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The Riemann-Roch Theorem1)

by H. L. Royden, Stanford (Calif., U.S. A.)

By a divisor b on a Riemann surface W we shall mean a formai expression
j) p^ p^t where the p{ are distinct points of W and the v{ are integers.
We multiply two divisors by adding the exponents at corresponding points,
and agrée that a divisor is unchanged by the addition or deletion of a factor
p\. The divisors on W then form an ABEiian group whose unit is the unit
divisor 1 ail of whose exponents are zéro. A divisor is called intégral if ail of
its exponents are non-negative. The intégral divisors form a semi-group. The
set of points which occur with a non-zero exponent in a divisor is called the
carrier of the divisor. Two divisors are said to be disjoint if their carriers are
disjoint. Every divisor is the quotient of two disjoint intégral divisors.

A meromorphic function / is called a multiple of a divisor b pi1... p%1

if / is analytic except on the carrier of b and the order of / at pk is at least

vk, where the order of a meromorphic function at a point is defîned as the
order of the zéro of / if the point is a zéro of /, minus the order of the pôle
if the point is a pôle of /, and zéro if the point is neither a zéro nor a pôle
of /. Similarly, a meromorphic differential a on W is called a multiple of
b if a is analytic except on the carrier of b and the order of a at pk is at
least vk.

The classical Riemann-Roch theorem [6] gives the dimension of the space
of meromorphic functions on a compact surface which are multiples of b in
terms of the number of differentials having a certain relationship to b. The

purpose of the présent note is to give a reformulation of the classical version
and proof of this theorem which has the advantage that it remains valid for
certain types of open Riemann surfaces. Since the results of Florack [2]
imply that for any open Riemann surface there are always infinitely many
meromorphic functions which are multiples of b, it is clear that we must
restrict the class of meromorphic functions under considération if we are to
obtain non-trivial results. A natural restriction seems to be to consider the
class SOI of meromorphic functions on W which are analytic except for a finite
number of pôles and which hâve a finite Dibichlet intégral over the exterior
of any neighborhood of the pôles. For parabolic surfaces this restriction turns
out to be sufficient to give a theory similar to that for the compact case, and
in the third section we extend this to surfaces of class OFD.

For hyperbolic surfaces in gênerai we must impose a further restriction on
*) The research for this paper was carried out under the sponsorship of the Office of Ordnance

Research, U. S. Army.



38 H. L. ROYDEN

our meromorphic functions which may be thought of as requiring our func-
tions to be "real on the idéal boundary" or to hâve "constant real part on
each boundary eomponent".

In the last two sections we indicate some generalizations.
Ahlfobs [1] takes a stand against the imposition of "null-boundary" hypothèses

and recommends instead that restrictions be imposed on the class of
functions under considération. The results of the fourth section in the présent
paper are in line with this program, but it is to be noted that both the results
and proofs are more awkward than those of the null-bounded cases con-
sidered in sections 2 and 3. This is in part due to the fact that the restricted
classes of meromorphic functions do not admit multiplication by complex
constants in the gênerai case, while in the null-bounded cases this multiplication

is always possible.

1. Relations with respect to and intégral divisor. Let b q[x... q%* be an
intégral divisor, and consider the space G of ail differentials which are ana-
lytic in some neighborhood (which may dépend on the differential) of the carrier

of b. Let £(b) be the set of those linear functionals L on this space G

which hâve the property that they anihilate multiples of b, i. e. those linear
functionals for which L[oc] 0 whenever a is a multiple of b. We shall
often refer to éléments of /.(b) as relations with respect to b, and say that oc

satisfies the relation L € £(b) if L[oc] 0. By the carrier of L we shall
mean the carrier of b.

Let Ci » • • • » t« be fixed uniformizers at the points qx,... qn. Then at
qk each differential in G has the représentation a <pk(Çk)dÇk where q>k is

analytic near qk. If Le /.(b), then L[<x] dépends only on the value of yk
and its first vk — 1 derivatives at qkJ and so we may express L in the form

where qf£ dénotes the j-th derivative of <pk with respect to fk evaluated at
qk, The coefficients aki dépend in a rather complicated fashion on the choice
of the uniformizers Çk, but for a fixed choice of the £k, the coefficients akj
détermine and are uniquely determined by L. Since the aki can be arbitrarily
prescribed, we see that £(b) is a vector space of dimension n(b), where n(b)
dénotes the order Zvk of b.

Let / be a function which is meromorphic in a neighborhood of the carrier
of b and is a multiple of b""1. We can associate to / an élément Lt of L(b) by
defining
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where Fk is the boundary of a dise which contains qk, but not q^ j ^ k,
and which lies in the common domain of meromorphy of / and a. In virtue
of Cauchy's theorem this définition is independent of the choice of Fk, and
if / is a multiple of b"1, then for oc a multiple of b the differential foc is analytic
in the dise bounded by Fk, and so Lf[oc] 0. Thus Lf € Z.(b).

In terms of a fixed uniformizer fk at qk such that £fc (qk) 0, the function
/ has an expansion of the form

/ Z ^H- + regular terms. (3)
>=i C*

If we use the Catjchy formula to evaluate Lf[<x], we see that Lf[a] is again
given by the formula (1), whence the space £(b) is in a natural one-to-one
correspondence with the space of "principal parts" of functions which are
meromorphic in some neighborhood of the carrier of b and which are multiples
of b"1. In fact the coefficients akj in the expansion (1) of Lt relative to the
uniformizers Ci > • • • >

Cw are precisely the same coefficients which oceur in
the expansions (3) of the principal parts of /. Thus the relations in £(b)
give us a convenient spécification of the principal parts of a multiple of b"1,
and this spécification has the advantage over the spécification (3) in that it
is independent of the uniformizers chosen at the points qk. In Une with this
we shall often say that / has the principal part L when Lf L, and refer
to L as a principal part.

2. The analogue of the Riemann-Roch theorem for parabolic surfaces. We
shall say that a meromorphic function / on a Riemann surface is of class 2Jt

if / has only a finite number of pôles and the Dirichlet intégral of / is finite
over the complément of any neighborhood of the pôles of /. Similarly a
meromorphic differential a is said to be of class î) if it has only a finite number
of pôles and is square integrable over the exterior of any neighborhood of
its pôles. Clearly / e 501 if and only if df e î). On a compact surface every
meromorphic function belongs to 9Jt and every meromorphic differential to D.

In the remainder of this section, we shall suppose that W is parabolic, where
we use the term parabolic to include the compact surfaces as a spécial case.
There are various ways of defining parabolic surfaces, but we shall make use

only of the following properties :

1. Every harmonie function on W with a finite Dirichlet intégral is constant.

2. Every bounded harmonie function on W is constant.

3. Let O be an open set on W whose closure is compact and whose boundary
F consists of a finite number of smooth Jordan curves. Let / be harmonie
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in the complément 0 of O and hâve a finite Dikichlbt intégral over 0. Let
a be a harmonie differential in O which is square integrable over O. Then,
assuming / and a suffieiently regular on F, we hâve

J/« JJ<*/A«. (4)
r o

As an application of this last property, we note that if / and a are analytic
in O, then d//\a 0. Consequently, for / eSOI and acD, we hâve
ffoc 0, provided that the pôles of a and / are contained in 0. Let bx and
r
b2 be two disjoint intégral divisors, and suppose that / is a multiple of bi/b2
and that a is a multiple of b^1. Then foc is analytic except on the carrier of
b2, and so J/a is equal by the Caitchy theorem to minus the sum of the in-

r
tegrals of /a over small circles Fk about the points of b2. Thus

0 J/a - E J /a - 2niLf[a]

We hâve thus proved the foliowing proposition :

Proposition 1. Let bi and b2 be disjoint intégral divisors on a parabolic
Riemann surface, and let / c 9K be a multiple of bi/b^ and a e 35 a multiple
of br1- Then we hâve Lf[oc] 0.

In order to investigate further the structure of the class 501 on a parabolic
Ribmank surface, we make use of the fundamental potential on the surface.
Let O(p; q) G(p, p0; q, qQ) be a fonction of p which is harmonie except
at q and qQ and has a finite Dibichlet intégral over the complément of any
neighborhood of q and q0. Then G will be called a fundamental potential if
it vanishes at p0 and has the behavior

O — log | Ç(p) — Ç(q) | + regular terms

at q and the behavior

G log | £ (p) — Ç(q0) | + regular terms

at q0. A fundamental solution always exists (cf. [3] p. 129). On a parabolic
surface it is unique, since the différence of two such fundamental potentials
is a harmonie function with a finite Dibichlet intégral, and so must vanish
identically since it vanishes at p0. The function G has the foliowing symmetry
properties :

V> 9, ?o) + G(p, p0; q0, q'o) (5)
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and

G(p, Po*> Ç> ?o) G(q, <lo> P, Po) (®)

Let £ be a uniformizer at q. Then for q in the domain of £ we may express

G as G(p,p0; £,#<>)> anc* we may form the derivatives where -xr-
/ a d \ dp dÇ

dénotes \ -^f — i -~— 1 It foliows from (5) that thèse derivatives are indepen-

dent of the choice of the point q0. As fonctions of p they are harmonie except
at q and hâve a finite Dirichlet intégral over the exterior of any neighbor-
hood of q (cf. [3] Satz IV. 8). At q we hâve the behavior

— + regular terms. (7)W 2 [f (p) - t{q)y

Let b q[l... g*n be an intégral divisor, and let Çk be a uniformizer at
qk. Let L be an élément of £(b) and consider i as a principal part in the
form (3). Then the fimction

where - dénotes the derivative with respect to £fc of G(p, po;qk, q0), is

a harmonie function except at the carrier of b, where it has the expansion (3).
Moreover, / has a finite Dirichlet intégral over the complément of any
neighborhood of the carrier of b. Since W is parabolic, a harmonie function
with thèse properties is unique to within an additive constant.

Let dqG -^rdÇ, where £ is a uniformizer at q. Then it follows from the

symmetry relation (7) that dqG is, in its dependence on q, an analytic differen-
tial except at p and pQ where it has simple pôles, and that it is square integrable
over the complément of any neighborhood of p and p0. Thus dqG is in î) and
a multiple of p"1Pô'1> In terms of dqG we may write the relation (8) as

I 2L\dqG(p, p0; q)]. Since f(po) O, we hâve the foliowing proposition :

Proposition 2. Let L e £(b). Then the unique function / which is harmonie
and has a finite Dirichlet intégral in the complément of every neighborhood
of the carrier of b, which vanishes at pQ, and which has the principal parti at b, is given by f(p) 2L[dqG(p, p0; q)].

CoroUary. Let / c9K. Then f(p) 2Lf[dqG(p, p0; q)] + /(Po).

From the uniqueness of / in Proposition 2 we see that there is an / in 9R
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with the principal part L if and only if the harmonie function f(p) 2L[dq0]
is analytic (apart from its pôles). The condition that / be analytic is that at

each p we hâve ~ 0, where z is a uniformizer at p. Now -JL- 2L\da-==-
dz (dO\ dz L dz\

In its dependence on q, the differential dq I -=- is an everywhere analytic

square integrable differential, the singularity at p being eliminated since
d2

log | z — £ | 0. This gives us the 4tif" part of the foliowing proposition.

The "only if" part is an immédiate conséquence of Proposition 1.

Proposition 3. There is an / c 501 with the principal part L if and only if
L[oc] 0 for ail square-integrable analytic differentials oc.

From the fact that L[dqO] is a bounded harmonie function in the complément

of any neighborhood of the carrier of L, we see that the functions of 501

hâve the property that they are bounded in the complément of any neighborhood

of their pôles If on the other hand / is a meromorphic function on W
which has only a finite number of pôles and is bounded in the complément of
eaeh neighborhood of its pôles, then Lf[dQ0] is a harmonie function with the
same principal part as / and bounded except near the carrier of L. Hence it
differs from / by a bounded harmonie function. Since W is parabolic, this
différence is a constant, and so / must be in 501, since Lf[daG] has a finite
DntiCHiiET intégral over the complément of any neighborhood of the pôles
of /. Thus we hâve the following proposition, which, however, we shall not
use in the remainder of the paper.

Proposition 4. On a parabolic surface the class 501 coïncides with the class

of meromorphic fonctions which hâve only a finite number of pôles and are
bounded in the complément of each neighborhood of thèse pôles.

Corollary. On a parabolic surface the produet of two functions in 501 is
again in 501, and the produet of a function in 501 and a differential in î) is

again a differential in î).

Thus the class 501 is a ring of functions which serves as a ring of operators
on î). Unfortunately, 501 is not a field, since the reciprocal of a function in
501 may well hâve an infinité number of pôles, and even if it has only a finite
number of pôles, there is no guarantee that it will hâve a finite Dibichlet
intégral in the exterior of a neighborhood of its pôles. The fact that 501 is not
a field should prépare us for the différent rôles played by the numerator and
denominator of the divisor b in Theorem 1.



The Riemann-Roch Theorem 43

It is perhaps worth noting that if / is a meromorphie function on a para-
bolic surface such that d log / belongs to î), then / belongs to 501. Such
meromorphie fonctions are called quasi-rational by Ahlfors, and he has estab-
lished [1] a generalization of Abel's theorem for them. Unfortunately, the
sum of two quasi-rational functions need not be quasi-rational.

The foliowing theorem, whose corollaries may be thought of as an analogue
of the Riemann-Roch theorem for gênerai parabolic surfaces, gives us a
criterion for determining which principal parts associated with a divisor b

belong to functions in 501 which are multiples of b.

Theorem 1. Let W be a parabolic Riemann surface and bi and b2 disjoint
intégral divisors on W An order that L c L (b2) be the principal part of a function
in 501 which is a multiple of b bx/b^ it is necessary and sufficient that
L[ol] 0 for ail differentials a in 35 which are multiples of b^1.

Proof. The necessity of this condition is given by Proposition 1. To prove
sufficiency, we suppose that L[a] 0 for ail differentials in X) which are
multiples of bi"1. Since this includes ail square intégral analytic differentials,
Proposition 3 asserts the existence of a function / in 501 with the principal
part L. If bx 1, this complètes the proof.

If bi= pi1... p£m, and fix > 0, wecanrepresent /as / £[9aG(p,Pi; ?)],
and this is an analytic function which vanishes at px. Let zx,..., zm be

uniformizers at px, pm. Then —~ is given by L \dq where —-j-oz\ y dz\ J dz%

dénotes the j-th derivative with respect to zk of G(zk,p1\ q) evaluated at

the point pk. But for 0 ^ j ^ fik — 1, the expression dq—— is, in its
ozk

dependence on q, a differential in D and a multiple of bf1. Hence by hypoth-

esis L dq —— \ 0, and so / has a zéro of order /uk at pk. Thus / is a

multiple of bi/b2, proving the theorem.
Since functions in 501 which are multiples of bx/b2 are completely determined

by their principal parts if b2 7^ 1, and otherwise determined to within an
additive constant, we hâve the foliowing corollaries:

Corollary 1. Let b be an intégral divisor on the parabolic surface W. Then
the number of linearly independent functions / € 501 which are multiples of
b""1 is one more than the number of linearly independent relations L € L(b)
such that L[oc] 0 for ail square integrable differentials a.

Corollary 2. Let bi and b2 be disjoint intégral divisors on the parabolic
surface W, and suppose that bi ^ 1. Then the number of linearly independ-
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ent functions / c 9M which are multiples of b bi/b2 is equal to the number
of linearly independent relations L € £(b2) such that L[oc] 0 for ail acî
which are multiples of bfl.

On a compact surface W of genus g we can formulate our theorem in a

slightly différent fashion. The number of linearly independent analytic dif-
ferentials is g. Every meromorphic differential is determined by its principal
part to within the addition of an everywhere analytic differential. On the
other hand, if a principal part of a meromorphic differential satisfies the
condition that the sum of the residues is zéro, we can construct a meromorphic
differential having this principal part by taking linear combinations of

d*G
dq —r- (pk, px ; q). Thus we hâve the foliowing lemma :

Lemma. On a compact surface W of genus g, the dimension of the space
F(b) of meromorphic differentials which are multiples of the reciprocal b"1
of an intégral divisor b is g -\- n(t>) — 1, if n(t>) > 0, and g if n(b) 0.

Let bi and b2 be disjoint intégral divisors. Each élément in £(b2) can be
considered as a linear functional on the space F(bi) of differentials which
are multiples of bf1. Thus we hâve a natural linear mapping T of £(b2) into
the adjoint space F* of Vfox). By Theorem 1, the null space of T consists
of those L which are principal parts of meromorphic functions which are
multiples of b bi/b2. Thus if we let A dénote the number of linearly
independent meromorphic functions which are multiples of b, we see that the
dimension of the null space of T is A for bi ^ 1 and A — 1 for bi 1.
Since the dimension of the null space of T plus the rank R of T is equal to
the dimension of L (b2), we hâve

Let B be the number of linearly independent differentials in F(bi) which
annihilate the range of T. Then B + R is the dimension of F(bi), and we
hâve

9 + n(bi) - 1 bx # 1

g, bi i.
Subtracting, we hâve

where n(b) ^(bi) — n(b2) is the order of b.
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Now the differentials in F(bi) which annihilate the range of T are just
those for which L[ot] 0 for ail L c £(b2). But this is elearly the set of
ail meromorphic differentials which are multiples of b2/bi. Thus we hâve
established the classical Riemann-Roch Theorem :

Theorem (Riemann-Roch). Let b be a divisor of order n on a compact
Riemann surface of genus g, and let A dénote the number of linearly independent
meromorphic functions which are multiples of b and B the number of linearly
independent meromorphic differentials which are multiples of b""1. Then
A B ~n — g + l.

3. An extension to surfaces of class OFD. We dénote by F the space of
harmonie functions i^ona Riemann surface W with the property that *du
is semi-exact, i. e. has period zéro over each dividing cycle of W. We shall
dénote by OFD the class of those Riemann surfaces on which every function
of class F which has a finite Dirichlet intégral is constant. Throughout this
section we shall assume that W is of class OFD. Surfaces of this class hâve
been considered by Sario [5], who uses the letter K where we use F. Some
of the properties of surfaces of the class OFD are investigated in [4]. In addition

to the définition we shall use hère only the following property ([4],
Proposition 2) :

Let 0 be an open set on W € OFD whose closure is compact and whose

boundary F is composed of a finite number of smooth Jordan curves. Let
/ be a function of class FD in the complément 0 of 0, and a a semi-exact

square integrable differential in 0. Then, assuming sufficient regularity of /
and a on F, we hâve

J/«= —JJd/A«- W

By a semi-exact differential, we mean a closed differential whose periods
over each dividing cycle are zéro. We shall extend the notion of semi-exaetness
to differentials with a finite number of singularities by saying that such a
differential is semi-exact if it is closed and its periods vanish over each dividing

cycle which does not separate its singularities. Let *£)SE dénote the sub-

space of î) consisting of differentials which are semi-exact in this sensé.
Since each analytic function belongs to SOI, while df /\ oc 0 if / and a

are analytic, (9) gives us the following proposition:

Proposition 5. On a Riemann surface W of class OFD, let / € 501 and
oc € T)SB. Then Lf[a] 0.
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In order to investigate the structure of 2R on surface of class OFD, we
make use of the Netjmann's function N(p, pQ; q,q0) on W. As a function
of p, N is harmonie except at q and q0 where it has the behavior

N(P> Po*> <?> £o) — l°g I C(p) — C(?) I + regular terms,
and

N(p,po'>q,qo) log | £(p) — C(g0) I + regular terms,

respectively. Moreover, N(pQ, pQ; q, q0) — 0, and N has a finite Dirichlet
intégral over the complément of any neighborhood of q and q0, and

/(?) - /(îo) 2^JJ<*/ A *<*»# (10)

for any f on W with a finite Dirichlet intégral. The Neumann's function is

completely determined by the above properties, and is easily constructed by
"projecting" the differential of a fundamental solution away from the space
of ail exact square integrable differentials. That is to say N G + K,
where G is the Green's function (or fundamental potential) and K is the
Bergman kernel of the space HD. On a parabolic surface N coincides with
the fundamental potential, and on a finite surface (10) is équivalent to the
requirement that the normal derivatives of N vanish on the boundary.

The Neumann's function has the symmetry properties

Po', ?> ?o) N(Q> ?oî P> Po) (H)
and

> Poî <1> ?i) N{p, p0; q, q0) + N(p, p0; q0, q'o) (12)

From (10) we can deduce that *dpN is semi-exact, for let Cbea dividing
cycle which does not separate q from qQ. Then G may be taken as one boundary
of a ring domain (i. e. a union of a finite number of annuli) which does not
contain q or q0. Let / be a C2 function which is identically one on one side of
R and identically zéro on the other. Then

c 2»[/(g) - /(?,)] 0

From thèse properties of N it follows that if L is any principal part, the
function / 2L[dqN] is a harmonie function with the principal part L, has

a finite Dirichlet intégral over the complément of any neighborhood of the
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carrier of L, and has the property that *df is semi-exact. Since the harmonie
function with thèse properties is uniquely determined apart from an additive
constant, we see that for any / c 501 we hâve

Thus there is a meromorphic function in 501 with the principal part L if and
only if L[dqN] is analytic except on the carrier of L. Letting z be a uni-

formizer at p, we see that L [dQN] will be analytic if and only if L \dq -==- 0.
dN L J

In its dependence on q, dq -==- is an everywhere regular semi-exact analytic
OZ

square integrable differential. Combining this with Proposition 5, we hâve the
following proposition :

Proposition 6. On a Riemann surface W of class OFD there is an / c SOI

with the principal part L if and only if L[oc] 0 for ail semi-exact square
integrable analytic differentials a.

Theorem 2. Let W be a Riemann surface of class OFD, and let bi and b2

be disjoint intégral divisors on W. In order that L € L (b2) be the principal part
of a function / e 2JI which is a multiple of b bi/b2, it is necessary and suf-
ficient that L[a] 0 for ail a in T)SE which are multiples of bf1.

Proof. The necessity is given by Proposition 5. Suppose that L[a] 0

for ail a in T>SE which are multiples of b[~x. Then Proposition 6 states that
there is an / € 501 with the principal part L. If bi 1, this complètes the
proof. If bi ^ 1, the remainder of the proof is the same as in Theorem 1

with G replaced by N and making use of the fact that as a differential in q,

dz\
It is left to the reader to formulate corollaries similar to those of Theorem 1.

We note that Theorem 2 implies Theorem 1 if we make use of the fact that
on a parabolic surface every harmonie differential is semi-exact if it is square
integrable.

6. An extension to gênerai hyperbolic surfaces. If W is an arbitrary hyper-
bolic surface, we define the space 50lo to consist of those functions / in 501 for
which

Jt\»e jj aj f\ ol u v^o;
w

for every real closed square integrable differential a which vanishes in some
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neighborhood of the pôles of /. We define Do to consist of those ain î) for
which

a O (14)

for each real function / with a finite Dirichlet intégral which vanishes in a
neighborhood of the pôles of a. If W is a finite Riemann surface, then 9M0

consists of those meromorphic functions which are imaginary on the boundary
of W y and 3)0 consists of those meromorphic differentials which are real along
the boundary. If W is a parabolic surface, then 9Dt0 and Do coincide with 9Dt

and !D. We sketch briefly the extension of Theorem 1 to the classes 9Jl0 and
Do on an arbitrary Riemann surface. As an easy conséquence of the pro-
perties (13) and (14) we hâve the following proposition:

Proposition 7. Let bx and b2 be disjoint intégral divisors, and let / € SD?0

be a multiple of b bi/b2 and oc € 3)0 a multiple of bj"1. Then Re Lf[oc] 0.

Let O(p,q) be the Green's function of W. Then dq0 is, in its dependence
on q, a differential of class 3)0 which is a multiple of p~x. As a function of p
it is harmonie, has a finite Dirichlet intégral outside any neighborhood of
q, and satisfies (13). We can then establish the following propositions:

Proposition 8. Let L e L (b). Then the unique real harmonie function u
which has a finite Dirichlet intégral over the complément of any neighborhood

of the carrier of d, which satisfies (13), and which has the principal part
Re L is given by u(p) 2 Re L[dqO(p, q)].

Proposition 9. There is an / c 50lo with principal part L if and only if
Rel[a] 0 for each a which is everywhere regular and belongs to î)0-

The proof of Proposition 9 differs from that of Proposition 3 only in that
we make use of the fact the periods of *dpdqG as a differential in p are everywhere

regular differentials of the class 35O.

Theorem 3. Let t)t and b2 be disjoint intégral divisors on the Riemann surface

W. In order that L € L (b2) be the principal part of a function f € 50lo

which is a multiple of b bi/b2î it is necessary and sufficient that Re L[a] 0

for ail differentials oc € Do which are multiples of bf1.

The proof is similar to that of Theorem 1, but makes use of the fact that
an analytic function u + iv which vanishes at pk has a zéro of order fi there
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if -=-:7 0 and -=—r 0 for j < u. We also make use of the fact that if
G is the harmonie conjugate of G then dqG and dg-^-j and 9a -~-y are in
î)0 when considered as differentials in q.

We hâve the following corollary, which may be considered a version of the
Rïemann-Roch theorem for finite surfaces :

Corollary, Let IF be a non-compact finite Riemann surface of genus g
with h boundary contours. Let b be a divisor on W, and let AQ dénote the
number of linearly independent meromorphic fonctions on W which are
multiples of b and which are imaginary on the boundary (linearly independent
in the real sensé). Let Bo dénote the number of meromorphic differentials on
W which are real along the boundary, multiples of b"1, and linearly

independent in the real sensé. Then

40= B0-2n(b) -2g-h+ 2.

Rather than considering the space 2R0, we might equally well consider the
space 2Rm consisting of those fonctions / in 501 for which

O (15)
w

for ail real semi-exact square integrable differentials a which vanish in a neigh-
borhood of the pôles of /. We hâve 9K0 c 2Jlm c 9ÏÏ. The space SDÎm consists
of those meromorphic fonctions for which Re df is canonical in the sensé of
Ahlfors [1], On a finite Riemann surface SDtm consists of those meromorphic
fonctions whose real parts are constant on each boundary continuum.

Dénote by *JÙOse *^a^ subspace of 3)0 which consists of semi-exact differentials.

If instead of the Green's fonction G, we use a kernel H which differs
from G by the Bergman kernel for the space of harmonie measures, we can
modify the proof of Theorem 3 to obtain the following theorem which we
state without proof:

Theorem 4. Let bx and b2 be disjoint intégral divisors on the Riemank surface
W. In order that L c L (b2) be the principal part of a function f e Mm which
is a multiple of b bi/b2, it is necessary and sufficient that ReZ/[a] 0

for ail differentials oc c D0Se which are multiples of bf1.

Corollary. Let W be a non-compact finite Riemann surface of genus g.
Let b be a divisor on W, and let Am dénote the number of meromorphic func-
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tions on W which are multiples of b, whose real parts are constant on each

boundary contour, and which are linearly independent in the real sensé. Let
BSB dénote the number of semi-exact meromorphic differentials on W which
are real along the boundary, multiples of b""1, and linearly independent in
the real sensé. Then

Am BSE -2g~ 2n(b) + 2

6. Infinité divîsors. We can generalize the results of the preceeding sections
somewhat by eonsidering infinité divisors. By an infinité divisor (or briefly
divisor) b we mean an integer valued function v(p) defined on W. We multiply
and divide divisors by adding and subtraeting the corresponding functions,
and the unit divisor corresponds to the function which is identically zéro.
A divisor is called intégral if v(p) ^ 0 for ail p, and two divisors bi and bg

are said to be disjoint if v1(p)-v2(p) 0 for ail p. A function / € SOI is said
to be a multiple of a divisor b if at each p the order of / is at least v(p), and
similarly for differentials a € î).

It is then readily verified that Theorems 1 through 4 remain valid if we
allow infinité divisors. Note that our functions and differentials are still re-
quired to be of class SDt or î), i. e. to hâve only a finite number of pôles.

The corollaries to Theorem 1 remain valid for infinité divisors if by a relation

with respect to b we mean a relation with respect to some finite divisor
contained in b. Hère linear independence must be taken in the algebraic
sensé, i. e. only finite sums permitted.

It would be very desireable to hâve some corresponding theory for
meromorphic functions with an infinité number of pôles, but I hâve been unable
to find a suitable replacement for the class 2R.

7. Essential Singularises. Rather than eonsidering meromorphic principal
parts, we could equally well hâve considered more gênerai singularities which
are given by Laurent expansions at the points qx,... ,qn. We can still define
a linear functional L by

and with this définition, analogues of Theorems 1 through 4 remain valid if
we allow 9W to contain functions with essential singularities at a finite number
of points and omit référence to the divisor b2.
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