben wir folgende Spuren, oder Charakteren einer irreduziblen Darstellung der Gruppe $H_3 \equiv HO(3, q^2)$. Wir geben in vier Spalten 1) die Anzahl von ähnlichen Klassen, 2) die Anzahl von Elementen in einer Klasse, 3) die Spur von einer Matrix in dieser Klasse in der irreduziblen Darstellung vom Grade q^3 , und 4) eine Zahl, die durch die Ordnungen dieser Matrizen geteilt wird.

\mathbf{K} lassen	Elemente	Spur Or	dnung-Multiplum
1	1	q^3	1
$\frac{q+1}{d}-1$	$(q^2-q+1) q^2$	q	q+1
$\frac{q^2-q-2}{2d}$	$(q^3+1) q^3$	1	$q^2 - 1$
1	$(q^3+1) (q-1)$	0	$oldsymbol{p}$
d	$(q^3+1) (q^2-1) q/d$	0	$p ext{ oder } 4 = p^2$
$\frac{q+1}{d}-1$	$(q^3+1) (q-1) q^2$	0	p(q+1)
1	$(q^2-q+1) (q-1) q^3/d$	—1	(q+1)/d
$\frac{q^2-q-8+2d}{6d}$	$(q^2-q+1) (q-1) q^3$	—1	q+1
$\frac{q^2-q+1-d}{3d}$	$(q^2-1) (q-1) q^3$	· — 1	$rac{q^2-q+1}{d}$

(Eingegangen den 31. Juli 1934.)