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A New Method în Fixed Point Theory1)

by Richakd G. Swan, Chicago (USA)

0. Introduction

Borel [1] has given a proof of Smith's homology sphère theorem using the
spectral séquence of Cartan and Lbray The nature of this spectral séquence
makes it necessary to consider the orbit space of the complément of the fixed
point set. This causes considérable complication in the proof.

By using the Tate cohomology theory [2 Ch. XII] in place of the usual
cohomology theory of groups, it is possible to modify the Cartan-Leray
séquence in such a way that the cohomology of the orbit space no longer
appears in the EM term. The resulting spectral séquence gives an immédiate
proof of Smith's theorem, and, in fact, shows that for compact homology
sphères, no condition of finite dimensionality is required. The séquence also

yields generalizations of some inequalities due to Floyd [4] and Heller [5].
It is possible to introduce cup products into the spectral séquence and so

obtain results involving the cohomology rings of the space and the fixed
point set. My results in this direction are rather fragmentary, however.

It is also possible to define the spectral séquence using cohomology with
coefficients in a sheaf. This is done by a trivial generalization of the method
used hère. Since I hâve no applications for this generalized séquence, I will
give no détails.

I would like to thank P. E. Conner and J. C. Moore for their advice and
encouragement in connection with this work. I would also like to thank the
National Science Foundation for their support.

1. The algebraic construction

Let M be a cochain complex over the group ring Z(n) of a finite group n
such that Mn 0 for n < — 1 Choose a Tate complex W (or complète
resolution in the terminology of [2 Ch. XII § 3]) for n, and consider the double
complex Homn(W, M) (cf. [2 Ch. IV § 5]). The first filtration of this complex
is regular [2 Ch. XV § 6] and so yields a convergent spectral séquence. In
gênerai, it will not be true that for fixed p, q and large k, El'q will be equal

1 This work was done while I was a National Science Foundation fellow. The results presented
hère are contained in my Princeton Doctoral Thesis [8]. The principal resuit of this thesis, a
détermination of the homology of cyclic products, will be published elsewhere.
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2 Richard G. Swan

to Efcq However, for k > q -f- 2, there is a direct System

with jE*;3 as direct limit [2 Ch. XV § 4]. Obviously, E»>q Hp (n, H«(M))
where H9 dénotes the p4h Tate cohomology group [2 Ch. XII § 2].

It is easy to see that this spectral séquence is functorial in M, and that
equivariantly homotopic cochain maps of M induce the same map of the
spectral séquence [2 Ch. XV Prop. 6.1], This also applies to maps of W and
shows that, up to natural isomorphism, the spectral séquence is independent
of the choice of W [8 Ch. II]. This fact, however, will not be used in the
applications.

In order to compute the E^ term in certain cases, I will make use of the
following lemma.

Lemma 1.1. Suppose that Mn 0 for large n as well as for n< — 1.

Suppose also that Hi(n, Mj) 0 for ail i and j,
Then, H(Homn(W, M)) 0

Proof. The conditions imply that the second filtration is regular [2 Ch XV
§ 6]. Therefore, it is sufficient to show that the Ex term of the second spectral

séquence is zéro. This term, however, is just H^n, Jf?")

Corollary 1.1. Let 0-> M'X MX Jf"->0 be an exact séquence of equi-
variant cochain maps. If Mr satisfies the conditions of Lemma 1.1, then j*:H
(Homn(W, M)) ~> H(Homn(W, M")) is an isomorphism.

Prooi. Consider the exact cohomology séquence of

0-> Homn(W, M1)-* HomJW, M)^ Homn(W, M")-* 0

and apply Lemma 1.1.

Remark 1.1. Note that if n acts trivially on M, the spectral séquence is

trivial, that is JS?2 E^ This follows from the fact that Homn (W, M)
Hom (Wjn, M) in this case. But W\n is Z-îree. Therefore it splits into

a direct sum of complexes each of which is zéro except in two consécutive
dimensions. Thus the spectral séquence is the direct sum of spectral séquences
each of which is obviously trivial.

Remark 1.2. Note that multiplication by the order of n annihilâtes the
whole spectral séquence, including H (B.omn(W, M)) To prove this,
choose a contracting homotopy S (over Z) for W. Define D Sg8g~~x,
the sum being taken over ail g c n. Then D is an equivariant homotopy
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between the zéro map W-> W and the opération of multiplying by the
order of n.

2. Simplicial complexes

Ail results will be stated for the relative cochains G * (K, L;G) of a simplicial
pair (K, L) with coefficients in a group G. Ail cochains will be alternating
unless specified explicitly. For convenienee, I will define a symbol «(K, — 1)»

by letting C*(K, — 1 ; G) be the augmented cochain complex of K, obtained
by adjoining a cell of dimension — 1 to K in the usual way. Tins will make it
unnecessary to state each resuit twice, once for ordinary cochains and once
for augmented cochains.

Suppose a finite group n acts simplicially on a complex K from the right.
Suppose also that L is a ^-invariant subcomplex of K. Then each cochain

group Cq(K, L;G) is a left 7î-module in the obvious way. The construction
of § 1, applied with M C*(K, L ; G) yields a spectral séquence whose terms
will be denoted by Epk>q (K, L;G) The term H" (Homn W, C * (K, L ; G))
will be abbreviated to Jn(K. L;G). It follows from § 1 that

The term Jn (K, L\G) is much more complicated and it is necessary to
impose rather drastic conditions in order to be able to compute it explicitly.

Lemma 2.1. Assume that for every simplex e of K, either e is left pointwise
fixed by ail éléments of n, or else that the images of e under n are ail distinct.
Let (Kn, Ln be the subcomplex of (K, L) consisting of those points fixed
under n. Suppose K — (Kn ^ L) is finite dimensional. Then the inclusion
map i : (K "> L v -> (K, L) induces an isomorphism i * : J * (K, L; G)->J*
(K",L";G).

Proof. Consider the exact séquence

0-> C* (K, K" - L)-> O* (K, L)-> C* (K*9 L")-> 0

The desired resuit will follow from Corollary 1.1 if we can show that C *

(K,Kn^ L) satisfies the conditions of Lemma 1.1. The first condition of
this lemma follows immediately from the finitedimensionality of K — (K" ^ L).
Now, it is easy to see that the group n acts freely on the simplexes of K —

(Kn w L) Therefore, the chain complex C(K, Kn ^ L) is rc-free and hence
is weakly projective. Consequently [2 Ch. X Prop. 8.1], C*(K, K7* ^> L)
is weakly injective. Thus the second condition of Lemma 1.1 is satisfied
[2 Ch. XII Prop. 2.2]. At this point, the use of the Tate cohomology theory
is really necessary.
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Remark 2.1. The modules Jn(K,L;G) and Jn(K», Ln ; 0) hâve natural
filtrations. It is very important to remember that i* need not be an iso-
morphism of filtered modules even though it is a ïnap of filtered modules and
an isomorphism of ordinary modules. In other words, although i* maps
FpJn(K,L;O) into FpJn(Kn, L"; it is not neeessarily an isomorphism
of thèse submodules.

3. Covering lemmas

The spectral séquence for topological spaces can be defined using only
primitive coverings [6] and not spécial coverings [6]. In this way, the difficult
proof of the existence of arbitrarily fine spécial coverings can be avoided.
In this section, I will state the définitions and lemmas which will be required.
Many of thèse can be found in [6] for the case in which n is cyclic of prime
order. I will assume throughout that n is a finite group acting on a Hatjsdobff
space X from the right, and that A is a ^-invariant subspace of X (or else

the symbol « — 1 » defined in § 2). Ail coverings are to be open. AU trivial
proofs will be omitted.

Définition 3.1. A ^-invariant covering U of (X, A) is an indexed covering
XJ {[7a | oc € (/, 70)} [3 Ch. X] together with a given action of n on the index
set / (from the right) such that Io (the index set for A) is jr-stable, and such
that Uai Ua- t for ail t € n

Obviously, n acts simplicially on the nerve of such a covering.

Définition 3.2. A jr-invariant covering U { Ua \ oc c (/, 70)} is primitive
if Î7a ^ Uat 0 whenever t e n and oc c I are such that oc =£ oct.

Lemma 3.1. Every covering of (X, A) has a primitive refinement (since X
is Hausdorff).

Lemma 3.2. Let U be a primitive covering of (X, A). Let 95 be a n-invariant
covering which refines M. Then there is a n-equivariant projection from 93 to U.

Lemma 3.3. Let It cmd 93 be primitive coverings of (X, A) such that 93

refines U. Then any two n-equivariant projections from 93 to U are n-equi-
variantly chain homotopic.

Proof. The index set of 93 falls into disjoint orbits under the action of n.
Choose a simple ordering for the set of orbits. This induces a quasi-ordering
of the ind'ces themselves. Since 93 is primitive, the vertices of any simplex
of 93 will be simply ordered by this quasi-ordering. Let / and g be the two
projections. Let (v0, vl9..., vn) be a simplex of 93 with the ordering of the
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vertices chosen so that v0 < vx < < vn Define

D(v0, ...,vn) 2?œ0 (-1)'(/^ ...,fri,gi>i, •••iQVn)

It is easy to check that D is the required rc-equivariant chain homotopy.
The spectral séquence for the pair (X, A) can now be defined as foliows.

There is a spectral séquence associated with the nerve of each primitive
covering. If one such covering refines another, Lemmas 3.2 and 3.3 show
that there is a unique map of the corresponding spectral séquences. We define
the spectral séquence of (X, A) to be the direct limit of thèse spectral séquences.
It will be denoted by the same symbols used to dénote the séquence for
complexes. Since taking direct limits préserves exactness, the resulting séquence
has ail the usual properties of a spectral séquence. Since taking direct limits
commutes with taking Tate cohomology, we hâve (using Lemma 3.1)

E*>«(X, A;G) H*(n, H«(X, A ; 0))

Lemma 3.4. // / : (X, A)-> (X\ A') is a 7t-equivariant map and U is
a n-invariant covering of (X',Af), then /~1(U) is also n-invariant. If U is
primitive, so is /~X(U).

It follows from Lemma 3.4 that a rc-equivariant map of spaces induces
a homomorphism of the corresponding spectral séquences.

Lemma 3.5. Suppose X has the property that every covering of X has a finite
dimensional refinement, Then every covering of (X, A) has a finite dimensional
primitive refinement.

Prooî. Let U be any covering of X, We can assume that U is primitive by
Lemma 3.1. Take any finite dimensional covering 93 refining U. Take ail
transforms of sets of 93 by éléments of n. This gives a ^-invariant finite
dimensional refinement 933 of U. Choose an equivariant projection / from 933

to U (by Lemma 3.2) and amalgamate sets of 933 whose indices hâve the same
projection under /. This gives the required covering.

Lemma 3.6. Suppose n acts on X in such a way that any point of X is either
left fixed by ail éléments of n or else is such that its transforms under n are ail
distinct. Then the nerve of any primitive covering of (X, ^4) satisfies the first
condition of Lemma 2.1.

Let Xn and An be the subsets of X and A consisting of those points left
fixed by ail éléments of n.

Lemma 3.7. The coverings of (Xn, An by invariant sets of primitive coverings
of (X, A) are cofinal in the directed set of coverings of (Xn} An)by sets open in X.
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Lemma 3.8. Let X be a paracompact Hausdorff space. Let Y and B be closed
subsets of X such that B c F. Then there are arbitrarily fine coverings U of
(F, B) by sets open in X such that XI and U | Y hâve the same nerve. Hère, U | Y
means the covering of Y, B) formed by the intersections of Y vnth the sets of U.

Proof. The proof is almost exactly the same as that of [3 Ch. X Lemma 3.6].
The only changes required are the replacement of finite coverings by locally
finite coverings and the replacement of the finite inductions by transfinite
inductions.

Theorem 3.1. Let X be a paracompact Hausdorff space satisfying the
condition that every covering of X has a finite dimensional refinement.

Let n be a finite group acting on X from the right in such a way that any point
of X is either left fixed by ail éléments of n or else is such that ail its transforms
under n are distinct.

Let Abea closed, n-stable subset of X and let Xn, An be the sets of fixed points
in X and A respectively.

Then the inclusion i :(Xn, An)-> (X, A) induces an isomorphism

i* :J*{X, A;G)-> J*(X", A'; G)

Proof. By Lemmas 3.5 and 3.6, we can apply Lemma 2.1 to a cofinal
System of primitive coverings. This shows that J* (X, A; G) is isomorphic to
the direct limit of groups of the form J* (Kn, Ln ; G) where (K, L) is the
nerve of a primitive covering. By Lemmas 3.7 and 3.8, this direct limit is

just J'¥(X'ir, An; G). Lemma 3.8 is needed hère because J*^77, A"; G) is
defined by coverings of (X*", A"), while the invariant subsets of primitive
coverings of X are subsets of X, not X".

Bemark 3.1. The condition about finite dimensional refinements is obviously
satisfied if X is compact.

4. Applications

In the applications, except in Theorem 4.8, I will always assume that n
is a cyclic group of prime order p. For such a group, the condition of Theorem
3.1 concerning the action of n is always fulfilled.

This restriction on n also implies (by Remark 1.2) that ail terms of the
spectral séquence are vector spaces over Zv. Therefore, we can speak of their
dimensions over Z9. The foliowing theorem holds even if thèse dimensions
are infinité provided we interpret them as transfinite cardinals.

Theorem 4.1. Let (X, A) and n satisfy the conditions of Theorem 3.1 with
n cyclic of prime order p.
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Then, for any integers k and n, and any coefficient group

S dimEl>j(X",A") ^ Z àimE\>j{X,A)
k

Proof. Since n acts trivially on Iff, we hâve J0*''(X*, A") E^(XV9 A")
Furthermore, since i* is an isomorphism by Theorem 3.1, the map

Jn{X,A) Jn(X", A")
Fn-k+1Jn(X,A)

~*
Fn~k+1Jn(X",A")

is an epimorphism. Using thèse facts and the trivial inequality dim E1^ ' ^dim E\'*
we get

ZàimE\>j {X", A") SàimEiJ (X", A")

Jn(X,A)dim -=

27dim jBi;'(Z, -4) < i7dim ^i'7'(Z, A)

Corollary 4.1. Lef (X, .4) and tt 6e as in Theorem 4.1. TAen, for ail n and k,

2TdimJÏ'(X»,ii*;Z,)< 27 dim #* (^, W (X, A ; Z,))
i+j-n

This follows from the universal coefficient theorem and the fact that

ZP) Z9 foralH.
The inequalities of Floyd [4] follow immediately from Corollary 4.1 and

the trivial fact that dim Hi(n, M) ^ dim M for ail Z^-modules M (provided
n is cyclic). I will not restate thèse inequalities hère. They may be obtained
from Corollary 4.1 by omitting the symbol «Hi(7t)^.

We can now easily prove the theorems of Smith. For example, if ffl (X, A ;

Zp) 0 for ail j, Corollary 4.1 shows immediately that ^(Z77, A"\ Zp) 0

for ail j. The homology sphère theorem requires an additional argument.

Theorem 4.2. Let (X, A) and n satisfythe conditions of Theorem 3.1 with n
cyclic of prime order p. Suppose there is an integer n such that Rl(X,A ; Zv) 0

for i =£n and Hn(X, A;ZP) Z9
Then there is an integer r with — 1 ^ r ^ n such that H^X^yA7*; Zp) 0

for i^r and Hr(X", A"; Zp) Zp
Furthermore, r — 1 can occur only if A is the symbol — 1 of § 2.

Proof. The last part is trivial since H-1{X7T, A") ^ 0 can only occur if
4W= — 1, i.e. if A -1.

Suppose now that the conclusion is false. By Corollary 4.1, the only other
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possibility is that JÏ^X^, An; Zp) 0 for ail i. The spectral séquence for
(X«, A") now shows that J^X", A*\ Zp) 0 for ail i. Therefore, by
Theorem 3.1, J*(X, A ; Zp) 0 for ail i and so, JS^ (X, A ; Zp) 0

Now, the action of n on H*(X, A; Zp) must be trivial since tt cannot act
non-trivially on Zp. Therefore, we can compute E\*j(X, A ; Zv) and show
that it is 0 for j ^n and Zp for j n. This implies 2?2 Em, contra-
dicting the previous conclusion that E^ 0

In order to apply Theorem 4.1 using intégral coefficients, we need the
following lemma.

Lemma 4.1. Suppose n acte trivially on the intégral cohomology groupa of
(X,A). Then

E dimEi>i(X,A;Z)= E timHi(X9A\Z9)
t+y=t j-keven

Proof. Let W W(X, A; Z). The universal coefficient theorem shows
that

dim H*(X, A;ZP) dim S' ® Zp + dim Tor(£T'+1, Zp).
Since n acts trivially on jET^, we can use the universal coefficient theorem

and the known values of ffl(n, Z) to get

Ei>i(X,A;Z) H* ® Zp for i even

El*'(X,A;Z) Tov(W, Zp) for i odd.

Therefore, if j-k is even,

dim W(X, A;ZP) dim E*-*** + dim E^'1J+1
Summing on j now gives the required resuit.

Corollary 4.2. Let (X, A) and n be as in Theorem 4.1. For ail integers k,

E dimHi(X",A";Z9) < i7dim Hk-i(n, H*(X, A ; Z))
i>k j^kj—k even

This follows immediately from Theorem 4.1 and Lemma 4.1 applied to
the pair (X7*, An) By setting k 0 and k — 1 in this corollary, we get
the inequalities of Hellee [5].

Corollary 4.3. Let (X, A) and n be as in Theorem 4.1. Suppose n acts

trivially on the intégral cohomology of (X, A). Then, for ail k,

E àimHHX",A";Zp) < E dimHHX,A;Zp)
j^k j>k

j—k even j—k even
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Helleb [5] has defined a generalization of the Eulee characteristic. Let

X+ (X, A) ££m9àimHn-i(n, H'iX, A; Z)) for n even

*-(X, A) £%Zo dim Hn-i(7t, H*(X, A ; Z)) for n odd.

Because of the periodicity of the Tate cohomology of a cyclic group [2 Ch. XII
§ 7], the values of xi an(^ Xn are independent of the choice of n-.

If xt (X, A) and #~ (X, A) are both finite, the Helleb characteristic of
(X, A) is defined to be

The next theorem was proved by Heller [5] for finite dimensional complexes.
The use of the spectral séquence gives a simple proof for topological spaces.

Theorem 4.3. Let (X, A) and n satisfy the conditions of Theorem 3.1 wiih n
cyclic of prime order p.

// xi(X,A) and x*(X,A) are both finite, then Xn(X, A) *(X*,^; Z9),
the ordinary Euler characteristic of (Iff, A77)

Proof. The existence of x(Xn, An\ Zp) follows from Corollary 4.2 with
h 0 and k — 1

We can choose the Tate complex W to be periodic of period 2 [2 Ch. XII § 7],
Therefore, the spectral séquence E\;j will hâve period 2 in i (i.e. it will be

unchanged if i is replaced by i + 2

Let

ei= z Eyj

Thèse complexes hâve period 2 in n. Therefore, a trivial argument shows that

dim E% — dim Ef*1 dim E%+1 — dim E%+1.

Since xi an(l XÛ are finite, there is some N such that E{2^ 0 for j > N
Because of the periodicity in i, we can assume N is independent of i. Therefore,
the spectral séquence terminâtes in a finite number of steps and induction
shows that

dim E% (X, A ; Z) - dim Ef+1(X, A\Z)
dim El (X, A;Z)- dim E^X{X, A\Z)
dim Jm(X, A;Z)- dim J^+^Z, A ; Z)

By Theorem 3.1, this is equal to the corresponding expression with (Xn, An)
substituted for (X, A). If m is any even integer, the left hand side is just
Xn{Xy A). If (Xn, An) is substituted for (X, A), Lemma 4.1 shows that the
left hand side becomes xiX", An; Zv)
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Corollary 4.4. Let (X, A) and nbeas in Theorem 4.3. Suppose n acts trivially
on the intégral cohomology of (X, A). Then ^(Iff, A"; Zp) %(X, A ; Zp)

This follows immediately from the theorem and from Lemma 4.1 which
shows that %n(X, A) #(X, A ; Zp) in this case.

Corollaries 4.3 and 4.4 give fairly complète information regarding the
relations between the betti numbers of the space and of the fixed point set
in the case where n acts trivially on H*(X, A; Z). This statement is made
précise by the next theorem.

Theorem 4.4. Suppose we are given two séquences of non-negative integers
aQ, av and 60, 6l5 such that an bn 0 if n is large enough. Suppose
also that

(i) For ail n, Z bj < Z ai
/—«even j-neven

(ii) ZZo (- l)w «. ^»"o - 1)* K
Then ihere are spaces X and A saiisfying the conditions of Corollaries 4.3

and 4.4 such that

an dim Hn(X, A ; Zp) and bn dim Hn(X'n, A" ; Zp)

// in addition, a0 > 0 and b0 > 0 we can even let A be empty.

Proof. The required space will be a union, with common base point, of
certain elementary spaces. If a0 > 0 and 60 > 0 then A is to be empty.
Otherwise, A is to be the base point.

The elementary spaces are as follows :

(1) A sphère 8n with n acting as a rotation group such that the fixed point
set is a non-empty subsphere Sr with n-r even. The base point is chosen in Sr.

(2) Let n act on S*m+1 without fixed points by rotation. Let n act trivially
on Sn. Then n acts on S2m+1 x 8n Let c be a point of Sn and attach a cône
over 82m+1 x e to $2w+1 x Sn. The resuit will be the second type of
elementary space. The group n acts on the cône in the obvious way, keeping
the vertex fixed. The base point is taken to be the vertex of the cône.

The theorem is now easily proved by induction on Zan.
Using Theorem 4.3, we can give a simple proof of a récent resuit of Liao

[7]. This theorem concerns a space which is a cohomology ^-sphère over Zp
and which has finitely generated intégral cohomology groups. The universal
coefficient theorem shows that such a space is an intégral cohomology w-sphere
modulo non-p-torsion. The action of n is said to préserve orientation if n acts
trivially on the n-th co-betti group (i.e. Hn with ail torsion factored out).
Otherwise n is said to reverse orientation.
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Theorem 4.5. (Liao) Let X, A, n, r be as in Theorem 4.2. Suppose the

intégral cohomology groups of (X, A) are finitely generated. If n préserves
orientation, n-r is even. If n reverses orientation, n-r is odd.

Proof. It is sufficient to compute the Ettleb characteristic of the fixed point
set. This can be done using Theorem 4.3 if we can compute W(n, ffi (X, A ; Z))
Since we can ignore non-p-torsion in Computing Tate cohomology over a group
of order p, we can replace W(X, A; Z) by the corresponding co-betti group.
The resuit now follows from known computations of Tate cohomology [2
Ch. XII § 7].

It is also possible to deduce local properties of X" from those of X by using
the spectral séquence. The theorem requires a rather artificial hypothesis if X
is not finite dimensional.

Theorem 4.6. Let X and n satisfy the conditions of Theorem 3.1 with n
cyclic of prime order p and A 0.

Let x € X" be such that x has arbitrarily small closed n-invariant neighbor-
hoods U with the property that Hn U ; Zv) 0 for n > N, where N is a large
integer depending on U.

If X is cohomology locally connected over Zpat x, then so is Xn.

Proof. Let U be any neighborhood of x having the property mentioned in
the hypothesis. Choose closed ^-invariant neighborhoods Fo c Vx c
c VN+1 U such that the inclusions V{ c Vi+1 induce the zéro map on
the augmented cohomology groups. The induced map of spectral séquences
is then zéro on E2 and hence is zéro on E^ Therefore, it increases the filtration
of ail éléments of J*(Vi+1;Z9) by at least 1. Since Hn(U;Zp) 0 for
n> N, it follows that ail éléments of Jn(U\ Zv) hâve filtration > n — N.
Therefore J*(Î7; Zp)-> J*(V0; Z9) is zéro. This shows that H*(U";ZP)
-+H*{VS;Z9) iszero.

I will conclude this section with two applications which are not directly
connected with fixed point theory.

Theorem 4.7. Let X be a cohomology n-sphere over Zp. Let n be cyclic of
prime order p and act on X.

Then there is a map d: Hn(X; Zp)-+H°(X; Zp) natural with respect to

equivariant maps of X into other cohomology n-spheres on which n acts.

If n acts freely on X and X satisfies the conditions of Theorem 3.1, this map
d is an isomorphism.

Proof. The map d is just the operator dn+1 of the spectral séquence. Since

n cannot act non-trivially on Zp, we hâve E\>* & H°(X; Zp) and E\'n
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^ Hn(X; Zp) both isomorphisms being natural. If X* 0 and Theorem 3.1
applies, we hâve E^ 0. Therefore d must be an isomorphism in this case.

Corollary 4.5. Let X and Y be cohomology n-spheres over Zp. Let n be cyclic
of prime order p. Let n act on X and Y and let f : X-» Y be n-equivariant.
Suppose that Y satisfies the conditions of Theorem 3.1 and that n acts freely on Y.

Then f induces an isomorphism /* : Hn(Y; Zp)-> Hn(X; Zp)

Prool. Consider the commutative diagram

Hn(Y)->Hn(X)

The resuit follows immediately from the fact that d is an isomorphism
for Y, /* is an isomorphism in dimension 0, and Hn(Y; Zp) and Hn(X; Zp)
are both isomorphic to Zp.

The Borsuk-Ulam theorem is an immédiate conséquence of Corollary 4.5
with p 2.

We can also give a slight generalization of the results of [2 Ch. XVI § 9

Appl. 4]. In the following theorem we allow n to be non-eyclic.

Theorem 4.8. Let X satisfy the conditions of Theorem 3.1. Let n act freely
on X. If X is an intégral cohomology n-sphere, then n has periodic cohomology
with period n -\- 1 if n is odd. If n is even, n 1 orZ%.

Prool. Since Xn 0, EM =0. Therefore dn+1 must be an isomorphism

d»+1:Hi(n9Hn(X))-+Hi+»+1(n,Z) for ail i. The same must be true for
ail subgroups of n because thèse also act freely on X.

If n is even, this resuit applied to the cyclic subgroups of n shows that every
élément of n except 1 must reverse orientation. Therefore n 1 or Z2.

If n is odd, the resuit applied to the cyclic subgroups of n shows that ail
éléments of n préserve orientation. ^ ^

Now, applying the resuit to n itself gives Hn+1(7t, Z) & H°(tz, Z) & Zh
where h is the order of n. The conclusion of the theorem then follows from
[2 Ch. XII Prop. 11.1].

5. Products

Let <p be a diagonal map for the Tate complex W [2 Ch. XII § 4], If M
and N are cochain complexes, the map

Komn(Wki N1) -> Romn(Wi+k, M* ® N1)
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defined by / ^ g (— l)ik(f ® g) <piy k gives a map of double complexes.
Therefore, it induces a map of spectral séquences

JW, M)) <g> E(Komn(W, N)) -> E(Homw(W, M ® N))

by [2 Ch. XII Ex. 1, 2, 4]. On the E2 terms, the produets

#*(**, H*(M)) <

is obtained by composing the cup product for Tate cohomology with the
coefficient homomorphism

a: H*{M) <g> W(N)->Hk+l(M <g> N)

and prefixing the sign (— l)*fc.
Suppose now that n acts simplicially on a simplicial pair (K, L). Let C*

(K, jL ; be the group of ordered cochains [3 Ch. VI § 2] with values in
a group G. Then the usual Alexandeb-Cech-Whitney formula gives a n-
equivariant map

C*(K,L; G) ® C*(Z5 i; G)-+C*(K,L; G ® G')

This map then yields produets in the spectral séquence of (K, L) based on
ordered cochains. We must now show that this séquence agrées with the one
previously considered which was based on altemating cochains. This is done
using the foliowing lemmas.

Lemma 5.1. Let K and K1 be simplicial complexes on which n acts simplicially.

Suppose that whenever a simplex a of K is mapped onto itself by an
élément t € n, then a is left pointwise fixed by t. Let G be an acyclic carrier
from K to K' which is n-equivariant i.e. C(ta) tC (or) for ail t e n Assume

finally that if ta a, then t leaves G (a) pointwise fixed.
Then the conclusions of Theorem 5.7 of [3 Ch. VI] hold for G if ail maps and

homotopies are required to be n-equivariant and the subcomplex Lof K is required
to be n-stable.

Prooî. This is proved in exactly the same way as Theorem 5.7 of [3 Ch. VI]
except that whenever the value f(a) of a map or homotopy has been found,
we immediately set f(ta) tf(a) for ail t € n The hypothesis insures that
this / is carried by C and if ta cr, then tf(a) f(a)

Lemma 5.2. Suppose n acts simplicially on a simplicial complex K in such

a way that if v is a vertex of K and t c n is such that tv ^ v, then tv and v
do not belong to a common simplex of K.

Then the natural map of ordered chains of K into alternating chains of K
is a n-equivariant homotopy équivalence.
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Proof. The condition imposed on K is easily seen to be équivalent to that
imposed on K in Lemma 5.1. Quasi-order the vertiees of K as in the proof
of Lemma 3.3. Then follow the proof of Theorem 6.10 of [3 Ch. VI] using the
above Lemma 5.1 in place of Theorem 5.7 of [3 Ch. VI].

The conditions of Lemma 5.2 are obviously satisfied by the nerves of
primitive coverings. Therefore, the spectral séquence of a topological space
obtained by using ordered cochains is isomorphic to the one obtained by using
alternating cochains. We can now define products in the spectral séquence
based on alternating cochains by using this isomorphism.

On the E2 terms, this product

H^n, W(X, A; G))® Hk(n, Hl(X, A ; G')) -*Hi+k(n, W+l(X, A) G® G1))

is obtained by composing the cup product for Tate cohomology with the cup
product for (X, A) and prefixing the sign (— l)*fc. This shows that the products

on E2 (and so on Ek for k ^ 2) are associative, (skew) commutative,
and independent of the choice of the diagonal maps. The corresponding resuit
for «7*(X, A) may be proved by showing that, up to equivariant homotopy,
a diagonal map for W is unique, associative, and (skew) commutative [8].
The analogous resuit for the diagonal map of a simplicial complex follows
immediately from Lemma 5.1. If, however, G G1 Zv we can avoid
this rather long proof by using the foliowing lemma.

Lemma 5.3. The natural isomorphism

ce : H*(n, Z9) ® H*(X", A";Z9) -> J*(Z-, A",Z9)

préserves products, the products on the left hand side being the usual cup products.

Prooî. This follows immediately from the Ktjnneth theorem and the fact
that if n acts trivially on a cochain complex M, then

Wr, M) ** Hom(ïF/rc, M) ^ Hom(W/n, Zp) ® M

The last isomorphism follows from the fact that W is free and finitely generated.

6. An application of products

In [5], there is a theorem to the effect that, under certain conditions, if X
has the cohomology groups of a product of sphères then so does X n. Unfortu-
nately, this theorem is false, many counterexamples being given by Theorem
4.4. The word «product» should, of course, be replaced by the word «wedge»
to make the theorem true.

The following theorem gives a simple case in which we can conclude that
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the fixed point set has the cohomology of a product of sphères. Surprisingly
enough, even this theorem becomes false if the condition that Xn be connected
is omitted.

Theorem 6.1. Let X and n satisfy the conditions of Theorem 3.1 with A 0
and 71 cyclic of prime order p. Assume that n acts trivially on H*(X; Z) and
on H*(X\ZP). Assume also that H*(X\ZP) is isomorphic to H*(82m
X 82n ; Zv) as a ring. Hère 2m and 2n are any even positive integers.

If Xn is connected, then H*(Xn; Zp) is isomorphic as a group to H*(S2*
x S28 ; Zp) where 2r and 2s are even and positive and r ^.m, s ^.n.

Furthermore, if r^s, then H^(X'n\Zp) is isomorphic to H*(S2r x 828;ZP)
as a ring.

Prooî. Suppose we hâve proved ail except the inequalities r ^ m, s ^ n
We can assume (by changing notation) that m <I n, r ^ s. The required
inequalities then follow immediately from Corollary 4.1.

By Corollaries 4.3 and 4.4, H{(X"; Zp) 0 for i odd and x(Xn>Zp)
%(X\ Zp) 4 Therefore, H^(X7r\ Zp) has 4 linearily independent

éléments. Since Xn is connected, ^(X^iZ^ Zp
Now, let 1, x, y, z be a (homogeneous) base for H*(X7T; Zp) Suppose

some product, say xy, of distinct basis éléments (excluding 1) is non-zero.
Since dim x, dim y > 0, we hâve dim xy > dim x, dim y so we can choose

z xy. The theorem is obviously true in this case.

Therefore, we may assume that either ail products are zéro or that xy xz

yz 0 but some square, say x2, is non-zero. In this latter case, we can
choose y x2. We may also assume that in this case, dimz =£ dim a; other-
wise the theorem will again be true. Therefore, we can suppose z2 0. Clearly,
2/2=O.

Consider the spectral séquence with Zp as coefficient group. Since n acts

trivially on H*(X; Zp), we hâve

E2(X; Z9) H*(n, Zp) <g> H*(Z; Zp)

In any given total dimension, there are 4 linearly independent éléments in
E2. Since the same is true of J*(X; Zp) J*(Xn; Zp) we must hâve

Now, for p odd, H * jt, Zp) is generated as a ring by an élément v c Hx(n, ZP)

and éléments u c H2(n, Zp) and w1 € H~2(n, Zp) with relations v2 0 and

wur1 1. For p 2, H*(ti, Zz) is generated by éléments v € JET1 (te, Z2) and

v1 c flr~1(jr, Z2) with relation vv~x 1. In this case, we set u v2 and
u-1 v2. Thèse results follow from the results of [2 Ch. XII § 7].
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The ring H*(X; Zp) is generated by éléments a e H2m and b € H2n with
relations a2 b2 0 Therefore, the ring E%{X ; Zp) is generated by prod-
ucts of u, v, u~\ v-1, a and 6. I will identify u with u ® 1, a with 1 <g> a,
etc. In total dimension 0, there are the éléments 1, u~~ma, u~nb, and w~m"nab
Thèse are represented by éléments in J°(Z; Zp) J°(X"; Zp) But,

; Z,)

as an algebra (Lemma 5.3). Since (t*~ma) (u~nb) — u-m~nab =£ 0 the
products in 2/*(Zw; Zp) eannot ail be trivial. Therefore, we hâve only to
eliminate the case x2 y, z2 0, xy xz yz 0

Choose représentatives for w~wa and w~nb in J^X;^). Let #fc dénote
the filtration in J°{X;ZV) rather than that in J°(Xn;Zp) Since 1 € F°J°
(X ; Z9), we can choose a représentative oc for u~ma of the form a Ax + -By

+ Oz e F~2mJ° because we can subtract off any multiple of 1 which occurs
in oc. Similarly, we can choose a représentative p Dx + Ey -\- Fz € F~2nJ°
for u~~nb.

Now ocp e F-2m"2nJ° represents (w~ma) (vrnb) ^ 0 Therefore, */?*
jpi-2m-2njo Suppose m < ri. Since a2 represents 0, oc2 €F1~AmJ0 But,

and so A ^ 0, D ^ 0, and y f Jpi-2m-2ne/o gut,
€ jpi~4m jo an(j so y€jpi-4»»jro This is a contradiction since

ç- Jpl—2m~2nJQ ^
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