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Fibrations and Cocategory1)

by Tudor Ganea, Bucharest

1. Introduction and results

In a previous paper [3], I hâve defined a based homotopy type invariant,
the cocategory, which appears as dual to Lusternik-Schnirelmann category
within the framework of the Eckmann-Hilton [1] duality in homotopy
theory. The cocategory, cocat X, of an arbitrary topological space X with
base-point is the (possibly infinité) strictly positive integer given by the
following inductive

Définition 1.1. cocat X 1 ifandonlyif X iscontractible; cocat X ^n-\- 1

whenever there exists a fibration Q -> Y -> B such that the fibre Q dominâtes

X and cocat Y ^n. If the phrase cocat X ^n is false for ail n ^ 1, we

put cocat X oo.
Evidently, cocat X n will mean that cocat X ^ n is true but cocat X

^ n — 1 is false. It is assumed that ail homotopies involved in 1.1 keep
base-points fixed ; the précise sensé of the word fibration is explained in the
next section.

In the Eckmann-Hilton setting, fibrations are dual to cofibrations, i. e.

séquences Q <- Y <- B in which the first arrow results by pinching to a

point the image of B in Y, while the second has the lowering homotopy
property [5 ; p. 14]. It follows that cocategory is indeed dual to category since,

provided X has the based homotopy type of a connected OïF-complex, cat X
is equal to the invariant obtained by reversing the arrows and replacing in
1.1 the words fibration and fibre by cofibration and cofibre respectively [3;
Th. 1.9]. The following relations between cocat X and standard homotopy
invariants of X hâve been established:

1.2. If X is a 1-connected CW-complex with only n non-trivial Postnikov
invariants kq+2, then cocat X ^ n + 2; in particular, if the 1-connected GW-
complex X has only n non-trivial homotopy groups, then cocat X ^ n + 1

[3; Th. 2.10 and Cor. 2.11].

1.3. // X has a non-trivial n-fold Wbitehead product, then cocat X
^ n+ 1 [3; Cor. 2.13].

x) Presented at the International Colloqumm on Differential Geometry and Topology, Zurich,
June 1960.
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Also, for every n ^ 1 there exists a connected OJF-complex X such that
cocat X n [3 ; Remark 2.16].

The purpose of this paper is to présent two further results.

Theoreml.4. // X is a (p — l)-connected (p^2) CW-complex such
that nq(X) 0 for q ^ r + 1, then cocat X ^[(r - l)j(p - 1)] + 1.

Hère [a/6] stands for the largest integer ^ ajb. Theorem 1.4 dualizes a

previous resuit by D. P. Grossman [4] according to which cat X ^ [r/p] + 1

if X is a (p — l)-connected complex of dimension ^ r. Infact, Grossman's
resuit may be restated for a 1-connected complex X such that Ha(X; ^ 0

only if p ^*q <Z>r. The slight différence between the numerical estimation
given in 1.4 and that of the Grossman theorem agrées with the relations

dim [oc, /?] dim a + dim /9 — 1 and dim u^> v dim u + dim v

involving Whitbhead and cup products which are dual to each other. The
proof of 1.4 is based on the extension, given in the next section, of a well
known resuit concerning fibrations with a K(n,n) as fibre.

Our next resuit refers to the cocategory of {n — l)-connective spaces
(X, n) over X, and to that of spaces (n, X) obtained by attaching cells

to X so as to kill its homotopy groups in dimensions ^ n. When X is a

OTF-eomplex we shall assume, as we may, that both (X,n) and (n,X)
hâve the based homotopy type of CTF-complexes, and state

Theorem 1.5. Let X be a connected CW-complex. Then, for ail n ^ 1,
cocat (X,n) ^ cocat X and cocat (n, X) ^ cocat X.

For n 2 we hâve the

Corollary 1.6. The simply connected covering space X of a connected CW-

complex X satisfies cocat X ^ cocat X.

â. À lemma on induced fibrations

Ail spaces, maps, and homotopies hereafter are assumed to possess,
préserve, or keep fixed a base-point, generally denoted by *. A séquence

SF\ Q-> Y->B of spaces and maps is a fibration with fibre Q /f"1 (*) and
inclusion map rj if for any space E, any homotopy ht: E -> B and any
map Je: E -> Y satisfying /3oh h0, there is a homotopy Ht\ E -> Y
such that HQ k and /SoHt ht. We do not require that p be onto.
The space of paths in B emanating from the base-point is denoted by EB,
the loop-space by QB. Consider the fibration JT' above, and let 0: C -> B

C ybe a map ; the séquence Q-+Z-+C in which
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Z {(c, y) | 0(c) fi (y)} c C x F *z (*c, *F),
and y(c,?/) c,

is the familiar fibration induced by S? via 0. Suppose the rows in the dia-
gram

/

are fibrations. The first is algebraically équivalent to the second if there are
singular homotopy équivalences f,g,h such that each square commutes.
A map / : X -> Y is a singular homotopy équivalence if fq : 7tq(X, x) ->
7tQ(Y,f(x)) is isomorphic for ail q ^> 0 and ail acX; if X and Y
are O-connected, it suffices to take x *. We shall often use the géométrie
realization | 8(X) \ of the singular complex of an arbitrary space X and
the canonical map jx : | S(X) \ ->X which induces homotopy and homo-
logy isomorphisms in ail dimensions [7].

V P
Lemma2.1. Let j7":Q->r~>jB be a fibration urith Y and B bothhaving

the based homotopy type of a CW-complex. Suppose that B is (m — l)-con-
nected and that nq(Q) ^ 0 only if n^q^n + m — 2, where m ^ 2 and
n ^ 1. Suppose further that there exists a singular homotopy équivalence

6:Q-*QW, where W is a 1-connected space. Then, there exists a map
0 : jB -> W such that J7* is algebraically équivalent to the fibration induced by

9:QWXEW via 0.

Prooî. Introduce the diagram

\n\

\P\

¦\S(B)\.
y

\S(Y)\I\8(Q)\
i'

-+QW

l'
->EW

V

W

(1)

2 CMH TOI. 35
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The maps | rj \ and | /S | are induced by rj and /? respectively, and the
two squares on the left commute; | 8(Q) | is a subcomplex of | 8 (Y) | and

\rj\ is the inclusion map. Since | $(*) | * and porj(Q) *, we hâve

\P\o\fl\(\ S(Q) | * (2)

Let \8{T)\/\8(Q)\ and <p resuit by pinching the subset \8(Q)\ of
| 8(Y) | to a point, which will serve as base-point in | 8(Y) | / | S(Q) | It
follows from (2) that y | /? | o y1 is single-valued, and hence continuous.
According to [11 ; § 8], the space | 8(Y) \ j \ 8(Q) | may be given a CW-
structure and y is easily seen to be cellular ; therefore, its reduced mapping
cylinder G (y) is a CÏF-complex in which | 8 (Y) \ j \ 8{Q) | and \8{B)\
are embedded as subcomplexes by means of the maps e and k respectively.
The standard retraction q of G (y) onto | 8(B) \ satisfies the relation
Qoe y. Let f=OojQ. Since the CTT-pair (| S(Y) \ | 8(Q) |) has the
homotopy extension property and since EW is contractible, there exists a

map g such that
go\rj\=iof (3)

Mnally, since 2?oi(,QIF) *, (3) implies that y — pogcxp-1 is single-
valued, and hence continuous.

We now prove that there is a map h such that

h o e ip

Since s is an inclusion map, this amounts to extending ip over the complex
C(y). The diagram

Hq(\ 8(Y) | | 8(Q) HQ(\ S(Y) | /1 S(Q) \ *)

HQ(\ 8(B) | *)

in which ?* is induced by the map of pairs defined by Jy, is obviously
commutative. Considération of the upper left square in (1) and the five
lemma show j* isomorphic in ail dimensions; excision in the CPF-pair
(| 8(Y) | | 8(Q) |) implies that so is also <p*, while (jb)* and g* are
standard isomorphisms. Since 7tq(Q) 0 for q<n and nq(B) 0 for
q <m, a well known resuit by Sebrb [9; p. 469] implies that /?*, whence

and e*, are monomorphic for q ^n + m — l and epimorphic for
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q <Ln-\-m. Passing to cohomology, the universal coefficient theorem yields

H*+1(C(y),\8(7)\l\8(Q)\;G) 0 for ail q^n+m-l (5)

and ail coefficient groups G. Since nq(QW) & nq(Q), we also hâve

7iq(W) 0 for ail q ^n + m (6)

From (5) and (6) we finally obtain

H«+i(C(y),\S(Y)\l\S(Q)\',7tQ(W)) 0 for aU g^O,
and a standard obstruction argument now yields the desired map h.

Since Y and B hâve the based homotopy type of a CïF-eomplex, there
exist homotopy inverses ey and eB of jy and jB respectively. Select a
homotopy

bt:\8(B)\->\8(B)\ with 60 id b1 eBojB, 6#(*) *

Notice next that there is a homotopy

kt:\8(7)\l\8(Q)\-»C(y) with Jc0 - e, hx h o y *,(*) *.
Define a homotopy 2?, : | flf(F) | -> TP by

Jï#(y) hohuo <p(y) if 0 ^ « ^ J

hoko b%t_x o | fl | (y) if | ^ « ^ 1

Taking (2) into account, we obtain

Bt(\S(Q)\) * pog(\8(Q)\) and H0(y) pog(y)

Therefore, by [6], there is a map gi'\8{7)\ -» EW such that

^i ° I V I ° I fl I and A o fc o 6b o yB o | /î | p o jrx (7)

Let & hokoeB and let J^: -OTf ~>Z-> B be the fibration induced by
£? via ^>. According to (7), a map d : | 8(Y) \ -> Z, satisfying

d o | n | f o / and ^ o | p | A o d (8)

is defined by setting d(y) (^ o | p \ (y), gx(y)) In the séquence
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where jQ is induced by the map of pairs defined by jy9 the first arrow, as
in (4), is isomorphic for ail q ^ 1 ; since JT' and 3ïf are fibrations, so are
also fiq and Xq. Therefore, (8) and commutativity on the left in (1) imply
that the map of pairs defined by d induces isomorphisms

nv{\8(Y)\,\8(Q)\)**nq{Z,QW)
in ail dimensions. Since f 6 ojQ is a singular homotopy équivalence, the
first of the relations (8) and the five lemma now imply that d also is a
singular homotopy équivalence. As easily seen, the map Xod o ey : Y -+ B is

homotopic to /?. Since 3f is a fibration, the covering homotopy theorem
yields a map D : Y -> Z, which is homotopic to d o ey, and satisfies
AoD j9; let F.Q-+QW be the map defined by D. Iike doeY, D is
a singular homotopy équivalence ; the five lemma implies that so is also F,
and the required algebraic équivalence is now provided by the maps ids,
D,F.

Remark 2.2. Letting m 2 in 2.1 we recover the well known resuit con-
cerning fibrations with a K(7t,n) as fibre (see for instance [5 ; Th. 7.1, p. 43]).

Lemma 2.1 has a dual concerning induced cofibrations.

3. Prool of Theorem 1.4

It is well known that any (n — l)-connected CTF-complex of dimension

< 2n has the homotopy type of a suspension. Dually, we hâve

Lemma 3.1. Let X be an arbitrary space and let n^2. If X is (n — 1)-
connected and nq(X) 0 for q ^ 2n — 1, then there exists a l-connected

space W and a singular homotopy équivalence X -> QW.

Prooî. The space W is obtained by attaching cells to the reduced
suspension ZX so as to MU its homotopy groups in dimensions ^ 2n. Let
a : ZX -> W dénote the inclusion map and consider the séquence

e Qa
X-+QZX -> QW,

in which e is the natural embedding. Evidently, Qa induces isomorphisms
of homotopy groups in dimensions ^ 2n — 2 ; by the Fbeudenthal theorem
(see for instance [8; p. 05]), so does also e. Finally, for q ^ 2n — 1 we
hâve nq(X) nq(QW) 0.

Prooî oî 1.4. The resuit is obvious if \ <^r ^>p — 1 since X then is
contractible. Suppose r^p and let X be an arbitrary (p — l)-connected
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GW-complex such that nq(X) 0 for q :> r + 1. Let the OTF-complex B
resuit by attaching cells to X so as to kill its homotopy groups in dimensions
2> r _ p _|_ 2. Replace the inclusion map X -> B by a homotopy équivalent
fibre map to obtain a fibration J7": Q -> Y ~> B such that

Y has the homotopy type of X (9)

0 onlyif p^q ^r-p+l, (10)

*0 onlyif max(p,r-p + 2) ^q ^r. (11)

Since r — p -{- l <r, we may assume as an induction hypothesis that (10)
implies

cocat B ^ [(r — p)j{p — 1)] + 1 (12)

It follows from (10), (11), 3.1, and Lemma 2.1 that there is a 1-connected

space W and a map 0 : B -> W such that J7~ is algebraically équivalent
to the fibration QW -> Z -> B induced by QW -> EW -> Tf via $. There-
fore, F has the homotopy type of the singular polytope of Z, By (9), [3;
Prop. 2.8 and 2.9], and (12) we finally obtain

cocat X cocat | 8{Z) | ^ cocat Z ^ cocat B + 1 ^ [(r — l)/(p — 1)] + 1

4. Prooî of Theorem 1.5

For any 0-connected space X and any n ^ 1 there is a space (X,n)
and a map p : (X, w) -> X such that nq(X, n) 0 if g < w and pfl :

jrff(X, n) ^ ^a(X) if q "^n. Similarly, there is a space (n, X) and a map
j : X -> (n, X) such that jrff(n, X) 0 if q ^n and yff : jrff(X) ^ 7ra(^, -X")

if g < n. When X has the homotopy type of a CW-complex, we shall
assume, as we may, that the same holds for both (X, n) and (n, X)\ their
homotopy type is then uniquely determined by that of X and n.

Prooî of 1.5. If cocat X 1, then X is contractible and so are both
(X, n) and (n, X). Suppose 1.5 is true for any connected CW-complex of

V P
cocategory <£ m and suppose cocat X m + 1 • Let Q _> F -> JS be a
fibration such that Q dominâtes X and cocat Y m.

Let jR->Z-> | 8(B) |0 dénote the fibration obtained by replacing the
maP li^lo:l^(-^)lo"^l S(B) |0 by a homotopy équivalent fibre map; the
subscript 0 indicates restriction to the path-component of the base-point.
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As easily seen, there is a map r:R->Q which, by the five lemma, induces
isomorphismsr rfl : w«(JR) ^ rca(Ç) for ail g ^ 1 (13)

Let G be a connectée! covering space of | S(B) |0 such that 3^(0) maps
isomorphically onto the subgroup tpxTt^Z) of ^(| S(B) |0) under the
projection / : C -> | #(jB) |o. Since Z has the homotopy type of a connected
CW-complex, the monodromy principle yields a map g : Z -> C such that

s y
fog y), Let T-> W->C be the fibration obtained by replaeing g by
a homotopy équivalent fibre map. As above, there is a map t:T -> R which,
since fx is monomorphic, induces isomorphisms

tq : 7tQ(T) w nq(R) for aU q ^ 1 (14)

For the same reason and since /i^i(C) ^^(Z), the homomorphism
>7ti(C) is onto. Therefore, in nn(C) the subgroup

yn7tn(W) is closed under the opérations of ti1(C). (15)

Introduce the diagram
a X

ÎC
*

T W

l*
t

I'
F >{n,W)-^-+E

The space E and the inclusion map c are obtained by attaching cells to
G in such a way that

eqmq(C)*tnq(E) if q<n,
the séquence

be exact, and nq{E) 0 if q>n; according to [10; Th. 2.10.1] this is
possible in view of (15). The space D and the map d are selected so that
nq(D) 0 if q<n,

dn : nn(D) w y^n(ïT) and da : nq{D) w nq(C)

if q>n. Since TT has the homotopy type of a connected Cïf-complex, so

hâve, by assumption, (W,n) and (n, W), and standard arguments now
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yield maps X and fi for which the two squares on the right are homotopy
commutative. Without altering the homotopy types of (W, n) and (n, W),
we may assume that A and [i are fibre maps with U and V as fibres;
the inclusion maps are denoted by a and t Next, by means of the covering
homotopy theorem, we may readjust the maps p and j within their own
homotopy classes so as to obtain totally commutative squares on the right.
Suppose this is so and let h and k be the maps defined by p and j respec-
tively. Passing to homotopy groups, application of the five lemma, in the form
given in [2; p. 16], to the resulting ladder yields

7tq(U) 0 if q<n, hq : nq{U) <* nq{T) if q^n, (16)

nq(V) 0 if q^n, kq\7tq{T) ^ nq{V) if q<n. (17)

Since X is a connected CTF-complex which is dominated by Q,X is
also dominated by | 8(Q) |0. Since yx is onto and W is O-connected, T is
O-connected and, by (13) and (14), | 8(Q) |0 has the homotopy type of
| 8(T) |. It follows from (16) that (\S(T)\9n) has the homotopy type of
| S(U) |, while (17) implies that (n, \ S(T) |) has the homotopy type of
| S(V) |. Since (X, n) and (n, X) hâve the homotopy type of CTF-eom-

plexes, it follows easily that (X, n) is dominated by \ 8(U)\, and (n, X)
by \8(V)\.

Since W, like Z, has the homotopy type of | 8(Y) |0, and since the
component of the base-point in a CTF-complex is a retract of the complex,
by [3 ; Prop. 2.8] we hâve

cocat W cocat | S(Y) |0 ^ cocat | S(Y) | ^ cocat Y m

Since W has the homotopy type of a connected CW-complex, the induction
hypothesis now implies that cocat (W, n) <£ m and cocat (n, W) ^ m. By
[3 ; Prop. 2.8] and 1.1 we obtain

cocat | S(U) | ^ cocat U ^ m + 1 cocat | S(V) \ ^ cocat V ^ m + 1

and this clearly implies the desired resuit.

Appendix

(Added in proof)

The inductive arguments used in the proof of 1.4 are easily seen to yield
the following more gênerai resuit :

Let X be a (p — 1)-connected CW-complex, p ^ 2. If the set of ail integers

q for which nq(X) ^ 0 is contained in the union of k closed linear intervais,
each of length p — 2, then cocat X ^ k + 1 •
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We allow the linear intervais to be degenerate, i.e. to hâve length 0. The
second part of 1.2 now follows as the set {qx,..., qn} is contained in the
intervais [qf, q^], ; 1,..., n ; Theorem 1.4 follows upon noticing that the
integers between p and r are ail contained in the intervais

Also, the author wishes to acknowledge that a resuit équivalent to Lemma
2.1 above has been obtained independently and with a différent proof by
P. J. Hilton as Theorem 3 in his paper "Excision and principal fibrations",
Comment. Math. Helv. 35 (1961).
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