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Cobordism of Pairs

By C. T. C. Wall1), Princeton, N. J. (USA)

This paper extends the résulta of ordinary cobordism theory to cobordism
of pairs of manifolds (a pair is a pair (F, M) of closed differentiable manifolds,
with F a submanifold of M). We first reduce the cobordism problem for the
pair to separate problems for F, M ; for F, however, a new structural group
must be considered (e.g. 0fcX0jv). We then evaluate cobordism theory for
the new structural groups. Our more précise results include the following:

In the gênerai case (groups unrestricted) ; or if F and M are supposed
oriented; or if M is weakly almost complex and the normal bundle of F
in M is reduced to the unitary group ; the characteristic numbers of F and
M détermine the cobordism class. The characteristic numbers of M are as
usual ; those of F are mixed products of characteristic classes of the tangent
bundle of F, and of the normal bundle of F in M, evaluated on F. Thèse
hâve coefficient groups Z2 (in the first case), Z (in the third), or both (in
the second). Correspondingly, the cobordism groups are direct sums of copies
of thèse groups. Their additive structure is completely determined.

Corresponding extensions of thèse results also hold for n-tuples (defined as
chains Fx c F2 c c Fn_x c M of submanifolds) but appear rather
less interesting. Products of various kinds can be defined ; the most natural
one appears to be

W x (M, F)->(TF x M,W x F)

which establishes the cobordism group above as a free module over the usual
cobordism group (in cases 1 and 3 only).

1. Cobordism over a séquence of groups

A cobordism theory is defined using a séquence of groups Gn such that
(i) Gn is a subgroup of the orthogonal group On, (ii) Gn is a subgroup of
Gn+1 (using the usual imbedding of 0n in On+1). (A similar formulation has
been suggested by Mtlnor). It is possible to consider the more gênerai situation

in which we hâve maps Gn->OniGn-> Gn+1 not required to be inclusions,
but we shall adhère to the simpler version.

1) The results of this paper were announced in a lecture to the International Colloquium on
Differential Geometry and Topology, Zurich, June 1960.
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A manifold Mn is said to be endowed with Cr-structure, or called a G-

manifold, if for some imbedding Mn->Sn+K, a réduction of the normal
bundle to GK is given. We shall identify a G-structure with those induced
from it by suspension (adding a trivial bundle préserves a natural G-structure
in virtue of the inclusions above). It is known (Steenrod [12]) that a 0-
structure may be specified by a homotopy class of cross-sections of the bundle
associated to the normal bundle of M and with fibre Ok/Gr

Two closed G-manifolds are (?-cobordant if together they form the bound-

ary of another G-manifold, and its (?-structure induces theirs. A little care is
needed hère : we regard the normal bundle of the boundary as the direct sum
of the normal bundle of the manifold and the normal bundle of the boundary
in the manifold, where the latter must be counted as pointing respectively
inwards and outwards for the two manifolds on the boundary. This convention
will allow us to show that O-cobordism is an équivalence relation, in view of
Lemma 1.

We must now explain 'pasting and straightening', as introduced by Mtlnor
[7]. We shall adopt différent, but équivalent définitions to his. Let Mn, Mfn
be two differentiable manifolds, and let Vn^1 be a submanifold of the boundary

of each. Write L M + M', identified along V ; we shall show that
L has a natural differentiable structure. Near its boundary M is locally a
product, also M1. Fixing a differentiable product structure allows us to
define a differentiable structure on the union, except on 9F. Now a neigh-
bourhood of 3 F in dM or dM' is also a product with an interval, so a
neighbourhood of 3F in L is a product of dV with Fig. 1. L m made
differentiable by giving a homeomorphism of this with Fig. 2, diffeomorphic
except on dV. (This is easy.) We can then form Fig. 3, showing how copies,

Ms, Mr8 of M, M' can be imbedded in L, and a copy Ls of L differen-
tiably in Ms ^ Mr8 without change of differentiable structure.
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Similar diagrams can also be drawn in the case when one or both of M,
Mf lias already a corner along 3F; for our application, M will be straight
and M' hâve a right angle there.

Lemma 1. Suppose M, M' are G-manifolds, and induce the same G-structure

on F. Then L admits a G-structure inducing the given G-structures on M,Mf.
Proof. Suppose N so large that the normal bundle of an n-manifold in

$N+n is independent of the choice of imbedding (e.g., n<N, Whitoey [15]).
Take an imbedding of L in SN+n ; this induces imbeddings of the submani-
folds M8,M'8, whose normal bundles are reduced to G&. Hence we hâve
cross-sections of the associated Ojv/Criyrbundles. The two structures induce
the same 6?-structure on V89 so the restrictions of the suspended bundles
with fibre On+1/Gn+1 to V

8 are homotopic. Extending a homotopy on F8

to one on M8, we can find a cross section over Ms + M8, and thus reduce
the bundle to 6?jy+1. But this is the suspended bundle, which is the same as
the normal bundle for the suspended imbedding in 8N+1. Hence L8 has a
©-structure, and it is clear from its construction that the corresponding G-

structure on L induces the given ones on M, M'.
Note. The structure is not unique; we had to make a choice of a homotopy

on V8, and the différence between two such structures can be described by
a bundle on S F.

Corollary. G-cobordism is an équivalence relation.
For we may paste together manifolds giving G-cobordisms of U to F and

of F to W to find one giving a cobordism of U to W.
Examples of séquences (Gn) are 0n,80n (Thom [13], Milnor [8], Aver-

btjch [4] and Wall [14]), TJ\n (Milnor[8] and Novikov [10]), 1 (Pontr-
jagin[11] and Kervajue) 8p^n (Novikov [10]), 8U%n, and OkxOn_ki
which suggests a gênerai type which we will study below.

2. The réduction lemma

In accordance with the spirit of the first paragraph, we now make the
following définitions. (M, F) is a (G,Lk)-pair if M is a 0-manifold, and
F a submanifold with normal bundle reduced to Lk. Two closed (6?, Lk)-
pairs (M,V), (M',V) are (G, Lkycobordant if there is a (G, L&)-pair
(N, W) such that dN M ^ Mf, dW F ^ V and the (G, £fc)-structure
of (Ny W) induces the given (G, Lk)-structures of (M, V) and (Mr, F').

Now if (M, V) is a (G, Lfc)-pair, we may choose an imbedding of M in
a sphère with normal bundle reduced to Gn. But then the normal bundle of
F is reduced to LkxGN, so F has a natural jEf-structure, where H is
defined by Hk+x Lk x G# (the définition of Hi for i < k does not matter,
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but could be made by H£ 1 or by Hi Lkrs Ot). We then see that if
(N, W) provides a Z,fc)-cobordism of (M, V) with (M', F'), W
provides an if-cobordism of V with V. We can now state the réduction lemma.

Lemma2. Two (G,Lk)-pairs (M, V), (Mf, V) are (G, Lk)-cobordant if
and only if M, M' are G-cobordant and V, V are H-cobordant.

Proof, We hâve just seen the necessity of the condition. Now suppose it
satisfied. Let W provide an //-cobordism of V, V. Choose an imbedding
of W in a sphère with normal bundle reduced to Hk+N. A neighbourhood
of W is diffeomorphic to the associated bundle with fibre Ek+N EkxEN
(a small cell) and the subset Ek of this is stable under the opérations of the

group Hk+N Lk x Gn, so we can sélect a corresponding submanifold with
boundary X, whose normal bundle, we note, is reduced to Gn, and the
normal bundle of W in which is reduced to Lk. Now form the manifold

M

V

1
1

M'—-*
i

r t
4. M'

i
1

M'

Since by définition X induces the correct G-structure of a neighbourhood
of V in M, we may apply Lemma 1 to deduce that P (with corners rounded
as in the figure) is a G-manifold. If M" dénotes the middle components of
the boundary of P, P induces a G-structure on it, and provides a G-cobordism
of M" (endowed with this (J-structure) to M ^ M', hence, since M is (?-

cobordant to M' and (?-cobordism is transitive, M" is G-cobordant to zéro.

If Q provides this (?-cobordism, P + Q B, which by Lemma 1 may be

endowed with (?-structure inducing the given structures on P, Q, provides
a (?-cobordism of M to M', and contains the submanifold Y V X / +
+ W + V X I whose normal bundle is reduced to Lk by construction, so

that (B,Y) provides the required (G, Lfc)-cobordism.
This lemma reduces the gênera] problem of cobordism of pairs to the

considération of a single cobordism theory. It is now easy to see that by the same
method we can now provide similar réductions for the problem of cobordism
of w-tuples Mx c M2 c c Mn, with (if we so désire) assigned structural
groups at each stage. For suppose inductively a cobordism given for Mn__t
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(and the smaller manifolds) ; then this gives also (as above) a cobordism of
the neighbourhood of Mn^x in Mn, and a glueing argument as above extends
this to a cobordism of Mn as well. It is with this application in mind that
we keep both G and Lk quite gênerai.

In subséquent paragraphs we shall compute many of thèse groups of cobordism

classes. We close this section by noting that the lemma has direct
conséquences such as the following :

The only obstruction to extending a cobordism W of V to one of M is the

obstruction to extending the normal bundle of V in M to a bundle on W.
For once this extension is made, the above method will give an extension

of W.
3. Algebraic Préliminaires

We now wish to compute cobordism theory for certain groups, which results
of Thom [13] reduce to Computing certain stable homotopy groups. Thèse we
shall evaluate using the homology of the appropriate spaces and the Adams
spectral séquence. For this we must study certain modules over the Steenrod
algebra. Our main tool will be the following lemma.

Lemma 3. Let A be a connected graded Hopf algebra over a field k, F a
free graded A-module, and M any graded A-module. Then F ®kM is a free
A-module. If (fn) is an A-base for F, and (mr) ak-basefor M, then (fn®mr)
is an A-base for F <g) M.

Proof. Let (a^ be a ifc-base for A. Then by hypothesis (a{fn) is a i-base
for F. Hence (aifn ® mr) is a i-base for F ® M. The lemma states that
(ai(fn ® mr)) is a A-base for F® M. To prove this we filter F® M by
Cp SIFt® M. Then prove by induction on p that the a{{fn ® mr) with
dim (at/n) < p form a base for GP. For p 0 this is trivial, A being
connected.

Suppose it true for p — 1. Now if dim (atfn) p,
ai(fn ® mr) Za'fn ® a"mr

(using what we know about the diagonal homomorphism for ^4), and as it is
clear that the (a{fn g) mr) with dim (ajn) p form a base of Gp modulo
Cp-i, the resuit follows.

Complément. Let A2 be the Steenrod algebra over Z2, G an Armodule
on one generator x and one relation Sqxx 0, and M any Armodule. Then
G (g) M is a direct sum of a free module, and modules of type G.

Proof. A2, with the differential operator induced by right multiplication
by Sq1, is a free chain complex (first shown by Adem [2], but also follows



Cobordism of Pairs 141

from gênerai results about Hopf algebras and subalgebras [9]; we hâve a
base consisting of éléments aj7 aô8qx, and the aôx form a base of G.

M, with the differential operator induced by Sq1, is also a chain complex.
We take it in normal form, i.e. take a homogeneous base (l8, mt, nt) of
éléments such that

SqHs 0 Sq1mt nt, Sqxnt 0

We now assert that G ® M is the direct sum of free modules on the x ® mt
and modules of type G on the x ® ls. In fact, a^ is a base of G;
ajSq1(x (g) l8) 0 ; and the top terms of aô(x ® l8), a^(x ® mt) and
aiSq1(x (g) mt) a^x ® nt) with respect to the same filtration as used in the
proof of the lemma are a^x ®l8, a^x ® mt, and a^x (g) nt respectively, so
the same inductive argument as before shows that we hâve a base of G ® M.

Let us call an ^42-module simple if it is the direct sum of a free module and
modules of type G.

Corollary, // F is a simple graded A2-module, and M any graded A2-module,
then F ® M is simple.

This foliows at once from the lemma and complément, on taking direct sums.

4. Application of Thom theory

It follows from the work of Thom [13], (which we shall suppose known),
that cobordism groups for the structural group Gn are given by the homotopy
groups of M (Gn). Now in ail the cases with which we shall be concerned,
{Gn} satisfies a certain stability condition. We shall dénote the classifying
space of a group L by B(L) ; over it there is a canonical i-bundle [5]. Given
a linear représentation of L, we may form the associated vector bundle over
B(L) ; its one point compactification is the Thom space M (L).

{Gn} is said to be stable if for each n there exists a q such that for q < p
the induced cohomology map Hn(B(Gp)) -> Hn(B(Gq)) is an isomorphism.
Hn(B(Gq)) is called a stable group, and denoted by Hn(B(G))

Now Gn is a subgroup of On, so we hâve a linear représentation ready
to hand, and can define M{Gn). Suspending the représentation has the
effect of suspending the Thom space [3], so the inclusion of Gq in Gq+1 de-
fines a natural map of 8M(Gq) to M (Gq+1) which, since the cohomology
groups of a Thom space are isomorphic to those of the classifying space, but
with a dimensional shift, induces an isomorphism of cohomology in dimension

n + q + 1 • Or supposing, as we clearly may, that q is chosen to increase
with n, we hâve an isomorphism up to dimension n + q + 1. By the Uni-
versal Coefficient Theorem, we hâve an isomorphism of homology up to

10 CMH Toi. 35
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dimension n + #> and by a theorem of J. H. C. Whitehead, of homotopy
up to dimension n + q — 1. Thus we hâve homotopy groups of the M(0q)
which become stable (for as M(0q) is g-conneeted, its homotopy groups up
to dimension 2q — 2 are stable under suspension [13]). We shall refer to
thèse as stable homotopy groups of M (G). We may now state the following
corollary of Thom theory.

Proposition. // {Gn} is stable, the cobordism groups for G are the stable

homotopy groups of M (G).
We also note that the stability of cohomology of M(Gq) allows us to define

stable cohomology groups H*(M(G)), and that since the isomorphisms are
defined by induced homomorphisms and the suspension isomorphism, we can
define stable cohomology opérations acting in H* (M (G))

We now consider Hx+h LkxGN- Since B(HN+k) B(Lk) x B(Gn),
the Kûnneth relations show that if G is stable, so is H. By [3], M(Hn+1c)
is the collapsed product M (Lk) % M ((?#). Hence for any coefficient field K,
using reduced cohomology, we hâve

H*(M(HN+k),K) H*(M(Lk), K) ® H*(M(GN),K) (1)

and if K Zp, the two sides of this équation are even isomorphic as modules

over the Steenbod algebra Ap, as its action on an algebraic tensor product,
using the diagonal homomorphism, was originally defined from the topological
product (or cup product, which is the same thing) [6].

Before mentioning spécial cases, we shall define characteristic numbers in
the gênerai case. Thèse we define as invariants of cobordism class directly;
in fact given a map of a sphère 8N into a Thom space M (Gn) defining a
class, the corresponding characteristic numbers are the inverse images of
classes in HN(M (Gn)), evaluated on the fundamental homology class of
8N. To see the connection with the usual définition of characteristic numbers,
we recall Thom's procédure; given a manifold F, we take a classifying map
for its normal bundle in some 8N, and extend to a map of a tubular neigh-
bourhood of F into the associated vector bundle; the rest of 8N is then
mapped to the point at infinity. Hence the inverse image of the class in
HN(M(Gn)), which can be regarded as a class on the tubular neighbourhood
of F, is the resuit of lifting the inverse image of the corresponding class in
Hk(B(Gn)) in Vk. But this is the usual définition of characteristic classes;
take a classifying map for the normal bundle of F, and evaluate the inverse
image of a class on B(Gn) on the fundamental class of F.

We are now ready to consider the orthogonal group. Note that in (1), there
is a module multiplication by H*(M(Gn), K) ; this is the algebraic counter-
part of the module multiplication mentioned in the introduction.
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The Orthogonal Group

We now take Gn On. It is well known that H*(M(O)) is zéro over
any field K of characteristic not 2, and H*(M(O),Z2) is a free ^42-module
(Thom [13]). By Lemma 3, H* (M(H), Z2) is also a free A2-modxûe, and we
know how to choose a base. Hence there is a map of M (H) to a product of
Eelenberg-MacLane spaces K (Z2, r) inducing an isomorphism of mod 2

eohomology, and hence also of integer homology since (by the analogue of (1)
for Z as coefficient group) this consists entirely of torsion of order 2. Since
the spaces are both simply connected, by the theorem of Whitehead already
mentioned, the map induces also an isomorphism of homotopy.

This détermines the cobordism groups for the séquence HN+k Lkx0x.
The full cobordism group is the graded direct sum of the cobordism groups
in the various dimensions. Using the remark at the end of the previous para-
graph, and the ^42-base constructed in Lemma 3, we may now enunciate

Theorem 1. The cobordism groups for the séquence H are ail of exportent 2.

The cobordism class of a manifold is determined by its characteristic numbers.
The full cobordism group is a free %1-module, with a base corresponding to a
Z2-baseof H*(B(Lk),Z2).

The Unitary Group

We now take G2n G2n+1 Un. It is convenient to work only with groups
Lk satisfying a certain condition :

(B) H*(B(Lk)) is torsion free, and zéro in odd dimensions. We note that (B)
holds if Lk itself is a unitary group, or a product of such. If (B) holds only
up to a certain dimension, or modulo a certain set of primes, then our results
will also hold up to nearly that dimension, or modulo those primes ; such
refinements we leave to the reader.

We shall now follow the arguments of Mtlnor [8]. Now H* (Bu) is itself
torsion free. Hence 27* (Jfu, Zp) has a Bockstein operator QQ identically
zéro, and hence can be considered as a module over the algebra AJ(Q0),
quotient of the Steenrod algebra by the idéal generated by QQ. We now use
the fundamental resuit of Milnob [8], Theorem 2 to the effect that it is a
free module. By (B), H*(M(Lk), Zp) also has zéro Booksteins. We now
apply Lemma 3 to the Hopf algebra AJ{Q0), the free module 27* (M(U), Zp),
and the module S* (M(Lk), Zv) to deduce that their product #* {M {H), Zp)
is again a free module.

Moreover, since the generators of the Z-module H*(B(Lk)) are even-
dimensional, those of the AJ(Q0)-m.odule H*(M(H), Zp) are also even-
dimensional.
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It now follows from Milnor, loc. cit., Theorem 1, that the stable homotopy
groups are torsion free, and from the fact that the stable Htjrewicz homo-
morphism is an isomorphism mod finite groups we can deduce what the

groups are.
Finally, we consider the module multiplication by the unitary group. We

now know that the Adams spectral séquence [1] is trivial, so the fact that we
hâve a free module in the i£2-term leads to one also in the E^-term, from
which we can see that we not only hâve the cobordism group as a free module
over the unitary one but also that ail the divisibility conditions for charac-
teristic numbers are implied by this product structure. We can now sum up
our results in

Theorem 2, The cobordism groups for the séquence H are torsion free, and
zéro in odd dimension. The cobordism class of a manifold is determined by its
characteristic numbers. The full cobordism group is a free module over the unitary
cobordism group, with generators in (1 — 1) correspondent with a base for
H*(B(Lk)). Characteristic numbers satisfy just those divisibility conditions
which are implied by the module structure.

The Spécial Orthogonal Group

The case Gn — SOn, as for straight cobordism theory, présents features
which are a mixture of the two previous cases. The odd torsion behaves

precisely as in the case of the unitary groups : if H* (B (Lk)) is free ofodd torsion,
and in odd dimensions consists entirely of 2-torsion, the arguments of the
preceding section go through without modification (even the références are
the same) as fas as odd torsion is concerned. To make further progress, we
now require in addition that ail torsion in H*(B(Lk)) be of order 2. Using
the corollary to Lemma 3, and the fact that H* (M (80), Z2) is simple
[14], we deduce that H*(M(H), Z2) is also simple. In fact, the 6?-type generators

for H* (M (80)) correspond to the free part of Q, hence, since the
l8 of the complément to Lemma 3 are the mod 2 restrictions of the free
generators of H*(B(Lk)), the (?-type generators of H* (M (H)) stand in cor-
respondence with generators of the free part of stable homotopy (as determined
above by considering the odd primes). Take then generators of the free part
of H* (M (H)) and corresponding maps to Eilenbebg-MacLane spaces

K(Z,n); then we already know that the product map induces isomorphisms
of homotopy mod finite groups. Now thèse generators restrict mod 2 to
precisely the generators of type 0 of the simple -42-module. Choose a set of
free generators, and corresponding maps to Eilenberg-MacLane spaces
K(Z2,m); then the map to the product of ail thèse Eelenberg-MacLane
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spaces induces mod 2 cohomology isomorphisms, and hence also mod 2 homo-
logy isomorphisms. We already know (using the above cited theorem of
Whitehead) that the map induces isomorphisms of homology mod finite
groups ; it now follows that it induces isomorphisms mod finite groups of odd
order. Hence again it does also for homotopy, so ail the 2-torsion has order 2,
and is ail captured by the homology.

Module multiplication follows as before ; however we no longer hâve a free
module unless H*(B(Lk)) is completely torsion free; in the contrary case
the Z2-structure is différent. (In fact, if we follow the appearances of ail the
Z2's, it would appear that we should hâve the direct sum of a free module
over Q, and one over the algebra 2B of [14].)

Theorem 3. Cobordism groups for the séquence H are sums of free groups
(which ail occur in even dimensions) and groups of order 2. The cobordism class

of a manifold is determined by its characteristic numbers. The full cobordism

group contains a free Q-submodule, with generators corresponding to a base of
the free part of H*(B(Lk)), as direct summand, its complément having expo-
nent 2. Divisibility conditions (ail by odd primes) are those implied by the

module structure.
Trinity Collège, Cambridge and Institute for Advanced Study, Princeton
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