An arithmetical property of quadratic forms.

Autor(en): **Ledermann, Walter**

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 33 (1959)

PDF erstellt am: **28.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-26005

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

An arithmetical property of quadratic forms

By WALTER LEDERMANN, Manchester

In their paper [1] F. HIRZEBRUCH and H. HOPF have encountered an interesting arithmetical property possessed by certain symmetric bilinear forms

$$f(x,y) = \sum_{i,j=1}^{n} a_{ij} x_{i} y_{j}$$
 (1)

that arise in algebraic topology. In the forms which they consider, the coefficients a_{ij} and the variables are integers and det $a_{ij} = \pm 1$; and it is known that there exists an integral vector w such that

$$f(x, x) \equiv f(x, w) \pmod{2} \tag{2}$$

for all x. If τ is the signature of f, then it is a corollary of their topological investigations that

$$\tau \equiv f(w, w) \pmod{4}. \tag{3}$$

It is desirable to give a purely algebraic proof of (3), and I am greatly indebted to Professor Hopf for having drawn my attention to this question, which will be discussed in this note.

In fact, it will be shown that (3) is a special case of a result concerning forms (1) in which the coefficients and variables are rational numbers with odd denominators. This subset, \mathfrak{Q} , of all rationals forms a ring, whose elements may be grouped into residue classes modulo any power of 2 by stipulating that

$$\frac{c_1}{d_1} \equiv \frac{c_2}{d_2} \pmod{2^{\alpha}}$$

whenever $c_1d_2-d_1c_2\equiv 0\pmod{2^{\alpha}}$; since only odd denominators are allowed, this definition evidently does not depend on the representation of the fractions involved. In particular, a fraction is termed even or odd according as its numerator is even or odd; and we note that, if r is odd, $r^2\equiv 1\pmod{4}$.

The set, V, of n-tuples or "row-vectors" $x = (x_1, x_2, \ldots, x_n)$ $(x_i \in \mathbb{Q})$ is a \mathbb{Q} -module. A change of basis of V amounts to replacing x by the n-tuple $\tilde{x} = xP$, where P is a fixed n-rowed matrix in \mathbb{Q} with odd determinant.

Let f be a symmetric bilinear form which relative to the original basis is expressed as xAy', where $A=(a_{ij})$. After the change of basis, f becomes $\widetilde{x}B\widetilde{y}'$, where

$$B = PAP' . (4)$$

We write $\Delta = \Delta_f = \det A$, and throughout this paper we restrict ourselves to forms with odd determinants, a property which is clearly preserved by the transformation (4).

For a given form f we can in many ways determine a constant vector w such that (2) holds for all x in \mathbb{Q} . Indeed, w may be taken as the solution of the vector equation

$$wA = (a_{11}, a_{22}, \ldots, a_{nn}),$$

this solution being in Ω , because det A is odd. For since

$$f(x, x) \equiv \sum_{i} a_{ii} x_i^2 \equiv \sum_{i} a_{ii} x_i \pmod{2},$$

we have that

$$f(x, w) = wAx' = \Sigma a_{ii}x_i,$$

and (2) is satisfied. If \tilde{w} is another vector satisfying (2), then $f(x, \tilde{w} - w) \equiv 0 \pmod{2}$ for all x, so that $(\tilde{w} - w)A \equiv 0 \pmod{2}$. It follows that

$$\tilde{w} = w + 2z, \tag{5}$$

where z is a suitable vector in Ω . Conversely, any vector of the form (5) satisfies (2). We have that

$$f(\tilde{\boldsymbol{w}}, \, \tilde{\boldsymbol{w}}) = f(\boldsymbol{w}, \, \boldsymbol{w}) + 4f(\boldsymbol{w}, \, \boldsymbol{z}) + 4f(\boldsymbol{z}, \, \boldsymbol{z}) \; .$$

Thus

$$f(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{w}}) \equiv f(\boldsymbol{w}, \boldsymbol{w}) \pmod{4}$$

that is, f(w, w) (though not w itself) is an invariant modulo 4 of f. Our aim is to prove the following

Theorem. Let f be a quadratic form in n variables in \mathbb{Q} with odd determinant Δ and with signature τ . Then 1)

$$f(w, w) - \tau \equiv \Delta - \operatorname{sgn}\Delta \pmod{4}, \tag{6}$$

where w is a solution of (2).

We remark that, whilst Δ is not an invariant of f, both $\operatorname{sgn}\Delta$ and Δ are invariants mod 4. For in a transformation of the type (4), Δ is multiplied by $(\det P)^2$, which is congruent with 1 mod 4, since $\det P$ is odd.

In particular, when f is unimodular, whether integral or not, we have that $\Delta = \operatorname{sgn} \Delta$, so that (6) reduces to (3).

The theorem is proved by an induction with respect to n which is based on the following simple matrix formula. Consider a partitioning of A, say

$$A = \begin{pmatrix} K & L' \\ L & M \end{pmatrix}$$
,

¹⁾ As usual, we define $\operatorname{sgn}\varDelta$ to be +1 or -1 according as $\varDelta>0$ or $\varDelta<0$.

where K is non-singular and of dimension less than n. Put

$$P = \begin{pmatrix} I & O \\ -LK^{-1} & I \end{pmatrix}$$

where the identity matrices on the diagonal are of dimensions (in general distinct) equal to those of K and M respectively. Then

$$PAP' = \begin{pmatrix} K & O \\ O & M - LK^{-1}L' \end{pmatrix}. \tag{7}$$

When $\det K$ is odd, this transformation is admissible, since P then lies in \mathbb{Q} . Now if not all diagonal elements of A are even, we may, without loss of generality, assume that a_{11} is odd and then put $K = (a_{11})$. If, on the other hand, all diagonal elements are even, then each row of A must contain at least one odd element, or else $\det A$ could not be odd. We may then assume that a_{12} is odd and that K is the leading 2-rowed submatrix; for in that case $\det K = a_{11}a_{22} - a_{12}^2 \equiv -1 \pmod{4}$, which is certainly odd. Thus, when n > 2, we can always apply a transformation of the type (7), in which the dimension of K is either 1 or 2.

When V is referred to the new basis, f splits and we write

$$f(x, x) = g(x^{(1)}, x^{(1)}) + h(x^{(2)}, x^{(2)})$$
,

where $x = (x^{(1)}, x^{(2)})$ and the dimensions of the vectors $x^{(1)}$ and $x^{(2)}$ are those of K and M respectively²). Evidently

$$\Delta_f = \Delta_g \Delta_h \,, \; \tau_f = \tau_g + \tau_h \,,$$

where suffixes are used to distinguish quantities corresponding to different forms. Also, if $w^{(1)}$ and $w^{(2)}$ are such that

$$g(x^{(1)}, x^{(1)}) \equiv g(x^{(1)}, w^{(1)}) \pmod{2}$$

for all $x^{(1)}$ and

$$h(x^{(2)}, x^{(2)}) \equiv h(x^{(2)}, w^{(2)}) \pmod{2}$$

for all $x^{(2)}$, then $w = (w^{(1)}, w^{(2)})$ satisfies (2).

Leaving aside for the present the cases in which n = 1 or n = 2, we may assume, by induction, that the theorem holds for the forms g and h. Then, since

$$f(w, w) - \tau_f = (g(w^{(1)}, w^{(1)}) - \tau_g) + (h(w^{(2)}, w^{(2)}) - \tau_h),$$

we have that

$$f(w, w) - \tau_f \equiv \Delta_g - \operatorname{sgn}\Delta_g + \Delta_h - \operatorname{sgn}\Delta_h, \qquad (8)$$

²⁾ A somewhat similar method of reduction, but in a different context, has been employed by Minkowski ([2], 16-20).

with the convention that henceforth all congruences are mod 4. Now, if r and s are odd, (1-r) (1-s) is divisible by 4, so that

$$r+s\equiv 1+rs$$
.

Hence, in particular,

$$\Delta_a + \Delta_h \equiv 1 + \Delta_a \Delta_h = 1 + \Delta_t$$

and

$$\operatorname{sgn}\Delta_a + \operatorname{sgn}\Delta_h \equiv 1 + \operatorname{sgn}(\Delta_a\Delta_h) = 1 + \operatorname{sgn}\Delta_t$$

Substituting in (8) we immediately obtain (6).

It only remains to verify the theorem for the two lowest dimensions. When $n=1, f=a_{11}x_1^2$, where a_{11} is odd. We may then put $w_1=1$ to satisfy (2). Thus $f(w,w)=a_{11}=\Delta$. Since $\tau=\operatorname{sgn} a_{11}=\operatorname{sgn} \Delta$, the relation (6) is certainly true. When n=2, that is when $f=a_{11}x_1^2+a_{22}x_2^2+2a_{12}x_1x_2$, we have to distinguish two cases.

- (i) Assume that a_{11} and a_{22} are not both even, so that we may assume that a_{11} is odd. The transformation (7) can then be applied with $K = (a_{11})$, and f splits into two unary forms. The induction argument is therefore available as before.
- (ii) If a_{11} and a_{22} are both even, a_{12} is necessarily odd and $\Delta = a_{11}a_{22} a_{12}^2 \equiv -1$. Evidently, f(x, x) is even for all x, so that the vector w = 0 satisfies (2). We have therefore to show that

$$-\tau \equiv -1 - \operatorname{sgn}\Delta . \tag{9}$$

When $\operatorname{sgn} \Delta = -1$, the form is indefinite, that is $\tau = 0$, and (9) is true. On the other hand, when $\operatorname{sgn} \Delta = 1$, then $\tau = 2$ or $\tau = -2$ according as $a_{11} > 0$ or $a_{11} < 0$. But $2 \equiv -2$, and again (9) holds in each case.

REFERENCE

- [1] F. HIRZEBRUCH and H. HOPF, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten. Math. Annalen 136 (1958).
 - [2] H. Minkowski, Gesammelte Abhandlungen I (Leipzig 1911).

(Received April 14, 1958)