Cartesísches und Alexandersches Produkt in der Cohomologietheorie.

Autor(en): Brändli, E.R. / Eckmann, B.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 24 (1950)

PDF erstellt am: **27.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-20300

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Cartesisches und Alexandersches Produkt in der Cohomologietheorie

Von E. R. Brändli und B. Eckmann (Zürich)

Das Produkt von Cohomologieklassen eines Polyeders R (oder eines allgemeinern topologischen Raumes), wie es von Alexander [1]¹) u. a. definiert wurde, steht in engem Zusammenhang mit dem Cartesischen Produkt $R \times R$, in welchem es anschaulich interpretiert werden kann. Ein solcher Zusammenhang ist bei Mannigfaltigkeiten schon vor der Einführung des Alexanderschen Produktes von Lefschetz [5] für das Schnittprodukt, von de Rham [8] für das äußere Produkt von Differentialformen formuliert worden; in allgemeinerer Form läßt er sich verschiedenen neuern Ausführungen von Lefschetz [6] und von Leray [7] entnehmen. In den folgenden Zeilen wird diese Beziehung zwischen dem Cartesischen und dem Alexanderschen Produkt für beliebige simpliziale Komplexe in direkter Weise hergeleitet, mit einer Methode, die uns besonders einfach und übersichtlich scheint und die die Rolle der willkürlichen Eckpunkt-Numerierung, wie sie in der Alexanderschen Definition auftritt, in neuer Weise klärt.²)

1. Cartesisches Produkt

K sei ein simplizialer Komplex; das ihm vermöge einer Euklidischen Realisation entsprechende Polyeder sei ebenfalls mit K bezeichnet. Wir betrachten das Cartesische Produkt³) $K \times \overline{K}$ von K, "mit sich", d. h. mit einer Kopie \overline{K} von K. Der Übergang von Punkten, Simplexen, Ketten usw. von K zu den entsprechenden von \overline{K} werde durch Überstreichen angedeutet. Die Randbildung sei stets mit ∂ , die Corandbildung mit δ bezeichnet. $K \times \overline{K}$ ist ein Zellenkomplex, dessen orientierte n-Zellen von

¹) Nummern in eckigen Klammern verweisen auf das Literaturverzeichnis am Schluß der Arbeit.

²) Die vorliegende Note ist eine Umarbeitung eines Teiles der Dissertation von E. R. Brändli [3].

³⁾ Bezüglich der Eigenschaften des Cartesischen Produktes vgl. [2], Kap. VII.

der Gestalt $\sigma_r \times \overline{\tau}_s$ sind, wo σ_r ein beliebiges orientiertes r-Simplex von K, $\overline{\tau}_s$ ein s-Simplex von \overline{K} ist, mit r+s=n. Ist f^p eine Cokette 4) in K, \overline{g}^q in \overline{K} , so sei $f^p \times \overline{g}^q$ die Cokette in $K \times \overline{K}$, die definiert ist, für alle σ_r und $\overline{\tau}_s$ mit r+s=p+q, durch $f^p \times \overline{g}^q (\sigma_r \times \overline{\tau}_s) = f^p (\sigma_r) \cdot \overline{g}^q (\overline{\tau}_s)$ falls r=p (s=q) und =0 falls $r\neq p$; wenn f^p und \overline{g}^q Cozyklen sind, so ist auch $f^p \times \overline{g}^q$ ein Cozyklus.

D bezeichne die Abbildung von K in $K \times \overline{K}$, die durch $D(P) = P \times \overline{P}$ für alle Punkte P von K gegeben ist; offenbar ist D eine topologische Abbildung von K in $K \times \overline{K}$, und man nennt das Bild D(K) die D iagonale des Cartesischen Produktes von K mit sich. D induziert einen Homomorphismus D_0 der Homologiegruppen von K in diejenigen von $K \times \overline{K}$, und für einen Zyklus z_n von K bedeute $D_0 z_n$ die Homologieklasse in $K \times \overline{K}$, die hierbei Bild derjenigen von z_n ist. Das Ziel dieser Note ist der Beweis des folgenden Satzes (\sim bezeichnet das Alexandersche Produkt [1], in üblicher Weise mit Hilfe einer Eckpunkt-Numerierung in K definiert).

(1). Für zwei Cozyklen
$$f^p$$
 und g^q und einen Zyklus z_n von $K(n = p + q)$ gilt
$$f^p \circ g^q(z_n) = f^p \times \overline{g}^q(D_0 z_n) . \tag{1}$$

Wir beweisen diesen Satz in Nr. 4; die Abschnitte 2 und 3 dienen zur Vorbereitung des Beweises.

Bemerkung. K sei endlich, und man verwende für die Ketten den zu J dualen Koeffizientenbereich J_1^4). $f^p \times \overline{g}^q(D_0 z_n)$ als Funktion von z_n aufgefaßt definiert einen Homomorphismus der Zyklengruppe Z_n von K in die Gruppe der reellen Zahlen mod. 1, der auf den Rändern = 0 ist; er läßt sich zu einem Homomorphismus der ganzen Kettengruppe C_n erweitern, definiert also eine Cokette h^n (mit Koeffizienten aus J). h^n ist ein Cozyklus, und aus (1) und aus bekannten Dualitätssätzen folgt, daß er derselben Cohomologieklasse von K angehört wie $f^p \circ g^q$. Man erhält also, indem man für alle Zyklen z_n von K

$$h^n(z_n) = f^p \times \overline{g}^q(D_0 z_n) \tag{2}$$

setzt, eine der Alexanderschen äquivalente Produktdefinition für Cohomologieklassen, der eine gewisse Anschaulichkeit zukommt und in der keine Eckpunkt-Numerierung auftritt. — In unendlichen Komplexen ist diese Überlegung in naheliegender Weise zu vervollständigen.

⁴) Die Coketten werden als Funktionen der Simplexe oder Zellen aufgefaßt, mit Werten in einem Ring J; sie lassen sich in üblicher Weise zu linearen Funktionen der Ketten erweitern, wenn für diese ein geeigneter Koeffizientenbereich J_1 verwendet wird. Ist z. B. J_1 die Gruppe der ganzen Zahlen, so sind die Werte dieser linearen Funktionen Elemente von J; ist J_1 die zur additiven Gruppe von J duale Abelsche Gruppe, so sind die Werte reelle Zahlen mod. 1.

2. Die Homologie-Abbildung Q

Wir führen eine Ketten-Abbildung Q des simplizialen Komplexes K in den Zellenkomplex $K \times \overline{K}$ ein, die im Sinne der Homologie die stetige Abbildung D des Polyeders K in $K \times \overline{K}$ ersetzen wird und für unsern Zweck geeigneter ist als diese. Q hängt aber von einer willkürlichen Eck-punkt-Numerierung in K ab, während dies natürlich für D nicht der Fall ist.

In jedem Simplex σ_n von K seien also die Eckpunkte fest numeriert, mit der einzigen Bedingung, daß im Durchschnitt zweier Simplexe die Reihenfolge übereinstimmen soll. Wir bezeichnen ein orientiertes Simplex σ_n auch durch das Symbol (e_0, e_1, \ldots, e_n) , in welchem seine n+1 Eckpunkte e_i in der gewählten Reihenfolge auftreten. Es sei

$$Q(e_0, e_1, \ldots, e_n) = \sum_{k=0}^n (e_0, \ldots, e_k) \times (\overline{e}_k, \ldots, \overline{e}_n)$$

gesetzt. Wir behaupten, daß für die dadurch definierte Ketten-Abbildung Q von K in $K \times \overline{K}$ gilt :

- (3). Q ist eine Homologie-Abbildung (d. h. mit ∂ vertauschbar).
- (4). Für zwei Coketten f^p und g^q und ein Simplex $\sigma_n(n=p+q)$ von K ist

$$f^p \times \overline{g}^q(Q \sigma_n) = f^p \circ g^q(\sigma_n)$$
 (4)

Beweis von (3). Der Rand einer Zelle $\sigma_r \times \overline{\tau}_s$ von $K \times \overline{K}$ ist gegeben durch $\partial(\sigma_r \times \overline{\tau}_s) = \partial\sigma_r \times \overline{\tau}_s + (-1)^r \sigma_r \times \partial \overline{\tau}_s$ (wobei das Cartesische Produkt eines Simplexes mit einer Kette in naheliegender Weise zu interpretieren ist). Man erhält also 5)

$$\begin{aligned} \partial Q(e_0, e_1, \dots, e_n) &= \\ &= \sum_{k=0}^n \left[\partial (e_0, \dots, e_k) \times (\overline{e}_k, \dots, \overline{e}_n) + (-1)^k (e_0, \dots, e_k) \times \partial (\overline{e}_k, \dots, \overline{e}_n) \right] \\ &= \sum_{k=0}^n \sum_{i=0}^k \left(-1 \right)^i (e_0, \dots, \widehat{e}_i, \dots, e_k) \times (\overline{e}_k, \dots, \overline{e}_n) + \\ &+ \sum_{k=0}^n \sum_{i=k}^n (-1)^k (-1)^{i-k} (e_0, \dots, e_k) \times (\overline{e}_k, \dots, \widehat{e}_i, \dots, \overline{e}_n) \right]. \end{aligned}$$

 $[\]hat{e}_i$ bedeutet, daß e_i aus dem betreffenden Symbol weggelassen werden soll.

Das Glied k=i=l der ersten und das Glied k=i=l-1 der zweiten Summe $(l=1,2,\ldots,n)$ heben sich weg; die Glieder k=i=0der ersten und k = i = n der zweiten Summe sind = 0. Es bleibt also

$$= \sum_{i=0}^{n} (-1)^{i} \left[\sum_{k=0}^{i-1} (e_{0}, \ldots, e_{k}) \times (\overline{e}_{k}, \ldots, \widehat{e}_{i}, \ldots, \overline{e}_{n}) + \sum_{k=i+1}^{n} (e_{0}, \ldots, \widehat{e}_{i}, \ldots, e_{n}) \times (\overline{e}_{k}, \ldots, \overline{e}_{n}) \right] =$$

$$= \sum_{i=0}^{n} (-1)^{i} Q(e_{0}, \ldots, \widehat{e}_{i}, \ldots, e_{n}) = Q \partial(e_{0}, e_{1}, \ldots, e_{n}).$$

Beweis von (4). Die der Abbildung Q zugrunde liegende Eckpunkt-Numerierung soll auch für das - Produkt verwendet werden. Dann ist

$$f^{p} \times \overline{g}^{q} (Q(e_{0}, e_{1}, \ldots, e_{n})) = f^{p} \times \overline{g}^{q} (\sum_{k=0}^{n} (e_{0}, \ldots, e_{k}) \times (\overline{e}_{k}, \ldots, \overline{e}_{n})) =$$

$$= f^{p} (e_{0}, \ldots, e_{p}) \cdot \overline{g}^{q} (\overline{e}_{p}, \ldots, \overline{e}_{n}) = f^{p} \circ g^{q} (e_{0}, e_{1}, \ldots, e_{n}).$$

3. Vergleich der Abbildungen D und Q

Die Abbildung D überträgt die Simplizialzerlegung von K isomorph auf die Diagonale D(K). Es gibt eine simpliziale Unterteilung $(K \times \overline{K})'$ von $K \times \overline{K}$, welche diese Simplizialzerlegung der Diagonalen enthält (z. B. die von Freudenthal [4] angegebene). U sei die Ketten-Abbildung von $K \times \overline{K}$ in $(K \times \overline{K})'$, welche jeder Zelle ihre Unterteilung zuordnet. D ist eine simpliziale, UQ eine Ketten-Abbildung von K in $(K \times \overline{K})'$.

(5). Die Abbildungen D und UQ sind ketten-homotop; d. h. es existiert für $n = 0, 1, 2, \ldots$ je ein Homomorphismus Y_n der Kettengruppe C_n von K in die Kettengruppe C'_{n+1} von $(K \times \overline{K})'$, derart daß für jede Kette $a_n \in C_n$ $Da_n - UQa_n = \partial Y_n a_n + Y_{n-1} \partial a_n$

(5)

ist (für n=0 fällt das zweite Glied rechts weg).

Beweis. Es ist $D \sigma_0 - UQ \sigma_0 = 0$ für jedes 0-Simplex σ_0 ; wir setzen $Y_0 \sigma_0 = 0$. Für alle $n < m \pmod{m > 0}$ sei Y_n schon definiert, derart, daß die behauptete Beziehung für diese n gilt, und daß ferner für jedes Simplex σ_n die Kette Y_n σ_n in $(\sigma_n \times \overline{\sigma}_n)'$ liegt. Dann gilt für ein Simplex σ_m

$$\partial \left(D\,\sigma_{m}-\,U\,Q\,\sigma_{m}
ight)=D\,\partial\sigma_{m}-\,U\,Q\,\partial\sigma_{m}=\partial\,Y_{m-1}\,\partial\sigma_{m}\,+\,Y_{m-2}\,\partial\,\partial\sigma_{m}$$
 ,

also $\partial(D\sigma_m - UQ\sigma_m - Y_{m-1}\partial\sigma_m) = 0$; die Klammer ist also ein Zyklus. Da dieser Zyklus in $(\sigma_m \times \overline{\sigma}_m)'$ liegt, und da in der Unterteilung einer Zelle jeder Zyklus der Dimension m>0 ein Rand ist, gibt es dort eine Kette $Y_m \sigma_m \in C'_{m+1}$, derart daß

$$D\sigma_m - UQ\sigma_m - Y_{m-1}\partial\sigma_m = \partial Y_m\sigma_m$$

ist. Dadurch ist Y_m in der gewünschten Art definiert.

4. Beweis des Satzes (1)

Nach (5) gilt für einen Zyklus z_n von K

$$Dz_n - UQz_n = \partial Y_n z_n ,$$

d. h. die Bildzyklen Dz_n und UQz_n sind in $(K \times \overline{K})'$ homolog. D_0z_n ist die Homologieklasse von $K \times \overline{K}$, deren Unterteilung UD_0z_n den Zyklus Dz_n enthält, also auch den Zyklus UQz_n . Da U die Homologiegruppen isomorph abbildet, gehört Qz_n der Klasse D_0z_n an, und es ist nach (4)

$$f^p \times \overline{g}^q(D_0 z_n) = f^p \times \overline{g}^q(Q z_n) = f^p \circ g^q(z_n)$$
.

LITERATURVERZEICHNIS

- [1] J. W. Alexander, Ann. Math. 37 (1936) 698-708.
- [2] P. Alexandroff und H. Hopf, Topologie I (Berlin 1935).
- [3] E. R. Brändli, Beiträge zur Theorie des Cohomologieringes, Dissertation E. T. H. 1948.
- [4] H. Freudenthal, Fund. Math. 29 (1937) 138.
- [5] S. Lefschetz, Trans. Am. Math. Soc. 28 (1926) 1—49.
- [6] S. Lefschetz, Algebraic Topology (New York 1942), S. 173 ff.
- [7] J. Leray, J. Math. Pures Appl. (9) 24 (1945) 95—167.
- [8] G. de Rham, Comm. Math. Helv. 4 (1932) 151-157.

(Eingegangen den 3. Mai 1949.)