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Hoelder continuity and initial value problems
of mixed type differential équations1)

by Y. W. Chen, Détroit, Mch. (USA)

§ 1. Introduction

For the partial differential équations of elliptic type with analytic coefficients

the functional behavior and in particular, the question of continuation
of solutions on and near the boundary are of great interest2). A very important
method for such study is the method of H. Lewy [12a]. It has been used for
successful treatment of a variety of linear and non-linear problems, as for
instances, the problems on cavitational flow [6] and of the boundary behavior

of minimal surfaces [12b]. This method consists in the construction of the
analytic extension of the solution into the complex domain in order to obtain
information on the behavior of the solution in the real. The présent work
originated from the idea to extend the method to mixed type équations and
to treat a typical problem such as the behavior of the solutions of the Tricomi
équation when the singular Une is approached from the elliptic part of the
domain. Because of the analytic nature of the question it seems natural to
consider for x > 0, the typical équation

%mUyy+Uœx 0 withm>-l (1.1)

where the exponent m is a real number and not necessary an odd integer. The
restriction m > — 1 is justified by various reasons3), one of which is that the
solution of the Caxjchy-Kowalewski problem of (1.1) with analytic data
requires such a restriction, see Bekgman [1].

For the use of Lewy's method it is convenient to put (1.1) in the normalized
form:

Uxx + uyy + -^ux 0, (1.2)

where 2a m/(m + 2) and (1 —- 2ot)x X(1~2a). We may restrict oursel-

ves to positive a with 1 — 2a >0 by considering the Belteami-Stokes
équation Z-«x - »g, Z-«,--t£. (1.3)

*) This research was supported by the United States Air Force through the Air Force Office
of Scientific Research and Development Command under Contract No. AF 49(638)-107.

2) For results on équations of higher order with more than 2 independent variables cf. F.
John [10], C. B. Morrey and L. Nirenberg [14].

3) For équation (1.2) with 2 a > 1 cf. Htjber [9a]
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Henceforth we shall use (1.2) for a > 0, 1 —2a > 0, and for the same a the
following équation of v* :

v*xx + **w -^"4 0. (1.2/

Another set of équations which is équivalent to (1.3) and is expressed in
terms of (u, v) instead of (u, v*), is introdueed in § 2. We shall be dealing
with thèse équations in the main part of the paper ; only toward the end, § 9,
shall we return to équation (1.1). There, in §9, ail the results obtained in
the preceeding sections are reformulated and summarized for the solutions
U(x,y).

For (w,v*) of the Beltbami-Stokes équation our results are briefly as
foliows :

1. Characterization of the initial data of (u, v*) on X 0, theorems 2

and 2', § 7, (the main theorem). We consider the solutions (u, v*) which are
twice continuously differentiable in a domain D with a boundary segment l
on X 0. They are grouped into classes Zfk according to their ' 'radial"
Hoeldeb continuity properties4) in D + l. Similarly the analytic functions
g(W) of a single complex variable W in D, are also grouped into classes ©*
according to their Hoelder continuity properties in D -\- l. Then there is

a one to one correspondence between the éléments of Zrk and the éléments
of ©£, such that the initial data (u (y), t>* (y)) and g (y) of the corresponding
éléments are related to each other by the simple transformations of the type

If (see §6.4 and §7.4).
2. A generalization of Privaloff's theorem [16] for conjugate harmonie

functions, theorems 3, 3', § 8. The generalization is to the effect that if u is

continuous up to l and if on l, u(y) is Hoelder continuous with exponent

//, 0 < fi < 1 — 2oc, then v*(y) has the exponent ^ + 2a, and conversely.
3. By means of the induction which is based on the formulas of § 5, the

above results can be extended to other values of ju and to cover the cases of
differentiable initial data and data which become Hoelder continuous after
intégration, theorems 5, 5', § 8. Theorem 6, § 8 generalizes a theorem of
Kellogg [11] for harmonie functions.

Both the équations (1.2) and (1.3) and the corresponding équations with
more than two independent variables hâve been extensively studied by
Weinstein [17], Huber and others5). Of particular interest for us hère is a
theorem by A. Huber [9a], on the uniqueness of solution of (1.2). This theorem

is stated in § 8 as theorems 4, 4', and is shown on the basis of our main

*) For the définition, see § 6, (6D).
6) Cf. Huber [9b], [9c], also Brousse and Ponoin [3], Olevskii [15].
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theorem to be équivalent to the theorems 3, 3'. The uniqueness theorem can
also be formulated as a reflection law for équation (1.1), § 9.1.

The proof of the main theorem in § 7 requires a generalization (theorems 1,

1', § 6) of a theorem by Hardy and Littlewood [7], which is concerned with
Hoelder continuity properties of functions represented by intégrais I±ô of
fractional order. A considérable amount of détails is needed in § 3 and § 4 to
set up the correspondence between (u, v) and g(W) in D and to insure the
convergence to the limit relations Ifô of the initial data.

The behavior of the solution at the endpoints of l as well as along other
parts of the boundary of D, is not discussed in this paper6).

By the same method one could study solutions of (1.1) and (1.2) which
are entire5) in the half-plane with initial data integrable along the whole
y-axis. However we shall not go into this question hère.

§ 2. The difîerential équations

If (u, v*) satisfies (1.3) and each function is of class C2, then u and v*
satisfy (1.2) and (1.2)' respectively. Thus the functions (U, V) given respec-
tively by

U(x, y) u ((1 - 2a)x1-2» y) V(x, y) v* ((1 + 2<x)x1 + 2« y) (2.1)

4a
are solutions of équations of the form (1.1) respectively with m — p= -——

— 4a 1—2a
p > 0 and m q -— ¦, 0 > q > — 1. In this manner solutions of

1 -j- Zql

(1.1) with m> — 1 can be obtained from those of (1.3). Note also the
équivalence of the following initial conditions :

J7(0, y) u(0, y) [7,(0, y) lim X )\X{X, y)

By using the polar coordinate (s, 0), it is seen that the left hand side of
(1.2) can be written in two différent ways as divergent expressions. One

expression leads to the polar coordinate form of (1.3),

s2"-1 (sin 0)2«uq - v*, s2a(sin 0)2(Xu8 a-1 v*$ (2.3)

5) See note 6 on page 2.

•) For the theory of boundary value problems of mixed type équations cf. Bebs [2], and
Fbiedrichs [4].
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while the other leads to a system of équations for (u, v) as follows :

(sin O^s^uq -~ v8, (sin 0)2a[wa + 2<xs~1u] s^vq (2.4)

It is with this system for (u, v) that we shall be mainly concerned.
A system (u, v) possesses the property P^ 0 < fi < 1, if it is of the class

C2 in D and in the neighborhood of W 0 in every sector e < 6 < n — e,
u 0(s^), v 0(5^).

Lemma 2.1. If a solution (u, v) of (2.4) has the property P^, then (su8,
8 8

I Cuite10) C v(tet0) \
sv8) and / — ~ dt, I — dt\ are also solutions of (2.4).

o o

§ 3. The operator L

Consider a solution u(X,y) of class C2 in D. By Lewy's method, the

analytic extension of u into a function Q u(X, y) of two complex variables

X X + iX' and y y + iy' is obtained in terms of the variables Z and
W: Q(Z, W) u{X, y) with Z - y + iX and W y + iX.

Q has the foliowing properties: a) it is defined for W c D and — Z c D,
h)Q(Z, W) u{X, y) when W —Z, and c) d2Q/dZdW + <x(Z + W)-1-
(dQ/dZ + dQ/dW) 0. c) is derived formally from (1.2) by replacing in
it {X9y)by(X9y).

Instead of determining Q for ail values of Z and W, it suffices hère to find
the function G(r, s, 6) Q( — re~te, sete) of the real positive variables
(r, s) for each fixed value of 6, 0 < 0 < n. Then we hâve

The last condition expresses the analyticity of Q {Z, W) at W — Z.
(3.1) is an initial value problem. Its solution is represented by Riemann's
formula, and the Reemantst function in this case is known explicitly. It is

givenby 11(0, r;r, s) a>«F(l -a,«,l,z)
a) (s —rjr) (r —rjo)--1, z rj(o —r) (r — s) (s —rjr)-1^ rjo)-1

in which the parameter 0 occurs in the form of rj e~2ie.

Our main interest in the function G(r, s, 0) is to obtain the limit

]imG{r,8,0) for W^O, WeD. (3.3)
f->0
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For, according to Lewy's theory, g(W) should be an analytic function of W.
To earry out the limit we need the assumption that the solution (u, v) is
continuous at the origin, and without loss of generality, we may set v (0) 0.

The Riemann formula consists of three terms. One term involves the values
of u at the endpoints of the initial segment, with the origin as one of the end-
points. The other two terms are intégrais over the initial segment, one inte-
grand contains ^asa linear factor, and the other, uq We replace uq in the
last intégral by an expression involving vs, using the first équation of (2.4),
and then carry out the intégration by parts. For abbreviation we introduce
the complex valued function

u(X9y) + iv(X,y), (3.4)

and write (3.3) in the foliowing form

g(W) Lz(W). (3.5)

Lemma 3.1. When u=l, v 0, then

Lemma 3.2. When gx Lzx and g2 Lz2, then for real constants cx and

c2, we hâve c1g1 + c2g2 L{c1z1 + c2z2).

Lemma 3.3. Let x v(l " ^)l(l ~ **?) where rj e~2^, 0 < A < 1.
The operator L has the foliowing représentation :

V) (L)
with

1 dv(XW) (3-6)
Q(W, ri) J(l -kvWvAx, V) dX

Another représentation of L is

2g(W) P(W,rj) + iQ'(W,v) (L')

with Q' derived from Q, as follows,

(3.7)

The functions <pk A? 0, 1, 2, 3, 4 are given explicitly in terms of the
hypergeometric functions :



Hoelder continuity and initial value problems 301

We hâve:
<p0 «*(1

(1 -a)cf J(l - Xri)-"F0(X)dk, (3.8)
a

c<xr)«F0{X),

§ 4. The operator S

4.1. The fonction £>(Z, Tf) has the property (see Lewst [12a]),

lim Q(Z, W) g(W) for TF^O, lim Q(Z, Tf) g(- Z) forZ^O,

and £?( — W, Tf) u(W) is real. When g(W) is given in D, to find i3 one

may proceed as follows: First, find a fonction Q'(Z, W) such that Q1 has
the same properties a) and c) as described in § 3 for Q, and that instead of
b), Q' satisfies the condition b;):

lim Û'(Z, W) g(W) for W # 0, lim fi'(Z, Tf 0 for Z ^ 0
TF->0

Secondly i3 is obtained from Q' by Q{Z, W) Q'{Z,W) + Q'(—W, —Z).
It then follows that <a(TF) 2ReQr(- W, W).

Given g(W) in D, continuous at W 0, we can construct Q'(Z, W)
explicitly in two différent ways. As it turns out, Q' is in fact a fonction of W
and f — Z/TT, jQ; ,E7(Tf, f), such that ^ is analytic for Tf in D, and
for arbitrary f in the complex f-plane which has a slit along the positive real
axis. From E one dérives the values of a solution u by

u(W) 2ReE(W,rj) (4.1)

One way of deriving E(W, £) is to solve the differential équation of E in
the variables W and £ (because of condition (c) of Q1),

- Tf (1 - E)Ewi + (l _ £ - a - «f) j&{ + «TFJ^ 0

with E(W, 0) £(Tf) for Tf ^ 0, and jB(O, oo) 0.
Another way is to find E(W ,rj) by setting E(W, rj) G {s, s, d) where

O(r, s, 6) is the solution of the differential équation in (3.1) with assigned
values along the characteristics :

G(0,s,6) g(W), W^O; G(r,O,0) O. (4.2)
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This characteristic initial value problem can be solved explicitly by using
Riemann's formula:

O(r, s, 6)

0

where jR is the Riemank function (3.2).
It is immediately seen after putting r s in (4.3) that each of the terms

on the right hand side will diverge when 6 -> 0, n. Hence a regrouping of
the terms in (4.3) is necessary.

First, the variable z in (3.2) is in this case z -—-- which is
1 — rj t

inconvénient for the range of intégration 0 < t < s of (4.3). We shall introduce
the variable

z _ 1,(1 -A)

and express the hypergeometric function which occur in R in terms of f.
Secondly we may either (a) carry out the intégration by parts in (4.3), or
(b) we may replace the factor g(tel&) in the integrand of (4.3) by [g(sete)
— g{te10)], so that the first terni on the right hand side of (4.3) has to be

modified accordingly. In the case of (a) we find

E(W, r,) fm, V)*-~a U9dfW) dX, R(X, r,) X**(X - r,)-*F0(Ç) (4.4)
0

For the case of (b) we hâve the following

Lemma 4.1. E W, rj) can be represented by

t,) e(rj)g(W) + JZ(A, rj) [g(W) - g(XW)1dX (4.5)
where °

K(X9ti) - -«(1 -eL)
and

The function E(W, f) is obtained simply by replacing in the above rj by f.
Remark. The easiest way to verify e(rj) is by the following considération.

When g(W) 1, then Q(Z, W) l, hence u(W) 1 and ReE{W, rj)
Ree(rj) \. But on the other hand e(rj) must satisfy the differential équation

of E, hence (1 — rj)e. + (1 — rj — a — ocrj)ev 0, which together with
Ree(rj) | détermines e(rj).
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Lemma4.2. Another représentation of EiWjtj) isasfollows:

i
E(W, rj) =@o(rj)g(W) + J(A — rj)~1~~(X0i(Ç, y)[ç(W) —X20L~~1g(XW)]dX (4.6)

o

where 0X -«(1 - oc)rjF2(O and 0O e(v) + $ K(X, rj)(l - A1"
0

*.(»?) (1 - r,)*-" + e-^ p/^^r2^ g) ^^C1, «, 2 - «, i?)

4.2. We proceed to dérive a formula for #(PF). For this purpose it is con-
venient to assume that g(W) has the property P^ : g(W) 0 (| W |f*) in
every sector e < 6 < n — e. From u(W) 2BeE(W, yj) it follows — uq

2lm(WEw —2rjEv), hence we hâve

(4.7)

with D(W, 77) (sin 0)2aJ5(ÏF, ^) - 2(sin 0)**JJS^fte*

Obviously the factor (sin O)2* on the right hand side of (4.7) is inconvénient
for the limit process 0 -> 0, a. Hence we rewrite it in the form (sin 0)2a

c~1^~a(l — rj)20t, then shift the factor (1 — rj)2a under the intégral sign
(intégrais over A) and finally substitute (1 — rj)2cc by (1 — Ç)20i(X — rj)2«X~2(X.

Wefind

Lemma4.3. v(W) 2ImD(W,rj) with the foliowing représentation of

D{W,rj) Q

where (P,(f, i,) «(1 - ^

We define the operator fi by

}) + 2iImD(W, ri) (B)

As for the operator £, we hâve for B also 6(1) l7) and cxzx + c2z2

when zk figrft, cft real, h= 1,2.

') When (/(ÎF)ï-E *» the corresponding m is a monotonie function of 6 and independent of s.



304 Y. W. Chen

§ 5. The correspondance between g(W) and z(W)

From now on we shall consider in D analytic functions g(W) and solutions
z(W) of (2.4) of class C2, such that both g and z hâve the property P
In particular, g(0) z(0) 0. Without making any assumption on the
boundary behavior of g and z except at the origin, we hâve for the operators
L and 6,

Lemma 5.1. There is a one to one correspondence between g and z with
the property P^8).

That the property P^ is preserved by the operators L and B follows
essentially from the linearity of the operators. Note that the bounds required
in PM dépend on the sectors s < 0 < n —s, and in each sector the inte-
grands of L and 6 are bounded. The one to one correspondence follows
from the uniqueness of solutions of (3.1) and (4.2).

We dénote the correspondence by g <—> z.
w s

f^-Ldt and
J Q J t
o o

provided the last two functions hâve the property P^.
In the représentations of L and fi it is seen that intégration and differen-

tiation with respect to s can be carried out under the intégral signs. Hence
the statement in the lemma can be verified directly.

§ 6. A theorem on Hoelder continuity

6.1. The transformations Tdp and Tjô.
Let rj e2ie, 0 < 6 < n. For each value of d we consider the transforma-

sions l, rj) M2(s, rj) Tj6m2(s, rj)

Lemma 5.2. g «-> z implies f^-de +-? f
o o

of the complex valued functions rat- and M{, i 1,2, where Tdp and T$
1 > <5 > 0, /8>0, are given respectively by the foliowing intégrais :

8

Mx(s, rj) $s@(t — sr))à~1@(s, £, rj)t'~Pm1(t, rj)dt, (6.
o

(6.2)

8) The method of obtaining solutions u by associating them with analytic functions of a

complex variable is well known. It has been extensively used by Bebgman in more gênerai
cases. His work on this subject [1] were concerned with expansions of solutions which hâve
analytic data on the initial segment.
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0 is a given function whose explicit form is immaterial. It is continuous in
its argument and satisfies the conditions :

\0(s,t,rj)\<0o (6A)

\0{8,t,rj) -0(s ~-h,tirj)\<0oh\s -h -trj]-1, 0< t<s -h, (6B)

where 0O is a constant independent of h, s, t and ^. Furthermore 0 is assumed
to dépend only on r) and on the ratio of t and s9),

0(s!t,f])=W(tls,r)). (6C)

Définition. A real or complex valued function f(s,rj) which is continuous
in D up to l, is said to belong to the class i/ with 0 < ^ < 1, if

(a) f{Q,ti) O and

(b) |/(«,,,) -/(«-A,i,)|O*f { '

hold where the Hoelder constant is independent of rj.

Theorem 1. In T^ let m1 e Hki with lcx > 0, ^ + ô < 1 and &! —/3> —1,
then il^! e Hki+Ô.

Theorem T. In Tjô let ra2 e £TA.2 with 1 > lc2 > ô > 0 and Jfc2 — ]8 > — 1,
then M2 €Hk%_8.

This is a generalization of a theorem of Hardy and Littlewood [7] on the
transformations /8 and /~8 by intégration and differentiation of fractional
order ô: 8

M (s)

and g

M (s) I-*m(s) r(ll_ô) m{s) - p(
l_

&) j (s - t)-^[m(s) ~m(t)]dt
o

The foliowing is the scheme of a proof of theorem 1. The différence operator
Ah, h > 0 is applied to the variable s of the functions Mt:

AhMi(s,r]) $ -Y-'dt (6.3)
0 0

where in the second integrand, (s — h) takes the place of s while t and r]

are unchanged. A new variable r is then introduced by r s — t, to replace
t as the variable of intégration.

•) (6C) is used only once, that is in the proof of lemma 6.2, b).
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For abbreviation let

8-^mt(s) p({s) i 1, 2

sP(t -sV)*-i dx{8, t, r,) sf*(t -8V)-s-i d,(8, t,n).
• '

By rearranging the terms in (6.3) we obtain the following décompositions,

AiM^a, r,) Jtl + Jta + Jt3 + Jti, i=ï,2,
where

f i
Jn Pi(*){$d^s.t^Yj)^(s,t,t))dr - 1^(5 ~hit,rj)0(s ~h,t,

o a

J12 — /^(s, «, ?/)<?(«, t, rj) Arpt(s)dr
0

8

J13= — Jzt^di^,

h

and similarly,

«J21 $d2(s, t, rj)0(syt,rj)drAhp2(s)
h

h

J*2 $d2(s,t,r))0(s,t,r})Arp2(8)dr
0

J23= SAhd%(8,t,ri)0(8 —h,t,ri)[Arpt(8) - Ahp2(s)]dr

- Ahp2(s)]dr

The différences AhMt will be estimated, as in [7], by considering two cases

1) h < s < 2h and 2) s > 2h.

Lemma 6.1. When h < s < 2h, we hâve

| M%{8, ri) | < Nh**±d | Jf,(« - h, y) | < iV^±d

where the -f sign holds for i 1 and — sign for i 2, and the constant
JV is independent of h, s and 17.

Lemma 6.2. When s>2h, we hâve

| Jm | < Nhk*±d, n= 1,2,3,4
with the same qualification for the right hand side as in lemma 6.1.

In the remaining part of § 6 we give a proof of the two lemmas, from which
theorems 1 and V follow immediately.
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6.2 Lemma 6.3, Let l> d>O,r s —1>0, then

\t -5??|S-i<r8-iy \t __5^|_a-i<r-8-i (6#5)

hold. Furthermore, for h <r < s,

| Ah(t -sri)*-11 O(r -h)*-1 -r8"1 (6.6)

| Ah(t -srj)-*-11 Or-^r - A)-8"1* (6.7)

Prooî. (6.5) is obvious. For a proof of (6.6) and (6.7) note first
| a — be2i0\ <\a — b\ + 2Vo6sin 0 for any real positive a, b and 0 < 0 <n.
Hence for p> 0, (p 1 — S or p l + 3)

where 8f arg(^ — s) —- arg (trj — (s -— h))

Secondly sin 0' < h/\ s —tri\ < h/r, hence sin -~ 6r Or-Xh.

Finally, one vérifies by differentiation that \ s — t\~~v — \ s — ty \~p

is for fixed ri and fixed t < s —h, a decreasing function of s. Henee
| s - h — trj \~p - | s - tri \~p < (r - h)~p - r~». From this follow (6.6),
(6.7).

By the assumption we hâve m^t) Otki and ânmi Ohki. Furthermore,
àhs~P < Ps~P(s -h)-1 for /S < 1, and Ahs~P < fi*-1 (s -h)~Ph for fi > 1.
For convenience we combine the cases /9 > 1 and /S < 1 together and hâve
the following

Lemma 6.4. Let /? > 0, then for i 1, 2,

Os~P(s -hf^h + Os-^s -h)ki'ph (6.8)

Similarly we obtain the formula for Arp{(s) by replacing A in (6.8) by r.
The formula for (Ar — A^p^s) to be denoted by (6.9), is obtained by
replacing in (6.8), s by (s — h) and h by (r — h). Furthermore,

Ahd1(s,t,ri) OsP[(r -h)*-1 -r^ + Os^s -A)8"1^ -A)-1/* (6.10)

By replacing the expression in the bracket of (6.10) by r~1(y — A)""8""1 A we
obtain an estimate for Ahd2(s, t, ri) which we dénote by (6.11).

Lemma 6.5. In the product

p hx(s — h)Ps°ra(s — r)6-1 (r — h)0-1, b > 0, c> 0
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let c + a^0,c-\-a^ any integer, and k-\-/j,-{-o + a-i-b-\-c=l-\-Q.
Furthermore it is assumed that 1) A — q > 0 when c + a > 0, and 2) when
c + a < 0, then X — g + c + a > 0. Then the intégral over h<r < s

s

with « > 2A can be estimated by $Pdr < Nhfi where the constant N is

independent of 8 and A. *

Prooî. Consider the intégral over the last three factors in P, and set

(s—r) r(s — h), (r — h) (l--r)(s — h) so that the intégral is over 0 < r < 1.

This intégral is equal to const. s°(s — h)1**-1. F( — a,b,c + b,(s— h)/s)
The theorem follows from the behavior of the hypergeometric fonction at
h 0, and from the fact that \ < (s — h)/s < 1 because of s > 2h.

6.3. Proof of lemma 6.1. By assumption we hâve

h<s<2h. (6.12)

It suffices to show that Jft(«, rj) Oski±ô i 1,2, because it follows then

jf^ —h,ri) O(s - h)hi±d and hence J^Jft. Oh*i±ô due to (6.12). The
estimate of M^s,^) is obtained by using (6A), (6D) for m1(^) and (6.8)
for Arpz(s).

Prooî of lemma 6.2. By assumption we hâve

2h<s or i<a/(a— A) < 2 (6.13)

a) Estimate of J12 and J22. By using (6A) (6.5), (6.8) and (6.13).
b) Estimate of Jn. By (6C) one has Jn vn>i($)J[i with

c) Estimate of J21, J28 and J24- By using (6A), (6B) for 0, (6.5), (6.11)
for d2, and (6.8), (6.9) for p2, one obtains products of the form same as the
product P in lemma 6.5. Applications of this lemma give the required estimâtes.

d) Estimate of J13. By proceeding in the similar way as c) one obtains six
products of which three are of the form P of lemma 6.5 and the remaining
three are products of [{r — h)8*1 — r8-1] respectively with r*1, (s — r)*i~xr

8

and (s — r)*1""*^"""1 with j8> 1. The intégrais J over the first two prod-
8 2h 8 h

ucts are estimated by splitting J J + J, while it is convenient to treat
h h 2h

S Vth * 8 9

the last product by writing J J + J. The intégrais J and j* are estimated

by lemma 6.5 using 1 < r/(r — h) < 3.
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e) Estimate of J14. Let the intégral j* J + J. In the first term we use
h h M

(6A) for 0(s,rj) and @(s —h,rj), while in the second term (6C) is used
for Ah&. Lemma 6.5 is then applied to the last intégral to obtain the re-
quired estimate.

6.4. The transformations /£ and Ijô.
Thèse transformations are defined as generalizations of the intégration /8

and differentiation I~8 of the fractional order ô :

We hâve of theorem 1 the foliowing

Corollary. If m(t)€Hk, m(0) 0, then

I\m{s) e Hk+B for k + ô<l k>0, ô> 0

and

Ijdm(s) c Hk_8 for k - ô > 0 &<1, (5>0.

It is assumed that & — /? > — 1.
The following simple rules of differentiation and intégration may be men-

tioned: for 0 < ô < 1,

(6.14)

o o

The formulas hold true also when ô is replaced by — ô. Moreover, for 0 <ô < 1,

§ 7. The main theorem

7.1. Statement of the main theorem

Définition. By (5 (/^), 0 < ^ < 1, we dénote the class of analytic functions
g(W) go(X,y) + ig1(X,y) in D with the properties, (a) gr(O) 0 and
(b) g(W) e Hp (for the définition of H^ see §6.1).

Specifically, ©i(/*), ©2(/*) and ©3(/-0 dénote those subclasses for which
the ranges of ju are given respectively by <x< jlc < l — ocyl — (x</Lt<l and

20 Commentarii Mathematici Helvetici
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Définition. The classes of twice continuously differentiable solutions
z u + iv of (2.4) in D, with the property (a) z(0) 0 and the following
property (b) are denoted respectively by

Zx (fi) : a < ju < 1 — a (b) 8-«u c H^ and s«v e H^a
Z2(ju): 1 — oc < /i < 1 (b) sr«u c H^ and 8av8 c H^^

and

Z3(^): 0 < ju < a (b) u{W) 0(5/*) s«v c J5T|t+a and

o

Theorem 2. The operator L, g L(z) § 3, and its inverse B, z B(g)
§ 4, induce a one to one correspondent between the éléments of ©fc and those
of Zk, h 1,2,3. The initial values of the corresponding éléments are re-
lated to each other by the transformations of the type If° (§6.4, with ô oc,

(1 —oc)), which are given in the following (7.1), (7.2) and (7.3).
Let s | y | and introduce the function /(± s) by

f(s) go(s) + ta,noc7i g^s), /(— s) &,( — 5) — tan an gx{ — s)

Let the constants ^4 and Ax be ^4 r(2«)/r(a), ^ 4a~1^-1. The
following are the relations between the initial values of the corresponding
éléments z <—> g. For g c %x, z c Zt,

f(± s) 4/;Ltoa-««(± 5), <M± 5) ^/r^vti s) (7.1)

For (7 c ©2, z c Z2, the first équation is the same as that in (7.1), but the
second involves v8 instead of v,

i(±s) AI*1_2Ks-«u{±8)i g1(±s) A1I10-«8«dv(±S) (7.2)

Finally, for g € ©3, z e Zz, the second équation is the same as that in (7.1),
8

while in the first équation the function S(± s) $t~1u(± t)dt is introduced:
0

f(± 8) =A {ItZL^-aù(± s) - alt_2xs-u(± s)}

g1(±8) A1Iîa(Pv{±s).

One can express g in terme of z by simply inverting the operators If of (7.1)
and (7.2). The inverse relation of (7.3) is given by

5i-««(± 8) AI\ZÎX {f(± 8) + af(±s)}, f(± »)= /«-V(± t)dt (7.3),
0

7.2. An outline of the proof. At the outset one has to détermine, among the
many intégral représentations of the operators L (or B), one, which is appli-
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cable to the class Zk (or ©fc) under considération. In the intégral représentation
one replaces the variable A of § 3 and § 4 by A t/s and uses t as the variable
of intégration. The intégrais then hâve the form of T\ or Tjô of § 6. In the
place of the functions (m^s, rj), m2(s, rj)) of (6.1) and (6.2) we shall sub-
stitute (raw, sav) or (s^u, sav8) or (s1'-clu, sav) depending on the value
of h 1, 2 or 3 in the operator L(Zk). For the operator B(©fc) we shall
substitute g(W) for mx or ra2 in (6.1) and (6.2). In order to apply theorem 1,

it suffices to verify (by lemma 7.1) the properties (6A), (6B) and (6C) for the
functions (pt- and the functions &{ which occur under the intégral signs of
(3.6) (3.7) (4.6) and (4.8). In thèse formulas there are additional terms not
included in the intégrais. The Hoelder continuity properties of those ternis
are easily proved (lemma 7.2). It then follows that L (Zk) e ©fc and B(®fc) e Zk.

To obtain the relations between the initial values of g and z what is needed
is to carry out the limit process 6 -> 0, n in the intégral représentations of
L and B, under the intégral sign. Since each function çpi or &t either vanishes

or becomes a constant in the limit, the limit relations hâve form of Idp or Ijd.
The Hoeldeb continuity property of g(W) in D or at least in closed

subdomains of D adjacent to l, follows from the same property of the initial
values of its real or imaginary part. Hence to prove g e (5(/u), it suffices to

prove the required property for go(y), gi(y) or f(y), by the corollary of theorem

1 § 6.4. On the other hand, to prove z € Zk, theorem 1 will be needed.

7.3. Proof of theorem 2.

(a) For the operator L(Zk). When k=l, the intégral représentation (L')
is used with (3.7) and the first équation of (3.6). For Je 2, use (L) with
(3.6). By the assumptions on Zx and Z2 the limit process can be carried out
under the sign, when 6 -> 0, n. The resuit is the limit relations (7.1) (7.2).
The Hoelder continuity property of g(W) follows from that of gi(y) and

/ (y) y (aPP!y corollary §6.4).
For k 3 one substitutes u for u and / for / in (7.1), then differentiates

with respect to s using (6.15).
(b) For the operator B(©fc). For k 1, use (JS) with (4.6) and (4.8).

When k 3, use (4.8) and the following ,,integrated form" of (4.4): one
~ w *replaces in (4.4) g by <7 ^t"-xg(teie)dt and u by u. The équations (4.4)

o

and (4.6) are to be multiplied on both sides by the factor £~a, and the équation

(4.8) by sa.

As for k 2, we need the difïerentiated form of (4.8): -=—D(W,rj),
which is obtained by differentiating under the intégral sign of (4.8). Let
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Wx 02 + 03 + X0é, (A - rir-W1 7(A, rj) and W2 <P3 + A#4, then
by intégration by parts in the middle term, we find

d dq(W) x x q(Xseie)
D(W,rj) 05^^ + s^g(W)iY(X,r])dX + ai(k~r)r~W2y[ }

dX
os as o o /s

j (7.4)
0

We omit the detailed expansion of the last term of the above formula.
For the lirait process one observes that

02 -> 0, 03 -> 0 and <P4 -» - Je^^/^^fa)) as 6 -> 0, tt.

To justify the application of theorem 1 to the intégral représentations of
the operators B(©fc), we need the foliowing two lemmas.

Lemma 7.1. A function 0(Ç, rj) satisfies the properties (6A) (6B) and
d0

:Const. I 1-CI8-1(6C) if it is continuous for 0 <A < 1, 0<0<7i and

with ô > 0. Similarly, any positive power of X has the properties (6A)-(6C).

Lemma 7.2. Let g{W)€Hlxy g(0) 0, 0</i<1. Then

sY(l - ti)Yg(W) e H^ for 0 < y, /a + y < 1

and
Jn(W\

H,,,»* for 0 < u + y — l <

The simple proofs of the lemmas are omitted.
One vérifies easily that 02, 0Z and 0é satisfy the conditions of lemma

7.1 with ô 2a or (1 — 2a). Lemma 7.2 is used to treat the terms

sot06g(W) in (4.8) and ^0^—^ in (7.4). We omit the discussion of the

application of theorem 1 to the last intégral of (7.4).

7.4. We shall formulate the main theorem in terms of other classes of
solutions of (2.3) and (2.4) because they are more useful than the classes

Zk, h 1,2,3. For this purpose let us consider again the transformations

M1 Td^m1 and M2 Tp6m2. (7.5)

If the two équations are each multiplied by a power sy then the resulting
équations can be written in the form

^ and &M% Tjly(&mt) (7.6)
Similarly,

and ^am, Ij+y(&m%) (7.7)
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hold. Now, if we assume that s^m^ € Hki instead of mi e Hki, then we may
apply theorem 1 and its corollary to (7.6) and (7.7) to conclude that
syM{€Hki±d, provided that &t- — /? — y> —- 1. We shall say that (7.6)
is derived from (7.5) by a shifting of the power s'y under the intégral sign.

Instead of z we shall use
z* u -)- iv*

where (u, v*) is a solution of (2.3). The following relations exist between v
and #* : 8

8**v8 v* and v* s2oLv — 2oc$t2OL-1v(teie)dt (7.8)
o

so that the property of s2av e H is équivalent to #* c H^.
We introduce the following classes of solutions with (a) z* (0) 0 and the

properties (b) :

Zii/A'): 0 </jl'< l -2a, (b) u € £T^ *;* € 2^,+2a

Z'%(ia'):\ -2cl<p'<1 -a, (b) u c H^ v^H^^^, v*(0) - 0

For comparison with the définition of Zk § 7.1, set fjt' /u — a for h 1, 2

and // /* — a + 1 for k 3.
Correspondingly, ©((/*') for 0 < ^ < 1 — 2a, and ©£(/*') for

1 ~2a</a/<l —a are the classes of analytic functions g(W) with
(a) gr(O) 0 and (b) s^giW) e^+a10), while ©i(^) consists of functions

with (a) gr(TT) O ^' and (b) 5a-^ e H^^^ for 1 - a < /*' < 1.

Theorem 2'. The operator L and its inverse 6 induce a one to one cor-
respondence between éléments of ©£ and those of Zk, fc 1, 2, 3. The

following are the relations between the initial values of the corresponding
éléments :

s«f(± s) AIt_M± s) s«9l(± s) AxI^as^v{± s), (7.1)'

s«f(± s) AIt_M± s) ««flfxti s) AJlT'vï (7.2)'

AJ-*v*9. (7.3)'

Proof. Use the same intégral représentations of the operators L and B

as in theorem 2, and apply to them the process of shifting the power sa for

10) 8«g(W) € H^ is équivalent to W*g(W € Hp.
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k 1, 2, 3. In the last case of k 3, the shifting is done after the équations
hâve been differentiated with respect to s.

Remark. In formulating the main theorem we hâve restricted ourselves
to three classes of functions with Hoelder continuity properties. By making
use of the lemma 5.2 one can define corresponding classes with n-times dif-
ferentiable initial values, such that the highest derivative are Hoeldeb con-
tinuous, or classes of functions whose initial values become Hoelder con-
tinuous after repeated intégrations. Lemma 5.2 together with (6.14), applied
to (7. l)-(7.3), give the relations of the corresponding initial values.

§ 8. Hoelder continuity ol the conjugate lunctions

8.1. Theorem 3. Let u(W) be a solution of (1.2) of class C2 in D and
continuous up to l. Let the initial values u (y) hâve the properties (a) u (0) 0
and (b) u(y) is Hoelder continuous with exponent ju, 0</a<l — 2a.
Then the solution 2* u + *v* belongs to the class Z^ju), where v* is
the conjugate of u in (2.3) with v*(0) 0.

Remark. The existence of the initial value v*(0) for any conjugate v* of
m has yet to be proved. Under the assumptions of theorem 3, we shall prove
first a few lemmas on solutions z u + iv of the équation (2.4) which
serves as a basis for an inductive reasoning due to lemma 5.2.

Lemma 8.1. u(W) 0a/*.

Proof. For the range of ju, 0 < ju < 1 —2a, itis possible to construct a

spécial solution <p(W) of (1.2) with the foliowing properties:
1) V(W) ^p(r), t |(1 + cos 6), 0 < 6 < n, 2) p(r) > a constant

pQ > 0 for 0 < t < 1. One finds for p(t) the foliowing differential équation

r(l - r)p" - (1 - 2a) (r - W + p(p + 2a)p 0

with the independent solutions px F( — ju, ju -\- 2ol, £ + a, t) and

p2 xh-°lF{ — fi + | — a, fx -f | + a, | — a, r). The last hypergeometric
function takes on only positive values for 0 < r < 1. Hence we can ob-
tain a <p by setting 9? px + Cp2 with a suitable positive constant G. By
further multiplying ç> with a suitable constant if necessary, we can make
| u(W) | < (p(W) to hold on the circumference of a half-circle around the
origin and on its diameter. By the maximum principle it then follows that
I u(W) | < <p{W) Osv- also holds inside the circle.

Lemma 8.2. In the domain D let v be a conjugate solution of u in (2.4).
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Then there exists a constant v0 such that

T
o

and v0 is independent of 0, 0 < 0 < n.
8 0*

Prool. 1) By applying the intégration J fdOdt on both sides of the first

équation of (2.4) and by carrying out the intégration with respect to 0 on
the left, and with respect to t on the right hand side, one finds easily the

existence of the limit of J v (ee%e) dO as e -> 0. Dénote the limit by J dx, 02),

it is an additive interval function of (0l9 62). Lemma 8.1 applied to the
integrated équation gives

$v(seie)d0 —J(6l9 fla) Oar. (8.2)

2) Multiply the second équation by s and integrate it as follows:

f J / sin 0**(tut + 2au) dt J fv(tet0)dOdt - (62 - 0x) J v(teidi)dt (8.3)
01 0\ e « ©l «

One carries out the intégration with respect to t at the left hand side and then
replaces e by 0, it is seen then that the left hand side is 0s1+^. Divide the
whole équation by s and finally set s ~> 0. It then follows from (8.2),

1 *

lim (02 - dj) — $v(te%dl)dt J(0l9 02) (8.4)

By interchanging 0t with 02 in (8.4) one concludes that the intégral of (8.1)
is independent on 0. The lemma is proved.

By writing v for v — v0 one finds from (8.1) by intégration by parts,
8

Lemma 8.1. f| v{tete)dt Os*

0

We introduce the foliowing fonctions z u + iv with

u

and 'z u + iv with
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Lemma 8.2. Both z and z are solutions of (2.4) with continuous boundary
values. Moreover z e Z[(/&).

Prooî. The continuity of the initial values of v follows from integrating
the second équation of (2.4) over ô < 0 < 0x and 0 < t < s and then

letting ô -> 0. Obviously u8 and l)a are continuous in D and up to l except
at the origin. z and z are solutions by lemma 2.1.

Proof of theorem 3. By theorem 2' there corresponds to z an analytic func-
tion g c ©£(//), such that by (7.1);

As-v-I^JIjl^ s) (8.5)

holds. We now apply the differentiation process s— on the right hand side
ds

of (8.5) twice, and under the intégral sign. We find by using (6.14),

As-«Il_M±8). (8.6)

Because by the assumption u ± s) is Hoelder continuous with exponent

fi, it follows from (8.6) that s01- \s-r-\ /(± s) is Hoelder continuous with
\ as I

exponent ft + oc. By the theorem of Privaloff [16], the initial values of

(d \2
W -jy=

\ g W) are Hoelder continuous with
aW JJ

the same exponent11), hence W -jttf) Ç(W) e ©i(/^). But by lemma 5.2
/ d \2 \ dW ]

fil W-Tjjrf] g(W) z. Hence z and consequently z* belongs to Z[(ju), and
\ dw j

the theorem is proved.
By an analogous reasoning one has

Theorem 3;. Let v*(W) be a solution of (1.2)' of class C2 in D and
continuous up to l. Let the initial values v* (y) hâve the properties (a) v* (0) 0

and (b) v* (y) is Hoelder continuous with exponent // + 2a,0<//<l —2a.
Then the solution z* u + iv* belongs to the class Z[{[à) where u is the
conjugate solution of v* in (2.3) with u(0) 0.

8.2. Analyticity. The following theorem has been proved by A. Huber,
using method of axially symmetric potentials [9a]. On the basis of our main
theorem we shall show that Huber's theorem is équivalent to theorems 3

and 3'.

n) For the function <p(W) e-i<*nW<* ip{W) one has
08<*h<*+t*. By using a proof of Pbivaloff's theorem one shows that Im 99 (± s) has the same
properties as mentioned for Re q>(dz s). One can then oonclude that W~<*> q){W) € Ha+fj,.
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Theorem 4. Let u(W) be a solution of (1.2) of class C2 in D continuous
up to l. Let u(y) 0. Then v*(y) is regular analytic on l, and u(W)

1, wherethe Sn(y) are analytic in y.
o

Theorem 4'. Let v*(W) be a solution of (1.2) of class C2 in D continuous

up to L Let #*(?/) 0. Then u(y) is regular analytic on l and v*(W)

X1+2(XZTn(y)X2n, wherethe Tn(y) are analytic in y.

Proof. 1.) From theorem 3 foliows theorem 4. Because of u(y) 0 the
assumption in theorem 3 is satisfied and hence the solution z* u + iv*
belongs to Zi(/^) and the corresponding g(W) e (5[(ju) for any value of

0</i<l —2a. By (7.1) f(y) 0, hence Re e-ta7rTr2agr(ÏF) 0 on Z.

Therefore ^(y) cos cm | ?/ |~"2a0(î/) where 0 is analytic in «/ and 0(0) 0.
Solving the second équation of (7.1)' one finds v*(y) analytic in y. For the
séries expansion of u see Bebgman [1].

2.) From theorem 4 follows theorem 3. Let the given initial values of u
be u(y) (p(y), and let As-(XI^_<x(p(± s) F(± s), so that s*F(±s) is

Hoelder continuous with exponent ju + a. One can construct an analytic
function G(W) (?0 + *^i in D (or in a subdomain D adjacent to Z), such
that GQ ± tan «?!(?!(± s) #(± 5). It follows that G e (S[(jbt), and hence

to G there corresponds a solution Z* U + iF* € Z[ (/*). Since t£ — U 0

on Z, we hâve by theorem 4, #*(?/) — F*(y) analytic in î/, hence v*(y) is

Hoelder continuous with exponent ju + 2a, the same as does F*(^).
From the analytical behavior of (u — U) and of (v* — F*) in D we con-
clude 2* t6 + iv* e Zi(/i).

By using theorems 4, 4' and the main theorem in the same way as in the
preceeding proof, we obtain the following extensions of theorems 3 and 3;.

Theorem 5. The assumptions on u(W) are the same as in theorem 3, except
that the Hoelder exponent of u(y) is now either /uf with 1 — 2a < // < 1 —a
or ju" with 1 — a < //'< 1. Then v*(y) is differentiable, let v*(0) c. The
solution z* (u - (1 - 2a)-1cX1~2a) + f (v* — cy) with z*(0) 0

belongs to Zi^') orto Zihi").

Theorem h'. The assumptions on v*(W) are the same as in theorem 3',
except those on the initial value v*. We assume now that v* (y) is a differentiable

function with v*(0) 0, and v*(y) is Hoelder continuous either
with exponent vr, 0 < vr < oc, or with exponent v", a</<2a. Then
the solution z* u + iv* with z*(0) 0 belongs to Zj(/*') or to Zzifi")
with iM/= v; -2a+ 1, ^ v" -2a+ 1.
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8.3. Hoelder continuity of z* in D. By the définition of H^ § 6, functions
z* which belong to the classes Z* are Hoelder continuous along rays issued
from the origin. The question naturally arises as to the Hoeldeb continuity
of 2* in D. From theorems 3 and 3' one immediately dérives the following

Theorem 6. Let the initial value u(y) (or v*{y)) be Hoelder continuous
with exponent fi, (or /x + 2a) with 0 < fx < 1 —2a. Then both u(W)
and v*(W) are Hoelder continuous respectively with exponents [x and

[a -f- 2 a in any closed subdomain D'in D.

Proof. One may take any point P on l as the origin and apply theorems 3,
3' to conclude that z*(W) —z*(P) has the Hoelder continuity property
along rays issued from P. It is easy to see that the Hoelder constants can
be made independent of P.

§ 9. Mixed type équations

9.1. The results of § 7, 8 and 9 are now summarized and reformulated in
terms of the solutions U(x,y) of the équations

+Uxx=0, p>0} *= P

For brevity we omit similar statements on solutions F of the équation
xqVyv + Vxx 0 with 0 > q > — 1.

Let D be a domain in the half-plane x > 0 with the boundary segment l
on the t/-axis. We shall consider solutions U(x,y) of class C2 in D with
continuous initial data U(O,y) U0(y) and 17^(0, y) Ux(y).

In restating the previous theorems for U both the assumptions and
conclusions on U are obtained from those on u(X, y) where X{1~2ct)

(1—2a)~1#, u(X,y) U(x,y), see (2.1). Since the transformation
(X, y) -» (x, y) changes the scale of X and retains the scale of y, the domain
D will be mapped into a domain D in (X, y) plane with the same boundary
segment l on the î/-axis. We shall not reformulate Hoelder continuity pro-
perties in D or along rays issued from the origin in D12). Our main interest
will be those continuity properties of the initial data. A function <p(y) on
l is said to belong to the class h^ if it is Hoelder continuous in y with
exponent fi, and 9?(0) 0.

1) Let U be a solution of class (72 in Z), and U and Ux are continuous up to L
Let (a) Uo c hp, U1€ A/A+2a_1 hold for 1 — 2a < ^ < 1 —a. Then there exists
an analytic function g(W) g0 + igt inD, W y + iX, such that (b)

ia) The omission of thés© properties as required in the assumptions of theorems 2, 2', 3 and 3%

is justified by theorems 5 and 5'.
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I V 1*9 (y) € Vh*' and with f(± s) 9o(± s) ± tan ocng1(± s) the following
relations hold: (c) s*/( ± s) A !?_„ UQ( ± s), **gi ± s) T ^2/«~^i(± «),
where 5 | y |, .4 r(2a)/r(a), 42 ^-^-^(l — 2a)~2a. Conversely, to
each <7(TF) in D with (b) there is a U(x,y) in D with (a), such that (c)
is true. For the notation I| see § 6.4.

2) A similar relation between the initial values of g(W) and the data Uo,
U1 can be derived from (7.3)', if the range of [x in 1) is changed to 1 —a<fi< 1,
and Uq € hp, U1 c A/x+2a-i? while the eorresponding g(W) has continuous de-

rivatives on l, with s* ——-z c A^+a-i. Further correspondences between g

and U can be established for U with continuous Ux, Uy on l, etc.
It is of interest to note that U can hâve a normal derivative on the initial

line while the tangential derivative may not exist there. The situation is re-
versed if instead of U, solutions F are considered.

3) Reflection law. If U is of class C2 in D and continuous up to l, with
U0(y) 0, then Ux{y) is analytic in y. Moreover, for integers n let xn z0
exp(2nni/p + 2), then U(xn,y) U(x0, y), exp. (nni/p + 2). If [7^ is
continuous up to l and £^(2/) 0, then U0(y) is analytic and moreover,
U(xn, y) U(x0, y). This generalizes the classical reflection principle of
harmonie functions (p 0), by extending the argument a; to complex values.

4) If U is of class C2 in D and continuous up to l, with £70 e h with 1 — 2 a

< fi< l — a or 1 —a<^<l, then ZJ^ is continuous up to ïand Î71 c A^+ga-i •

The converse is also true.

9.2. Equations (9.1) with positive odd integer p. In this case the équation
is hyperbolic for x<0lz). Consider a solution U(x,y) of the hyperbolic
équation with U and Ux continuous up to l, U(o,y)= UQ(y), Ux(o,y)

XJ1 (y). The question as to whether or not this solution can be continuously
extended to the elliptic part of the équation with continuous normal derivative,
can be answered by our results characterizing the initial data in 9.1, How-
ever there is another way of describing the continuation across the initial line
which makes direct use of the analytic extension of U(x, y) in the elliptic
part of the solution.

Let us dénote by Ue (x, y) and Uh (x, y) respectively the elliptic and hyperbolic

parts of the solution. We say that Ue and Uh are continuation of each

other, if they and their #-derivatives are continuous across l, with the common
initial data UQ(y) and Ut(y). For the considération which follows, we use
X as in (2.1) for x > 0, and similarly use Xx with X\~%* (1 — 2a)-1 —x)
for x < 0, so that Ue(x, y) ue(X, y) and Uh(x, y) uh (Xl9 y). We hâve

18) For hyperbolic équations with a singular line cf. Hblwig [8], for the gênerai theory of
hyperbolic équations with analytic coefficients cf. Lbeay [13].
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' dy* ' X dX

and 32«* ^uh 2oc duh

Recall the analytic extension of ue(X,y) as given by Q(Z,W) in §3.
It is analytic in a domain D* D X D. If both — Z and W vary independ-
ently along the boundary segment l, then they describe a boundary surface
Z* l x l of D*. Let Z be given by y0 > y > yx, a point on Z* may be denoted
by (o9 t) with — <7 and r both varying between y0 and yx. On Z*, Q will hâve

the boundary values Q(a, r). From the relation Q(Z,W) ue(X, Y) in § 3,

we can also express the boundary values on l * by

O(a9 r) uê(iX'9y) with Z' - J(cr + r), y \(x - a). (9.3)

We know the explicit expression of the boundary values in terms of UQ(y)
and U1(y) for at least one case, namely, when Z 0 and W r varies
along l. In this case, indeed, Q(o, r) g(x) where g(W) is the analytic
function which corresponds to ue by the operator L. Since the origin may be
chosen anywhere on l, we can dérive from the expression of g (y) in (7.2)'
or in 1) §9.1, the gênerai formula for Q(a, r) as follows:

ue(iXf,y) {iX'f Gx }S-«(l - *)-« U1 {y + (2* - l)X') dt

i
° (».4)

+ Co JF-Ml -t)""1 U0(y+(2t - l)Xf) dt,

One can also verify (9.4) by the foliowing reasoning. ue (iXr, y) satisfies (9.2)

with Xt replacedby X'. Moreover u,(o,y) U0(y) and (iX'/k)2^
as X' -> 0. The initial value problem of (9.2) is then solved by (9.4).

Since uh(Xl9y) satisfies (9.2) with the conditions that uh(o,y) U0(y)

and (XJk)2-^- -> - Ut(y) as Zx ->0, so after identifying X1 with Xx
oX.1

we find ue(iXlyy) and uh(Xlfy) both satisfy (9.2) with initial conditions
differing by a constant factor. Hence it follows

uh(Zl9 y) Re ue{iXt, y) — (sec <m + tan ajr) Im uê(iZl9 y) (9.5)

As an application of the above formula we prove the following statement:
If uh 0 along the characteristic Z1 + y 0, 0>i/>|i/1 and if uh can
be continued to the elliptic part of the domain continuously with continuous
normal derivative, then U0(y) and U1(y) are analytic in y for 0>y>y.
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For the proof one notes that uh 0 along the charaeteristic implies, since

ue( — iy, y) g(2y), that a linear combination of go{y) and gx{y) is zéro
on l, hence go(y) and gi(y) are analytic in y for 0 > y > yx. Therefore the
same holds for Uo (y) and U1 {y).
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