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A New Method in Fixed Point Theory®)

by RicHARD G. Swan, Chicago (USA)

0. Introduction

BoreL [1] has given a proof of SMrTH’s homology sphere theorem using the
spectral sequence of CARTAN and LErAY . The nature of this spectral sequence
makes it necessary to consider the orbit space of the complement of the fixed
point set. This causes considerable complication in the proof.

By using the Tate cohomology theory [2 Ch. XII] in place of the usual
cohomology theory of groups, it is possible to modify the CARTAN-LERAY
sequence in such a way that the cohomology of the orbit space no longer
appears in the E_ term. The resulting spectral sequence gives an immediate
proof of SmiTH’s theorem, and, in fact, shows that for compact homology
spheres, no condition of finite dimensionality is required. The sequence also
yields generalizations of some inequalities due to FLoyp [4] and HELLER [5].

It is possible to introduce cup products into the spectral sequence and so
obtain results involving the cohomology rings of the space and the fixed
point set. My results in this direction are rather fragmentary, however.

It is also possible to define the spectral sequence using cohomology with
coefficients in a sheaf. This is done by a trivial generalization of the method
used here. Since I have no applications for this generalized sequence, I will
give no details.

I would like to thank P. E. ConNER and J. C. MoorEk for their advice and
encouragement in connection with this work. I would also like to thank the
National Science Foundation for their support.

1. The algebraic construction

Let M be a cochain complex over the group ring Z(x) of a finite group =
such that M"» =0 for » < —1. Choose a Tate complex W (or complete
resolution in the terminology of [2 Ch. XII § 3]) for =, and consider the double
complex Hom,(W, M) (cf. [2 Ch.IV §5]). The first filtration of this complex
is regular [2 Ch. XV § 6] and so yields a convergent spectral sequence. In
general, it will not be true that for fixed p, ¢ and large k, E}'* will be equal

1 This work was done while I was a National Science Foundation fellow. The results presented
here are contained in my Princeton Doctoral Thesis [8]. The principal result of this thesis, a
determination of the homology of cyclic products, will be published elsewhere.
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2 RICHARD G. SWAN

to E?:?. However, for k> q 4+ 2, there is a direct system
Ey?—EpS—~ ...

with E%? as direct limit [2 Ch. XV § 4). Obviously, E2'? = H (x, H2(M))
where H? denotes the p-th Tate cohomology group [2 Ch. XII § 2].

It is easy to see that this spectral sequence is functorial in M, and that
equivariantly homotopic cochain maps of M induce the same map of the
spectral sequence [2 Ch. XV Prop. 6.1]. This also applies to maps of W and
shows that, up to natural isomorphism, the spectral sequence is independent
of the choice of W [8 Ch. II]. This fact, however, will not be used in the appli-
cations.

In order to compute the E  term in certain cases, I will make use of the
following lemma.

Lemma 1.1. Suppose that M"™ = 0 for large n as well as for n < —1.

Suppose also that Hi(m, Mi) = 0 for all i and j.
Then, H(Hom (W, M)) =0.

Proof. The conditions imply that the second filtration is regular [2 Ch XV
§ 6]. Therefore, it is sufficient to show that the E; term of the second spectral

N\
sequence is zero. This term, however, is just Hf(xn, M7) .

Corollary 1.1. Let 0— M5 M5 M >0 be an exact sequence of equi-
variant cochain maps. If M’ satisfies the conditrons of Lemma 1.1, then j,:H
(Hom (W, M)) - H (Hom , (W, M')) is an isomorphism.

Proof. Consider the exact cohomology sequence of
0— Hom (W, M')— Hom (W, M)— Hom (W, M'")— 0
and apply Lemma 1.1.

Remark 1.1. Note that if n acts trivially on M, the spectral sequence is
trivial, that is K, = E, . This follows from the fact that Hom, (W, M)
= Hom (W /n, M) in this case. But W /= is Z-free. Therefore it splits into
a direct sum of complexes each of which is zero except in two consecutive
dimensions. Thus the spectral sequence is the direct sum of spectral sequences
each of which is obviously trivial.

Remark 1.2. Note that multiplication by the order of = annihilates the
whole spectral sequence, including H (Hom,(W,M)). To prove this,
choose a contracting homotopy S (over Z) for W. Define D = X¢S8Sg-1,
the sum being taken over all g e z. Then D is an equivariant homotopy
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between the zero map W — W and the operation of multiplying by the
order of =.

2. Simplicial complexes

All results will be stated for the relative cochains C*(K, L; G) of a simplicial
pair (K, L) with coefficients in a group @. All cochains will be alternating
unless specified explicitly. For convenience, I will define a symbol « (K, —1)»
by letting C*(K, —1; G) be the augmented cochain complex of K, obtained
by adjoining a cell of dimension — 1 to K in the usual way. This will make it
unnecessary to state each result twice, once for ordinary cochains and once
for augmented cochains.

Suppose a finite group z acts simplicially on a complex K from the right.
Suppose also that L is a m-invariant subcomplex of K. Then each cochain
group C4(K, L; Q@) is a left z-module in the obvious way. The construction
of § 1, applied with M = C*(K, L; G) yields a spectral sequence whose terms
will be denoted by E}'? (K, L;G@). The term H"(Hom,(W,C*(K,L; @)))
will be abbreviated to J*(K, L; G). It follows from § 1 that

EP? — f7 (z, HU(K, L; @)

The term J* (K, L; @) is much more complicated and it is necessary to
impose rather drastic conditions in order to be able to compute it explicitly.

Lemma 2.1. Assume that for every stmplex e of K, either e is left pointwise
fixed by all elements of =, or else that the ivmages of e under nm are all distinct.
Let (K7, L™) be the subcomplex of (K, L) consisting of those points fizxed
under n. Suppose K — (K7 v L) 1s finite dimensional. Then the inclusion
map t: (K™, L7)— (K, L) induces an isomorphism i*:J*(K,L;Q)—>J*
(K7, L™; Q).

Proof. Consider the exact sequence
0->C*(K,K™v L)-»C*(K,L)y->C*(K™, L™)—> 0

The desired result will follow from Corollary 1.1 if we can show that C*
(K, K™v L) satisfies the conditions of Lemma 1.1. The first condition of
this lemma follows immediately from thefinitedimensionality of K — (K7 v L).
Now, it is easy to see that the group = acts freely on the simplexes of K —
(K™ v L). Therefore, the chain complex C(K, K™v L) is n-free and hence
is weakly projective. Consequently [2 Ch. X Prop. 8.1], C*(K, K™ v L)
18 weakly injective. Thus the second condition of Lemma 1.1 is satisfied
[2 Ch. XII Prop. 2.2]. At this point, the use of the Tate cohomology theory
is really necessary.
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Remark 2.1. The modules J»(K, L; @) and J*(K 7, L™; Q) have natural
filtrations. It is very important to remember that i* need not be an iso-
morphism of filtered modules even though it is a map of filtered modules and
an isomorphism of ordinary modules. In other words, although * maps
FrJ*(K,L; @) into F?*J*"(K™ L™; @), it is not necessarily an isomorphism
of these submodules.

3. Covering lemmas

The spectral sequence for topological spaces can be defined using only
primitive coverings [6] and not special coverings [6]. In this way, the difficult
proof of the existence of arbitrarily fine special coverings can be avoided.
In this section, I will state the definitions and lemmas which will be required.
Many of these can be found in [6] for the case in which = is cyclic of prime
order. I will assume throughout that = is a finite group acting on a HAUSDORFF
space X from the right, and that A is a m-invariant subspace of X (or else
the symbol « —1» defined in § 2). All coverings are to be open. All trivial
proofs will be omitted.

Definition 3.1. A m-invariant covering U of (X, 4) is an indexed covering
U= {U,|xe(l,1,)} [3Ch. X] together with a given action of = on the index
set 7 (from the right) such that I, (the index set for A) is m-stable, and such
that U, = U,-t forall texn.

Obviously, = acts simplicially on the nerve of such a covering.

Definition 3.2. A n-invariant covering U = {U,_ |« € (I, I,)} is primitive
if Uy~U,, =@ whenever tenx and « ¢l are such that « # «f.

Lemma 3.1. Every covering of (X, A) has a primitive refinement (since X
is HAUSDORFF).

Lemma 3.2. Let U be a primitive covering of (X, 4). Let B be a n-invariant
covering which refines W. Then there 18 a m-equivariant projection from B to .

Lemma 3.3. Let U and B be primitive coverings of (X, A) such that B
refines W. Then any two m-equivariant projections from B to W are m-equi-
variantly chain homotopic.

Proof. The index set of B falls into disjoint orbits under the action of 7.
Choose a simple ordering for the set of orbits. This induces a quasi-ordering
of the ind'ces themselves. Since B is primitive, the vertices of any simplex
of B will be simply ordered by this quasi-ordering. Let f and g be the two
projections. Let (v, vy, ...,v,) be a simplex of B with the ordering of the
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vertices chosen so that v, < v, <...<w,. Define

D(vy, ...,v,) =27 _ o (— 1) (fvg, - .., V5, §Vss ., gU,)

It is easy to check that D is the required m-equivariant chain homotopy.
The spectral sequence for the pair (X, 4) can now be defined as follows.
There is a spectral sequence associated with the nerve of each primitive
covering. If one such covering refines another, Lemmas 3.2 and 3.3 show
that there is a unique map of the corresponding spectral sequences. We define
the spectral sequence of (X, 4) to be the direct limit of these spectral sequences.
It will be denoted by the same symbols used to denote the sequence for com-
plexes. Since taking direct limits preserves exactness, the resulting sequence
has all the usual properties of a spectral sequence. Since taking direct limits
commutes with taking Tate cohomology, we have (using Lemma 3.1)

EPUX,A; Q) = Ho(z, HI(X, 4; Q)

Lemma 3.4. If f:(X,A)— (X', A") s a =m-equivariant map and U is
a m-invariant covering of (X', A'), then () is also m-invariant. If W is
primitive, so s f~1(U).

It follows from Lemma 3.4 that a m-equivariant map of spaces induces
a homomorphism of the corresponding spectral sequences.

Lemma 3.5. Suppose X has the property that every covering of X has a finite
dimensional refinement. Then every covering of (X, A) has a finite dimensional
primitive refinement.

Proof. Let U be any covering of X. We can assume that ! is primitive by
Lemma 3.1. Take any finite dimensional covering B refining . Take all
transforms of sets of B by elements of n. This gives a m-invariant finite
dimensional refinement B of U. Choose an equivariant projection f from W
to U (by Lemma 3.2) and amalgamate sets of I whose indices have the same
projection under f. This gives the required covering.

Lemma 3.6. Suppose x acts on X in such a way that any point of X is etther
left fixzed by all elements of m or else is such that its transforms under n are all
distinct. Then the nerve of any primitive covering of (X, A) satisfies the first
condition of Lemma 2.1.

Let X™ and A™ be the subsets of X and A consisting of those points left
fixed by all elements of .

Lemma 3.7. The coverings of (X™; A™) by invariant sets of primitive coverings
of (X, A) are cofinal in the directed set of coverings of (X™, A™) by sets open in X.
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Lemma 3.8. Let X be a paracompact Hauvsporrr space. Let Y and B be closed
subsets of X such that B c Y. Then there are arbitrarily fine coverings W of
(Y, B) by sets open in X such that W and W |Y have the same nerve. Here, W | Y
means the covering of (Y, B) formed by the intersections of Y with the sets of U .

Proof. The proof is almost exactly the same as that of [3 Ch. X Lemma 3. 6].
The only changes required are the replacement of finite coverings by locally
finite coverings and the replacement of the finite inductions by transfinite
inductions.

Theorem 3.1. Let X be a paracompact Hausporrr space satisfying the con-
dition that every covering of X has a finite dimensional refinement.

Let 7 be a finite group acting on X from the right in such a way that any point
of X 18 either left fixed by all elements of 7 or else is such that all its transforms
under 7 are distinct.

Let A be a closed, n-stable subset of X and let X7, A™ be the sets of fixed points
in X and A respectively.

Then the inclusion ©:(X7, A™)— (X, A) induces an isomorphism

i JRX, A; Q)= JHX™, A™; G)

Proof. By Lemmas 3.5 and 3.6, we can apply Lemma 2.1 to a cofinal
system of primitive coverings. This shows that J*(X, 4; @) is isomorphic to
the direct limit of groups of the form J*(K7, L™; @) where (K, L) is the
nerve of a primitive covering. By Lemmas 3.7 and 3.8, this direct limit is
just J¥(X7, 47; (). Lemma 3.8 is needed here because J*(X7, 47; @) is
defined by coverings of (X7, A7), while the invariant subsets of primitive
coverings of X are subsets of X, not X~.

Remark 3.1. The condition about finite dimensional refinements is obviously
satisfied if X is compact.

4. Applications

In the applications, except in Theorem 4.8, I will always assume that =
is a cyclic group of prime order p. For such a group, the condition of Theorem
3.1 concerning the action of = is always fulfilled.

This restriction on & also implies (by Remark 1.2) that all terms of the
spectral sequence are vector spaces over Z,. Therefore, we can speak of their
dimensions over Z,. The following theorem holds even if these dimensions
are infinite provided we interpret them as transfinite cardinals.

Theorem 4.1. Let (X, A) and x satisfy the conditions of Theorem 3.1 with
7 cyclic of prime order p.
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Then, for any integers k and n, and any coefficient group

X dim B/ (X7, A7) < X dim ESY (X, A)
>k ik
14-)=n i+j=n

Proof. Since = acts trivially on X7, we have Ei'7(X™, A™) = E*;/(X", A7) .
Furthermore, since ¢* is an isomorphism by Theorem 3.1, the map
J"(X, 4) N J*( X7, A7)
Fr-kt1jn( X A) Fr—kt1 Jo( X7 A7)

is an epimorphism. Using these facts and the trivial inequality dim E*:’ <dim E}*
we get
Sdim B 7 (X7, A7) — X dim E%T (X7, A7)

_ diy "X, A7) X, 4)
- Fn—k+1 jn (X‘n" A'n') F'n-—k+1Jn(X, A)

= XYdim E*/(X, 4) < Zdim BV (X, A) .
Corollary 4.1. Let (X, A) and 7 be as in Theorem 4.1. Then, for all n and k,

< di

X dim Hi(X7, A7 2,) < X dim Hi(n, H(X, 4; 2,))
ik ik
i+j=n

This follows from the universal coefficient theorem and the fact that
HY(n, Z,) = Z, for all 5.

The inequalities of FLoyDp [4] follow immediately from Corollary 4.1 and
the trivial fact that dim H*(», M) < dim M for all Z -modules M (provided
n i8 cyclic). I will not restate these inequalities here. They may be obtained
from Corollary 4.1 by omitting the symbol «H?(x)».

We can now easily prove the theorems of Smith. For example, if Hi(X, 4;
Z,) = 0 for all j, Corollary 4.1 shows immediately that Hi(X™, A";Z,) = 0
for all j. The homology sphere theorem requires an additional argument.

Theorem 4.2. Let (X, A) and = satisfy the conditions of Theorem 3.1 with =
cyclic of prime order p. Suppose there is an integer n such that H*(X,A; Z,)=0
for i #n and H"(X,A;Z,) = Z, .

Then there is an integer r with —1 <r < n such that H'(X™,A";Z,) = 0
for © #r and H (X7, A";2Z,) =2, .

Furthermore, r = — 1 can occur only if A is the symbol —1 of § 2.

Proof. The last part is trivial since H-1(X™, A7) % 0 can only occur if
A™ = —1,i.e. if A = —1.
Suppose now that the conclusion is false. By Corollary 4.1, the only other
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possibility is that H*(X7™, A™;Z_ ) = 0 for all . The spectral sequence for
(X7, A™) now shows that J{(X7,A7;Z,)=0 for all . Therefore, by
Theorem 3.1, J*(X,A;Z,)=0 for all s and so, E_(X,4;Z,)=0.

Now, the action of # on H*(X, A;Z,) must be trivial since n cannot act
non-trivially on Z,. Therefore, we can compute Ej?(X,A4;Z,) and show
that it is 0 for j #n and Z, for j = n. This implies E, = E_, contra-
dicting the previous conclusion that E_ = 0.

In order to apply Theorem 4.1 using integral coefficients, we need the
following lemma.

Lemma 4.1. Suppose n acts trivially on the integral cohomology groups of
(X, 4). Then

2 dmEy (X, 4;Z)= X dim H/(X, 4; Z,)
ifj-:k i—z.kéet’en

Proot. Let H' = H/(X, A;Z). The universal coefficient theorem shows
et dim HI(X, A;Z,) = dim H! @ Z, + dim Tor(H/+1, Z,) .
Since n acts trivially on fﬁ , we can use the universal coefficient theorem
and the known values of Hi(xn, Z) to get
Eyi(X,A;Z)=HI ® Z, forieven
Eii(X,A; Z) = Tor(Hi, Z,) foriodd.

Therefore, if j—k is even,
dim Hi(X, A; Z,) = dim E¥~7+7 4 dim E}~i-1i+1
Summing on j now gives the required result.

Corollary 4.2. Let (X, A) and n be as in Theorem 4.1. For all integers k,
X dim HY(X™, A7; Z,) < X dim H*-1(z, H(X, 4; Z))

izk ik
j—k even

This follows immediately from Theorem 4.1 and Lemma 4.1 applied to
the pair (X7, A7) . By setting k = 0 and ¥ = —1 in this corollary, we get
the inequalities of HELLER [5].

Corollary 4.3. Let (X, A) and = be as in Theorem 4.1. Suppose n acts
trivially on the integral cohomology of (X, A). Then, for all k,
2 dim H(X", A";Z,) < 2 dim H/(X,4;Z,)

i=>k i=k
j—k even j—k even
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HEeLLER [5] has defined a generalization of the EULER characteristic. Let
(X, 4) = Ze, dim H—i (z, H(X, A; Z)) for n even
2o (X, A) = X2, dim Hn—i(x, H(X, A; Z)) for nodd.

Because of the periodicity of the Tate cohomology of a cyclic group [2 Ch. XTI
§ 7], the values of y} and y, are independent of the choice of n.

If x5 (X,4) and g7 (X, A) are both finite, the HELLER characteristic of
(X, 4) is defined to be

The next theorem was proved by HELLER [5] for finite dimensional complexes.
The use of the spectral sequence gives a simple proof for topological spaces.

Theorem 4.3. Let (X, A) and = satisfy the conditions of Theorem 3.1 with n
cyclic of prime order p.

If xt(X, A) and g (X, A) areboth finite, then x,.(X, 4) = y(X™,A"; Z,),
the ordinary EvLEr characteristic of (X7, A™).

Proof. The existence of x(X™, A7;Z,) follows from Corollary 4.2 with
k=0and k= —1.

We can choose the Tate complex W to be periodic of period 2 [2 Ch. XII § 7].
Therefore, the spectral sequence Ei'? will have period 2 in 4 (i.e. it will be
unchanged if ¢ is replaced by 7 + 2).

Let

E}= X Eb7
it+j=n
These complexes have period 2 in n. Therefore, a trivial argument shows that
dim B} — dim Byt = dim B}, — dim Ep}} .

Since y} and g are finite, there is some N such that Ei'/ = 0 for j > N .
Because of the periodicity in ¢, we can assume N is independent of <. Therefore,
the spectral sequence terminates in a finite number of steps and induction
shows that

dim E}' (X, 4; Z) — dim EP* (X, A; Z) =
dim E% (X, A; Z) — dim E™*" (X, 4; Z) =
dim J™(X, A; Z) — dim J™+1(X, 4 ; Z)

By Theorem 3.1, this is equal to the corresponding expression with (X7, 47)
substituted for (X, 4). If m is any even integer, the left haund side is just
1= (X, 4). If (X7, A™) is substituted for (X, 4), Lemma 4.1 shows that the
left hand side becomes x(X7, A7;Z,)).
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Corollary 4.4. Let (X, 4) and x be as in Theorem 4.3. Suppose x acts trivially
on the integral cohomology of (X, A). Then (X", A™;Z,)= x(X,4;2Z,).

This follows immediately from the theorem and from Lemma 4.1 which
shows that y,(X, 4) = x(X, 4;Z,) in this case.

Corollaries 4.3 and 4.4 give fairly complete information regarding the
relations between the betti numbers of the space and of the fixed point set
in the case where & acts trivially on H*(X, A;Z). This statement is made
precise by the next theorem.

Theorem 4.4. Suppose we are given two sequences of non-negative integers
Qo Ay, ... and by, by, ... such that a, = b, = 0 if n is large enough. Suppose
also that

(i) Foralln, 2 b, < X a,

izn izn
j—n even j—n even

(i) Zplo(—1)ra, =272 (—1)"b,

Then there are spaces X and A satisfying the conditions of Corollaries 4.3
and 4.4 such that

a,=dimH*(X, A;Z,) and b, = dim H*(X", A";Z,) .
If wn addition, ay> 0 and by, > 0, we can even let A be empty.

Proof. The required space will be a union, with common base point, of
certain elementary spaces. If a,> 0 and b,> 0, then A4 is to be empty.
Otherwise, 4 is to be the base point.

The elementary spaces are as follows:

(1) A sphere 8™ with x acting as a rotation group such that the fixed point
set is a non-empty subsphere S with n-r even. The base point is chosen in S".

(2) Let & act on S2m+! without fixed points by rotation. Let = act trivially
on 8*. Then x acts on S?m+!1 x Sn . Let e be a point of S* and attach a cone
over S*m+l x e to S*m+l x §». The result will be the second type of
elementary space. The group = acts on the cone in the obvious way, keeping
the vertex fixed. The base point is taken to be the vertex of the cone.

The theorem is now easily proved by induction on Xa,.

Using Theorem 4.3, we can give a simple proof of a recent result of Liao
[7]. This theorem concerns a space which is a cohomology n-sphere over Z,
and which has finitely generated integral cohomology groups. The universal
coefficient theorem shows that such a space is an integral cohomology n-sphere
modulo non-p-torsion. The action of  is said to preserve orientation if = acts
trivially on the n-th co-betti group (i.e. H™ with all torsion factored out).
Otherwise z is said to reverse orientation.
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Theorem 4.5. (L1ao) Let X, A, n, r be as tn Theorem 4.2. Suppose the
integral cohomology groups of (X, A) are fimitely generated. If m preserves
orientation, n-r 18 even. If 7 reverses orientation, n—r is odd.

Proof. It is sufficient to compute the EULER characteristic of the fixed point

set. This can be done using Theorem 4. 3 if we can compute 7L (n, H(X,A;2)) .
Since we can ignore non-p-torsion in computing Tate cohomology over a group
of order p, we can replace H/(X, A; Z) by the corresponding co-betti group.
The result now follows from known computations of Tate cohomology [2
Ch. XII § 7].

It is also possible to deduce local properties of X~ from those of X by using
the spectral sequence. The theorem requires a rather artificial hypothesis if X
is not finite dimensional.

Theorem 4.6. Let X and = satisfy the conditions of Theorem 3.1 with =«
cyclic of prime order p and A = @.

Let x € X™ be such that x has arbitrarily small closed m-invariant nerghbor-
hoods U with the property that H™(U ; Z,) = 0 for n = N, where N 1s a large
integer depending on U .

If X 18 cohomology locally connected over Z, at x, then so ts X™.

Proof. Let U be any neighborhood of x having the property mentioned in
the hypothesis. Choose closed m-invariant neighborhoods V,c V, c ...
C Vy,, = U such that the inclusions ¥V, c V,,, induce the zero map on
the augmented cohomology groups. The induced map of spectral sequences
is then zero on K, and hence is zero on E_, . Therefore, it increases the filtration
of all elements of J*(V,,,;Z,) by at least 1. Since H*(U;Z,) =0 for
n > N, it follows that all elements of J»(U; Z,) have filtration >=n — N.
Therefore J*(U; Z,)— J*(V,; Z,) is zero. This shows that H*(U~; Z,))
— H*(V§; Z,) is zero.

I will conclude this section with two applications which are not directly
connected with fixed point theory.

Theorem 4.7. Let X be a cohomology n-sphere over Z,. Let m be cyclic of
prime order p and act on X .

Then there i1s @ map d: H*(X;Z,)— H°(X; Z,) natural with respect to
equivariant maps of X into other cohomology n-spheres on which n acts.

If 7t acts freely on X and X satisfies the conditions of Theorem 3.1, this map
d is an 1somorphism.

Proof. The map d is just the operator d"+! of the spectral sequence. Since
m cannot act non-trivially on Z,, we have Ej°~ H°(X;Z, and E;"
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~ H"(X ; Z,) both isomorphisms being natural. If X7 = 0 and Theorem 3.1
applies, we have K = 0. Therefore d must be an isomorphism in this case.

Corollary 4.6. Let X and Y be cohomology n-spheres over Z,. Let r be cyclic
of prime order p. Let w act on X and Y and let f: X — Y be m-equivartant.
Suppose that Y satisfies the conditions of Theorem 3.1 and that x acts freely on Y .

Then f induces an isomorphism f*: H"(Y;Z,)— H"(X;Z,) .

Proof. Consider the commutative diagram

H™(Y)-> H*(X)
d dy
Ho(Y)—> H°(X)

The result follows immediately from the fact that d is an isomorphism
for Y, f* is an isomorphism in dimension 0, and H*(Y ; Z,) and H*(X; Z,)
are both isomorphic to Z,.

The Borsuk-UraM theorem is an immediate consequence of Corollary 4.5
with p = 2.

We can also give a slight generalization of the results of [2 Ch. XVI § 9
Appl. 4]. In the following theorem we allow z to be non-cyclic.

Theorem 4.8. Let X satisfy the conditions of Theorem 3.1. Let m act freely
on X. If X is an integral cohomology n-sphere, then m has periodic cohomology
with period n + 1 if n 18 odd. If n is even, w = 1 orZ,.

Proof. Since X7 = g, B, = 0. Therefore d®*! must be an isomorphism

d"+1:I/1\"(n, H"‘(X))—>I:I\‘+"+1(n, Z) for all 7. The same must be true for
all subgroups of = because these also act freely on X.

If » is even, this result applied to the cyclic subgroups of = shows that every
element of # except 1 must reverse orientation. Therefore # = 1 or Z,.

If n is odd, the result applied to the cyclic subgroups of z shows that all
elements of z preserve orientation.

Now, applying the result to = itself gives H“"'l(n 2) ~ i (7, Z) ~
where h is the order of =». The conclusion of the theorem then follows from
[2 Ch. XII Prop. 11.1].

b. Produects

Let ¢ be a diagonal map for the Tate complex W [2 Ch. XII § 4]. If M
and N are cochain complexes, the map

Hom,(W,, M’) @ Hom, (W ,, N')—> Hom,_ (W, M Q NV
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defined by fv g=(—1)/*(f ® g) ¢;,, gives a map of double complexes.
Therefore, it induces a map of spectral sequences

E (Hom, (W, M)) ® E(Hom,(W, N)) > E(Hom, (W, M ® N))
by [2 Ch. XII Ex. 1, 2, 4]. On the ¥, terms, the products
Hi(n, HI(M)) @ H*(x, H(N)) - Hi+*(a, Hi+/(M @ N))

is obtained by composing the cup product for Tate cohomology with the
coefficient homomorphism

ot Hi (M) ® H'(N)—~ He+{(M @ N)

and prefixing the sign (— 1)7%.
Suppose now that s acts simplicially on a simplicial pair (K, L). Let C*
(K, L; @) be the group of ordered cochains [3 Ch. VI § 2] with values in

a group G. Then the usual ALEXANDER-CECH-WHITNEY formula gives a z-
equivariant map

C*K,L; ) Q@ C*(K,L:)—>C*(K,L;G® G

This map then yields products in the spectral sequence of (K, L) based on
ordered cochains. We must now show that this sequence agrees with the one
previously considered which was based on alternating cochains. This is done
using the following lemmas.

Lemma 5.1. Let K and K' be simplicial complexes on which n acts simpli-
cially. Suppose that whenever a simplex o of K 18 mapped onto itself by an
element t e m, then o 18 left pointwise fixzed by t. Let C be an acyclic carrier
from K to K' which is n-equivariant i.e. C(to) = tC(c) for all t e m. Assume
finally that if to = o, then t leaves C (o) pointwise fixed.

Then the conclusions of Theorem 5.7 of [3 Ch. VI] hold for C if all maps and
homotopres are required to be m-equivariant and the subcomplex L of K is required
to be m-stable.

Proof. This is proved in exactly the same way as Theorem 5.7 of [3 Ch. VI]
except that whenever the value f(o) of a map or homotopy has been found,
we immediately set f(to) = tf(c) for all ¢ e x. The hypothesis insures that
this f is carried by C and if to = o, then tf(e) = f(0) .

Lemma 5.2. Suppose = acts simplicially on a simplicial complex K in such
a way that if v is a vertex of K and t e w 18 such that tv # v, then tv and v
do not belong to a common simplex of K.

Then the natural map of ordered chains of K into alternating chains of K
18 a m-equivariant homotopy equivalence.
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Proof. The condition imposed on K is easily seen to be equivalent to that
imposed on K in Lemma 5.1. Quasi-order the vertices of K as in the proof
of Lemma 3.3. Then follow the proof of Theorem 6.10 of [3 Ch. VI] using the
above Lemma 5.1 in place of Theorem 5.7 of [3 Ch. VI].

The conditions of Lemma 5.2 are obviously satisfied by the nerves of
primitive coverings. Therefore, the spectral sequence of a topological space
obtained by using ordered cochains is isomorphic to the one obtained by using
alternating cochains. We can now define products in the spectral sequence
based on alternating cochains by using this isomorphism.

On the E, terms, this product

ﬁ"(n, Hi(X, 4;0)) ® A (=, H (X, A; @) —>I’1\"+’°(n, H+(X, A4;,GQ G))

is obtained by composing the cup product for Tate cohomology with the cup
product for (X, 4) and prefixing the sign (— 1)/¥. This shows that the prod-
ucts on E, (and so on E, for k > 2) are associative, (skew) commutative,
and independent of the choice of the diagonal maps. The corresponding result
for J*(X, A) may be proved by showing that, up to equivariant homotopy,
a diagonal map for W is unique, associative, and (skew) commutative [8].
The analogous result for the diagonal map of a simplicial complex follows
immediately from Lemma 5.1. If, however, G = G' = Z,, we can avoid
this rather long proof by using the following lemma.

Lemma 5.3. The natural isomorphism
o« H*(m, Z,) @ H¥ (X7, A7; Z,)— J*(X™, A"; Z,)
preserves products, the products on the left hand side being the usual cup products.

Proof. This follows immediately from the KuNNETH theorem and the fact
that if & acts trivially on a cochain complex M, then

Hom, (W, M) ~ Hom(W/n, M) ~ Hom(W/», Z,) @ M .
The last isomorphism follows from the fact that W is free and finitely generated.

6. An application of produets

In [5], there is a theorem to the effect that, under certain conditions, if X
has the cohomology groups of a product of spheres then so does X 7. Unfortu-
nately, this theorem is false, many counterexamples being given by Theorem
4.4. The word «product » should, of course, be replaced by the word «wedge »
to make the theorem true.

The following theorem gives a simple case in which we can conclude that
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the fixed point set has the cohomology of a product of spheres. Surprisingly
enough, even this theorem becomes false if the condition that X~ be connected
is omitted.

Theorem 6.1. Let X and n satisfy the conditions of Theorem 3.1 with A = &
and 7 cyclic of prime order p. Assume that m acts trivially on H*(X ; Z) and
on H*(X;Z,). Assume also that H*(X;Z,) s isomorphic to H*(S*™
x 82 ; Z,) as a ring. Here 2m and 2n are any even positive integers.

If X™ is connected, then H*(X7; Z,) s isomorphic as a group to H*(S*
X S%¢; Z,) where 2r and 2s are even and positive and r < m,s < n.

Furthermore, if r = s, then H*(X™; Z,) 18 isomorphicto H*(S* x §%¢; Z,)
as a ring.

Proof. Suppose we have proved all except the inequalities » < m, s < n.
We can assume (by changing notation) that m <=, r <s. The required
inequalities then follow immediately from Corollary 4.1.

By Corollaries 4.3 and 4.4, H(X7;Z,) =0 for ¢ odd and x(X7;Z,)
= x(X;Z,) = 4. Therefore, H*(X7";Z,) has 4 linearily independent ele-
ments. Since X7 is connected, H*(X";Z,)) = Z,.

Now, let 1, z, y, z be a (homogeneous) base for H*(X";Z,). Suppose
some product, say xy, of distinct basis elements (excluding 1) is non-zero.
Since dim z, dim y > 0, we have dim 2y > dim z, dim ¥, so we can choose
z = zy. The theorem is obviously true in this case.

Therefore, we may assume that either all products are zero or that zy = 2
= yz = 0 but some square, say 2, is non-zero. In this latter case, we can
choose y = z2. We may also assume that in this case, dimz # dimz other-
wise the theorem will again be true. Therefore, we can suppose 22 = 0. Clearly,
y:= 0.

Cousider the spectral sequence with Z, as coefficient group. Since = acts
trivially on H*(X;Z,), we have

Ey(X;2,) = H*(n, 2,) @ H*(X ; Z,)

In any given total dimension, there are 4 linearly independent elements in
E,. Since the same is true of J*(X;Z,) =J*(X";Z,), we must have
E,=F,.

Now, for p odd, H* (=, Z,) is generated as a ring by an element v ¢ A Y7,Z,)
and elements u e i %(m, Z,) and u~!e ﬁ"”(n, Z,) with relations v* = 0 and
uy~! = 1. For p =2, ﬁ *(m, Zg) is generated by elements v e ﬁl (7, Zg) and

v-1 eﬁ"l(n, Z,) with relation vv—! = 1. In this case, we set » = v* and
u~1 = p=2, These results follow from the results of [2 Ch. XII § 7].



16 RICHARD G. SWAN — A New Method in Fixed Point Theory

The ring H*(X ; Z,) is generated by elements a ¢ H2™ and b ¢ H*® with
relations a? = b% = 0. Therefore, the ring F (X ; Z,) is generated by prod-
ucts of u, v, =1, v=1, @ and b. I will identify v with ¥ ® 1, ¢ with 1 Q@ a,
ete. In total dimension 0, there are the elements 1, u—™a, u—"b, and u—™—"ab .
These are represented by elements in J°(X; Z,) = J°(X7;Z,). But,

J*(X7: Z,) ~ H*(n, 2,) @ H*(X7™; Z,)

as an algebra (Lemma 5.3). Since (u~™a) (u~"b) = u—™—"ab £ 0, the
products in H*(X7;Z,) cannot all be trivial. Therefore, we have only to
eliminate the case 2 =1y, 22 =0, sy =2z2=9y2=0.

Choose representatives for u~™a and »="b in J°(X;Z,). Let F* denote
the filtration in J°(X; Z,) rather than that in J°(X”*;Z,). Since 1 ¢ F°J°
(X'; Z,), we can choose a representative « for u—™a of the form « = Ax 4+ By
+ Cz ¢ F—2mJ0 because we can subtract off any multiple of 1 which occurs
in oc. Similarly, we can choose a representative 8 = Dx + Ey + Fz ¢ F-2nJ°
for u—"b.

Now «ff e F—tm—2nJ0 represents (u—™a) (u~"b) % 0. Therefore, «f¢
Fi-2m—2nJ0  Suppose m < nm . Since «? represents 0, a2 e F'1-4mj0 But,
of =ADy and so A#0, D#0, and y¢Fi-2m—2njo  But,
A% = % e F1-4mJ° and so y e F'-4mJ°. This is a contradiction since
Fi—4am jo — pFi-2m-2n Jo
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