Some Semicontinuity Theorems for Convex Polytopes and Cell-complexes.

Autor(en): Eggleston, H.G., Grünbaum, B. / Klee, V.
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 39 (1964-1965)

PDF erstellt am: 05.06.2024

Persistenter Link: https://doi.org/10.5169/seals-29881

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Some Semicontinuity Theorems for Convex Polytopes and Cell-complexes

H. G. Eqgleston, Branko Grünbaum and Victor Klee¹)

Introduction

In a finite-dimensional Euclidean space E, a convex polytope P is a set which is the convex hull of a finite set; here such a set P will simply be called a polytope, or, if it is d-dimensional, a d-polytope. ${ }^{2}$) An s-face of P is an s-dimensional set (necessarily an s-polytope) which is either P itself or is the intersection of P with a supporting hyperplane. The number of s-faces of P will be denoted by $f_{s}(P)$ and the s-measure of their union by $\zeta_{s}(P)$. Our section headings are as follows:

1. The functions f_{s} for cell-complexes
2. A pulling process
3. The functions ζ_{s} for cell-complexes
4. The functions ζ_{s} for convex polytopes
5. Inequalities for the functions ζ_{s}
6. Intersection properties of simplices
7. Sections of simplices

Each polytope is a compact set, and thus the class of all polytopes in E can be metrized by the Hausdorff distance. Our principal aim in §1 is to show that when the polytopes are topologized in this way, each of the functions f_{s} is lower semicontinuous; thus for each polytope P in E it is true that all polytopes sufficiently close to P have at least as many s-faces as P. In connection with various extremal problems, this result can be used to restrict attention to polytopes whose vertices are in general position, but for that purpose the pulling process described in §2 is more advantageous.
Lower semicontinuity of the functions ζ_{s} is established in $\S \S 3-4 .{ }^{3}$) The reasoning of §3, like that of $\S 1$, applies not only to convex polytopes but also

[^0]to a rather general class of cell-complexes ${ }^{2}$); however, it is based on a supplementary hypothesis that is removed in $\S 4$ for the case of convex polytopes. As is shown in §5, the lower semicontinuity of the functions f_{s} and ζ_{s} can be used to establish the existence of solutions to various isoperimetric problems. Also in $\S 5$ is a proof that if P is a d-polytope and a and b are positive integers whose sum is at most d, then $\zeta_{a+b}(P) \leq \zeta_{a}(P) \zeta_{b}(P)$. From this and some related results we conclude that if $1 \leq r \leq s \leq d$ and if r divides s or $s=d-1$ or $s=d$, then there exists a finite constant $\gamma(d, r, s)$ such that $\zeta_{s}(P)^{1 / s} / \zeta_{r}(P)^{1 / r} \leq \gamma(d, r, s)$ for all d-polytopes P. We do not determine the best values for these constants, nor even their existence except when r and s are as indicated.

From the lower semicontinuity of f_{s} it follows that if a decreasing sequence of d-simplices has a d-dimensional intersection S, then S is also a simplex. However, this was conjectured by Kolmogorov and proved by Borovikov [3] ${ }^{4}$) without the assumption that S is d-dimensional; that is, the intersection of a decreasing sequence of simplices is always a simplex. $\S 6$ contains a new proof that applies also to infinite-dimensional simplices; it is based on a characterization of simplices due to Choquet [5] and to Rogers and Shephard [19]. In § 7 a third approach is indicated, related to the fact (Brands and Laman [4], Egaleston [8], Croft [7]) that some 2 -face of a tetrahedron has an area not exceeded by that of any plane section ${ }^{5}$); in particular, an n-dimensional generalization of this fact is established. Borovikov's proof of his theorem is shorter than either of ours, but our supplementary facts seem interesting in themselves.

1. The functions f_{s} for cell-complexes

Recall that the set K of all faces of a polytope forms a cell-complex [2]; that is, K is a finite family of polytopes in E such that each face of a member of K is itself a member of K, and such that the intersection of any two members of K is a face of both. The s-dimensional members of a cell-complex K will be called its s-faces, and the number of s-faces will be denoted by $f_{s}(K)$. Henceforth, the terms complex and cell-complex will be used interchangeably. For a polytope P or a complex $K, \sigma_{s} P$ or $\sigma_{s} K$ will denote the union of all s-faces.

When C is a convex subset of E and aff C is the smallest flat containing C, the interior of C relative to aff C is called the relative interior of C; it will be denoted here by ϱC, and the set C is relatively open if and only if $C=\varrho C$.

[^1]For each complex K, let $|K|$ denote the union of all members of K; K will be said to have the property $A(s)$ provided whenever F is a face of K, C is a relatively open convex subset of $|K|$,

$$
C \cap \varrho F \neq \varnothing \quad \text { and } \quad \operatorname{dim} C \geq \operatorname{dim} F=s
$$

then

$$
C \subset F
$$

This condition will appear in Theorem 1.7 below. Its relevance to polytopes rests on the following fact.
1.1. If K is a subcomplex of the complex of all faces of a polytope P, then every relatively open convex subset C of $|K|$ is contained in the relative interior of a single face of K; hence K has the property $A(s)$ for all values of s.

Proof. We proceed by induction on the dimension d of the polytope, the assertion being obvious when $d=1$. Suppose it is known for all $d<k$, and consider the case of a k-polytope P. If $C \subset \varrho P$, the desired conclusion holds. If C is not contained in ϱP, then C includes a relative boundary point z of P and P is properly supported at z by a hyperplane H. But then $C \subset H$, and the desired conclusion follows from the inductive hypothesis as applied to the cell-complex $\{Q \cap H: Q \in K\}$.

Sometimes the property $\boldsymbol{A}(s)$ of a complex K can be conveniently verified in terms of the stronger property $A^{*}(s)$, where K is said to have the property $A^{*}(s)$. provided every relatively open s-dimensional convex subset of $|K|$ is contained in the relative interior of a single face of K. Although the properties $A(s)$ are independent for the various values of s, this is not true of $A^{*}(s)$.
1.2. Every cell-complex K has the property $A^{*}(0)$. If K has the property $A^{*}(s)$ for some $s \geq 1$, then K has the property $A^{*}(t)$ for all $t \geq s$ and hence also the property $A(t)$ for all $t \geq s$. If K has the property $A^{*}(1)$ then K has the property $\boldsymbol{A}(s)$ for all values of s.

Proof. The first assertion is obvious. For the second, let us assume that K lacks the property $A^{*}(t)$. Then there is a relatively open t-dimensional convex subset J^{t} of $|K|$ and there are faces F and G of K such that J^{t} intersects both ϱF and ϱG. Choose $x \in J^{t} \cap \varrho F, y \in J^{t} \cap \varrho G$, and let J^{s} denote the intersection of J^{t} with an s-flat in aff J^{t} that contains the segment $[x, y]$. Then J^{s} is a relatively open s-dimensional convex subset of K and J^{s} intersects both ϱF and ϱG, so K lacks the property $A^{*}(s)$. This takes care of the second assertion. For the third assertion, it remains only to verify that $A^{*}(1)$ implies $A(0)$, and that is easily done.

Four lemmas are required in preparation for the main result.
1.3. If τ is an affine transformation of a polytope P onto a polytope Q, then for every face G of Q there is a face F of P such that $\tau F=G$.

Proof. It suffices to consider the case in which G is a proper face of Q, whence there is an affine functional φ on aff Q such that $\varphi G=1$ and $\varphi<1$ on $Q \sim G$. Then $\varphi \tau$ is an affine functional on aff P (where τ carries aff P onto aff Q), and we obtain the desired face F of P by defining

$$
F \cdot=\{x \in P: \varphi(\tau x)=1\} .
$$

1.4. If P is a polytope and M is a flat in aff P that intersects P, then M intersects a $(\operatorname{dim} P-\operatorname{dim} M)$-face of P.

Proof. We proceed by induction on the dimension m of M, the assertion being obvious for $m=0$ and also for $m=1$, since the relative boundary of P is intersected by every line in aff P that intersects P itself. Suppose the theorem is known for all $m<k$, and consider the case in which $m=k>1$. We may assume that P is a d-polytope in E^{a} with $0 \epsilon P$ and that M is a k-flat in E^{d} with $0 \epsilon M$. Let H be a $(d-1)$-flat such that $0 \in H \subset E^{d}$ and $\operatorname{dim}(M \cap H)=k-1$, and let τ be a linear projection of E^{d} onto H that carries M onto $M \cap H$. Applying the inductive hypothesis to the polytope τP and the flat $M \cap H$, we see that $M \cap H$ must include a point z of a ($d-k$)-face G of τP. By 1.3, there is a face F of P such that $\tau F=G$. The nature of τ is such that $d-k \leq \operatorname{dim} F \leq d-k+1$ and the set $\tau^{-1}(z)$ is a line in M that intersects F. If $\operatorname{dim} F=d-k$, the desired conclusion holds. If $\operatorname{dim} F=$ $=d-k+1$, then $\tau^{-1}(z) \subset$ aff F and it follows from the inductive hypothesis that $\tau^{-1}(z)$ intersects a $(d-k)$-face of F. But then of course M intersects a ($d-k$)-face of P, and this completes the proof.
1.5. If τ is an affine transformation of a polytope P onto an s-polytope Q, then $\tau\left(\sigma_{s} P\right)=Q$.

Proof. Let $d=\operatorname{dim} P$ and consider an arbitrary point $q \in Q$. Then $\tau^{-1}(q)$ is a $(d-s)$-flat in aff P and hence, by 1.4, $\tau^{-1}(q)$ must intersect an s-face of P. The desired conclusion follows.
1.6. If an s-polytope S is the limit of a sequence of polytopes P_{α}, then the sequence $\sigma_{s} P_{\alpha}$ is also convergent to S.

Proof. Let τ be an affine projection of the containing space onto aff S. We note:
$\left.{ }^{(}\right)$for each $\epsilon>0$ there exists m_{ϵ} such that $\|x-\tau x\|<\epsilon$ whenever $x \in P_{i}$ and $i>m_{\epsilon}$.

From $\left(^{*}\right)$ and the fact that $P_{\alpha} \rightarrow S$, it follows that $\tau P_{\alpha} \rightarrow S$. By 1.5, $\tau\left(\sigma_{s} P_{i}\right)=\tau P_{i}$ and thus $\tau\left(\sigma_{s} P_{\alpha}\right) \rightarrow S$; a second application of (*) shows that $\sigma_{s} P_{\alpha} \rightarrow S$.

In view of 1.1 we see that the first semicontinuity theorem stated in the Introduction is an immediate consequence of the following more general result.

Theorem 1.7. Suppose K_{α} is a sequence of cell-complexes in E, K is a cellcomplex in E having the property $A(s)$, and the sequence $\left|K_{\alpha}\right|$ is convergent to $|K|$. Suppose further that at least one of the following conditions is satisfied:
(i) the sequence $f_{0}\left(K_{\alpha}\right)$ is bounded;
(ii) for each $i,\left|K_{i}\right|$ is covered by K_{i} 's faces of dimension $\geq s$;
(iii) for each point z in an s-face of K, there is a sequence z_{α} converging to z such that always z_{i} is in a face of K_{i} of dimension $\geq s$.

Then $\liminf f_{s}\left(K_{\alpha}\right) \geq f_{s}(K)$.
Proof. Since condition (iii) is implied by (ii), it suffices to consider (i) and (iii). Suppose the desired conclusion fails. Then there exist a subsequence D_{α} of K_{α} and an integer n_{s} such that for all i,

$$
f_{s}\left(D_{i}\right)=n_{s}<f_{s}(K)
$$

For $t \geq s$, each t-face of D_{i} is uniquely determined by the set of its own s-faces, and a t-face has at least $\binom{t+1}{s+1} s$-faces. Consequently the sequence $f_{t}\left(D_{\alpha}\right)$ is bounded for all $t \geq s$, and of course it is identically zero for $t>d \cdot=$ $=\operatorname{dim} E$. Thus we can choose a subsequence C_{α} of D_{α}, non-negative integers n_{s}, \ldots, n_{d}, and for each i an indexing of the faces of C_{i} such that the following three conditions are all satisfied:
for $s \leq t \leq d$ and for each i, the cell-complex C_{i} has exactly $n_{t} t$-faces $P_{i}^{t, 1}, \ldots, P_{i}^{t, n t}$;
for $s \leq t \leq d$ and for $1 \leq h \leq n_{t}$, the sequence $P_{\alpha}^{t, h}$ is convergent to a compact convex set $P^{t, h}$ of dimension $d(t, h) \leqq t$;
for each $i, f_{s}\left(C_{i}\right)=n_{s}<f_{s}(K)$.
If condition (i) holds, we may assume that the sets $P_{i}^{t, h}$ and $P^{t, h}$ have been chosen for $0 \leq t \leq d$.

Let Q_{1}, \ldots, Q_{m} be the s-faces of K. Since each of these sets is closed and none is covered by the others, there exist $\epsilon>0$ and points x_{k} such that for $l \leq k \leq m\left(=f_{s}(K)\right)$,

$$
x_{k} \in \varrho Q_{k} \sim N_{3 \epsilon}\left(\cup_{1 \leq j \leq m, j \neq k} Q_{j}\right)
$$

where N_{δ} of a point or set will denote its open δ-neighborhood. The s-dimensional set $N_{\epsilon}\left(x_{k}\right) \cap \varrho Q_{k}$ is not the union of finitely many convex sets of
dimension $<s$, and consequently there exists a point

$$
y_{k} \epsilon\left(N_{\epsilon}\left(x_{k}\right) \cap \varrho Q_{k}\right) \sim \cup_{r \geq s, 1 \leq j \leq n_{r}} \quad \sigma_{s-1} P^{r, j} .
$$

If (i) holds, then ' $r \geq s$ ' may be replaced by ' $r \geq 0$ '. Hence if either (i) or (iii) is satisfied we have

$$
y_{k} \in \varrho P^{t(k), e(k)}
$$

with

$$
t(k) \geq s, \mathbf{1} \leq e(k) \leq n_{t(k)}, d(t(k), e(k)) \geq s
$$

Since $y_{k} \in \varrho Q_{k}$, it follows from the property $A(s)$ of K that

$$
\varrho P^{t(k), e(k)} \subset \varrho Q_{k} \quad(1 \leq k \leq m),
$$

whence $d(t(k), e(k))=s$.
Recalling that $P^{t(k), e(k)}$ is the limit of the sequence $P_{\alpha}^{t(k), e(k)}$, we see from 1.6 that the sequence $\sigma_{s} P_{\alpha}^{t(k), e(k)}$ is also convergent to $P^{t(k), e(k)}$. Hence there exists n such that for each $i>n$ there is an s-face $F_{k, i}$ of $P_{i}^{t(k), e(k)}$ for which $F_{k, i} \subset N_{\epsilon}\left(Q_{k}\right)$ and $F_{k, i}$ intersects $N_{\epsilon}\left(y_{k}\right)$. But then $F_{k, i}$ intersects $N_{2 \epsilon}\left(x_{k}\right)$, and because of our special choice of ϵ this implies that $F_{k, i}$ is not contained in the ϵ-neighborhood of any set Q_{j} with $j \neq k$. Thus (for $i>n$) the association of the $F_{k, i}$'s with the Q_{k} 's is biunique and we have $f_{s}\left(C_{i}\right) \geq f_{s}(K)$, a contradiction completing the proof.

It would be interesting to find a simple characterization of those cell-complexes K for which 1.7 is valid. Certainly the property $A(s)$ is not necessary, for with arbitrary E and s the plane complex A below has the stated property even though A lacks the property $A(1)$. However, the property fails for B below (E arbitrary, $s=1$) and also for $C(\operatorname{dim} E \geq 3, s=1)$.

A suitable 2-complex in E^{3} shows that condition (ii) cannot be replaced by the requirement that each vertex of K_{i} lies in a face of dimension $\geq s$.

2. A pulling process

We know by 1.7 that for all s, every polytope Q sufficiently close to a given polytope P has at least as many s-faces as P; however, except for this restriction the facial structure of Q may be radically different from that of P. In various circumstances, it is convenient to be able to choose Q so that its facial
structure is well-behaved in some specific way (for example, so that all of Q 's proper faces are simplices) and at the same time is closely related to the facial structure of P. This may be accomplished with the aid of the 'pushing process' of [14] or the 'pulling process' described below. For some purposes [10, 14, 15] these are interchangeable; for others [16, 17], the pulling process is preferable because its effect on facial structure is more easily described. Let us denote the convex hull of a set X by con X, and the set of all vertices or extreme points of a polytope P by ex P. When X is the set of all vertices of a d-polytope con X in E^{d}, and q is one of these vertices, we say that X^{\prime} is obtained from X by pulling (resp. pushing) q to q^{\prime} provided $X^{\prime}=(X \sim\{q\}) \cup\left\{q^{\prime}\right\}$, where q^{\prime} is a point of E^{d} such that the half-open segment $\left.] q, q^{\prime}\right]$ does not intersect any hyperplane determined by points of X and such that $q \in$ int con X^{\prime} (resp. $q^{\prime} \epsilon$ int $\left.\operatorname{con} X\right)$. It is clear that such a pulling and pushing are always possible, and that ex $\left(\operatorname{con} X^{\prime}\right)=(X \sim\{q\}) \cup\left\{q^{\prime}\right\}$. The following result may be compared with 2.4 of [14].

Theorem 2.1. Suppose X is the set of all vertices of a d-polytope con X in E^{d}, and X^{\prime} is obtained from X by pulling q to q^{\prime}. For $0 \leq s \leq d-1$, the s-faces of con X^{\prime} are exactly the sets F^{s} and the sets con $\left(G^{s-1} \cup\left\{q^{\prime}\right\}\right)$, where F^{s} is an s-face of $\operatorname{con} X$ such that $q \notin F^{s}$ and G^{s-1} is an $(s-1)$-face of $a(d-1)$-face K^{d-1} of $\operatorname{con} X$ such that $q \in K^{d-1} \sim G^{s-1}$.

Proof. We recall that if S is a proper subset of the set T of all vertices of a polytope $P=$ con T, then the following three assertions are equivalent: S is the set of all vertices of some face of P; aff $S \cap \operatorname{con}(T \sim S)=\varnothing ; T$ admits a supporting hyperplane H for which $T \cap H=S$. These characterizations will be used without further explicit reference.

Note that in the statement of $2.1, F^{s}$ may be described alternatively as an s-face of a $(d-1)$-face J^{d-1} of con X such that $q \notin J^{d-1}$. Clearly q lies in an open halfspace Q determined by the hyperplane aff J^{d-1}, and from the definition of pulling it follows that also $q^{\prime} \epsilon Q$. Now if F^{s} were not a face of con X^{\prime}, then aff F^{s} would intersect the set con $\left(X^{\prime} \sim \operatorname{ex} F^{s}\right)$ and hence (since aff $F^{s} \subset$ aff J^{d-1} and $q^{\prime} \in Q$) aff F^{s} would intersect $\operatorname{con}\left(X \sim \operatorname{ex} F^{s}\right)$, contradicting the fact that F^{s} is a face of con X. It follows that F^{s} is a face of con X^{\prime}; and from the fact that $q \in \operatorname{int}$ con X^{\prime} we deduce easily that every face of con X^{\prime} that is not incident to q^{\prime} must also be a face of con X.

Next, consider G^{s-1} and K^{d-1} as described, and let G^{d-2} be a ($d-2$)face of K^{d-1} such that $q \in K^{d-1} \sim G^{d-2}$. By the preceding paragraph, G^{d-2} is a ($d-2$)-face of both $\operatorname{con} X$ and $\operatorname{con} X^{\prime}$, and hence is incident to exactly two $(d-1)$-faces of each of these d-polytopes. Since one of the former two faces (K^{d-1}) includes q, one of the latter must include q^{\prime}. That is, the set
$G^{d-2} \cup\left\{q^{\prime}\right\}$ lies in a supporting hyperplane H of X^{\prime}. By the definition of pulling, $H \cap\left(X \sim G^{d-2}\right)=\varnothing$, and consequently the set con $\left(G^{d-2} \cup\left\{q^{\prime}\right\}\right)$ is a $(d-1)$-face of con X^{\prime}. But then con $\left(G^{s-1} \cup\left\{q^{\prime}\right\}\right)$ is an s-face of con X^{\prime}.

To complete the proof we must show that if F_{*}^{s} is an s-face of con X^{\prime} that is incident to q^{\prime}, then $F_{*}^{s}=\operatorname{con}\left(F^{s-1} \cup\left\{q^{\prime}\right\}\right)$ where F^{s-1} is an $(s-1)$-face of a $(d-1)$-face K^{d-1} of con X such that $q \in K^{d-1} \sim F^{s-1}$. Let F_{*}^{d-1} be a ($d-1$)-face of con X^{\prime} that contains F_{*}^{s}; let $W \cdot=\operatorname{ex} F_{*}^{s} \sim\left\{q^{\prime}\right\}$ and $Z \cdot=\operatorname{ex} F_{*}^{d-1} \sim\left(q^{\prime}\right\}$. If aff W is s-dimensional, then $q^{\prime} \in \operatorname{aff} W$ and this contradicts the definition of pulling; thus aff W is $(s-1)$-dimensional and the set $F^{s-1}=\operatorname{con} W$ is an $(s-1)$-face of con X^{\prime}, whence also of $\operatorname{con} X$. Similarly, $\operatorname{con} Z$ is a $(d-2)$-face of $\operatorname{con} X^{\prime}$ and of $\operatorname{con} X$. Let $H \cdot=$ $=\operatorname{aff}(Z \cup\{q\})$, a hyperplane in E^{d}. Then H supports X, for otherwise some point of X would lie on the q^{\prime} side of H, whence $\left.] q, q^{\prime}\right] \cap$ aff $(Z \cup\{x\}) \neq \varnothing$ and the definition of pulling is contradicted. With H supporting X, we see that the set

$$
(\operatorname{aff}(W \cup\{q\})) \cap \operatorname{con} X
$$

is a face of con X; denoting by K^{d-1} any $(d-1)$-face of con X containing it, we see that F^{s-1} is a face of K^{d-1}. This completes the proof.

3. The functions ζ_{s} for cell-complexes

In the present section, μ_{s} will denote an arbitrary positive-valued real function subject to the following four conditions:
(a) the domain of μ_{s} is the family U_{s} of all nonempty subsets of E that can be expressed as the union of finitely many s-polytopes;
(b) if $U \in U_{s}$ and P_{1}, \ldots, P_{n} are s-polytopes in E such that $U \subset \cup_{i=1}^{n} P_{i}$, then $\mu_{s}(U) \leq \sum_{i=1}^{n} \mu_{s}\left(P_{i}\right)$;
(c) if P_{1}, \ldots, P_{n} are distinct s-faces of a complex in E, then $\mu_{s}\left(\cup_{i=1}^{n} P_{i}\right)=$ $=\sum_{i=1}^{n} \mu_{s}\left(P_{i}\right)$;
(d) if a sequence P_{α} of s-polytopes in E is convergent to an s-polytope P, then $\mu_{s}(P) \leq \lim \inf \mu_{s}\left(P_{\alpha}\right)$.

For each complex $K, \zeta_{s}(K) \cdot=\mu_{s}\left(\sigma_{s} K\right)$, the s-measure of the s-skeleton $\sigma_{s} K$.

Obviously conditions (b) and (c) are satisfied by the s-dimensional HausDORFF measure ${ }^{2}$) based on a Euclidean metric for E. To see that condition (d) is also satisfied, we denote by π the orthogonal projection of E onto the flat aff P, whence πP_{α} is convergent to P and hence $\mu_{s}(P)=\lim \mu_{s}\left(\pi P_{\alpha}\right)$ by a well-known result [11] on the continuity of volume. On the other hand, $\mu_{s}\left(\pi P_{i}\right) \leq \mu_{s}\left(P_{i}\right)$ because the transformation π is a metric contraction.

A complex K will be said to have the property $\boldsymbol{A}_{*}(s)$ provided there is no s-dimensional face F of K whose relative interior ϱF intersects a relatively open convex subset C of $|K|$ of dimension $>s$; this amounts to replacing the condition ' $C \subset F$ ' in the definition of $A(s)$ by the condition that ' $\operatorname{dim} C \leq$ $\leq \operatorname{dim} F^{\prime}$. Thus $\boldsymbol{A}^{*}(s) \Longrightarrow \boldsymbol{A}(s) \Longrightarrow \boldsymbol{A}_{*}(s)$. The three complexes pictured in § 1 all have the property $A_{*}(1)$ but not the property $A(1)$.

Theorem 3.1. Suppose K_{α} is a sequence of cell-complexes in E, K is a cellcomplex in E, and the sequence $\left|K_{\alpha}\right|$ is convergent to $|K|$. Suppose further that the sequence $f_{0}\left(K_{\alpha}\right)$ is bounded, and that K has the property $\boldsymbol{A}_{*}(s)$ or $\lim \inf$ $\sigma_{s} K_{\alpha} \supset \sigma_{s} K$.

Then $\lim \inf \zeta_{s}\left(P_{\alpha}\right) \geq \zeta_{s}(P)$.
Proof. Suppose the desired conclusion fails. Then as in 1.7, there exist a subsequence C_{α} of K_{α}, a number $\left.\delta \epsilon\right] 0,1\left[\right.$, integers n_{0}, \ldots, n_{d}, and for each i an indexing of the faces of C_{i} such that the following three conditions are all satisfied:
for $0 \leq t \leq d$ and for each i, the cell-complex C_{i} has exactly $n_{t} t$ faces $P_{i}^{t, 1}, \ldots, P_{i}^{t, n t}$;
for $0 \leq t \leq d$ and for $1 \leq h \leq n_{t}$, the sequence $P_{\alpha}^{t, h}$ is convergent to a polytope $P^{t, h}$ of dimension $d(t, h) \leq t$;

$$
\begin{equation*}
\lim \inf \mu_{s}\left(\sigma_{s} C_{\alpha}\right)<\delta \mu_{s}\left(\sigma_{s} K\right) \tag{1}
\end{equation*}
$$

Now suppose first that $\lim \inf \sigma_{s} K_{\alpha} \supset \sigma_{s} K$, whence of course liminf $\sigma_{s} C_{\alpha} \supset \sigma_{s} K$. Since $f_{0}\left(C_{\alpha}\right)$ is bounded, it follows with the aid of 1.6 that

$$
\begin{equation*}
\sigma_{s} K \subset \cup_{j \epsilon J} P^{s, j} \tag{2}
\end{equation*}
$$

where J is the set of all indices j such that $1 \leq j \leq n_{s}$ and $d(s, j)=s$. Since the sequence $P_{\alpha}^{s, j}$ converges to $P^{s, j}$, it follows from (d) that for all sufficiently large i we have

$$
\begin{equation*}
\mu_{s}\left(P_{i}^{s, j}\right)>\delta \mu_{s}\left(P^{s, j}\right) \quad(\text { all } j \in J) \tag{3}
\end{equation*}
$$

Then from (b) and (c) in conjunction with (2) and (3) we see that

$$
\mu_{s}\left(\sigma_{s} K\right) \leq \Sigma_{j \epsilon J} \mu_{s}\left(P^{s, j}\right)<\frac{1}{\delta} \Sigma_{j \epsilon J} \mu_{s}\left(P_{i}^{s, j}\right) \leq \frac{1}{\delta} \mu_{s}\left(\sigma_{s} C_{i}\right)
$$

contradicting (1) and completing the proof.
Finally, suppose K has the property $A_{*}(s)$ and consider an arbitrary s-face Q of K. Let

$$
Q^{*} \cdot=\varrho Q \sim \cup_{r \geq 0,1 \leq j \leq n_{r}} \sigma_{s-1} P^{r, j}
$$

Then Q^{*} is covered by the sets $\sigma_{t} P^{r, j}$ with $t \geq s$, whence (since K has the property $\left.A_{*}(s)\right) Q^{*}$ is covered by the sets $P^{r, j}$ for which $d(r, j)=s$. But
then Q is also covered by these sets, we are led again to (2) above and the proof proceeds as before.

Note that if μ_{1} is one of the (equivalent) standard l-measures related to the Euclidean metric for E, and if each of the complexes K_{i} is connected, then the validity of 3.1 for $s=1$ does not require boundedness of the sequence $f_{0}\left(K_{\alpha}\right)$. For even without the boundedness, $\sigma_{1} K_{\alpha}$ is a sequence of continua in E and it is known (Nöbeling [18]) that $\mu_{1}(M) \leq \lim \inf \mu_{1}\left(\sigma_{1} K_{\alpha}\right)$ for every continuum $M \subset \lim \inf \sigma_{1} K_{\alpha}$. In the next section is proved that for arbitrary s, the boundedness of $f_{0}\left(K_{\alpha}\right)$ may be abandoned when we are concerned only with the faces of convex polytopes rather than more general cell-complexes.

4. The functions ζ_{s} for convex polytopes

The proof to be presented here employs more properties of the s-measure μ_{s} than were required in the previous section; for the sake of simplicity we shall assume that E is equipped with a Euclidean metric and μ_{s} is the s-dimensional HAUSDORFF measure based on that metric. For a polytope $P, \zeta_{s}(P) \cdot=\mu_{s}\left(\sigma_{s} P\right)$.

Theorem 4.1. If P_{α} is a sequence of convex polytopes in E converging to a polytope P, then $\lim \inf \zeta_{s}\left(P_{\alpha}\right) \geq \zeta_{s}(P)$.

Proof. We may assume that all of the polytopes P_{i} and P are of the same dimension d as E, and hence have nonempty interior in E. For let E^{\prime} denote the smallest flat containing P and let π denote the orthogonal projection of E onto E^{\prime}. Then the sequence πP_{α} is convergent to P. Further, $\zeta\left(\pi P_{i}\right) \leq \zeta\left(P_{i}\right)$, for π is a metric contraction and from 1.3 and 1.5 it follows that $\pi \sigma_{s} P_{i} \supset \sigma_{s} \pi P_{i}$. Thus the desired conclusion for the sequence $P_{\alpha} \rightarrow P$ is implied by that for the sequence $\pi P_{\alpha} \rightarrow P$, and we assume henceforth that the sets E, P, and P_{i} are all d-dimensional.

We may assume that $P_{i} \supset P$. For let z be an interior point of P and note that for each $\epsilon \in[0,1]$ it is true that

$$
z+(1-\epsilon)(P-z) \subset P_{i} \subset z+(1+\epsilon)(P-z)
$$

for almost all i. Thus for almost all i there exists a smallest positive number β_{i} such that $P \subset P_{i}^{\prime} \cdot=x+\beta_{i}(P-x)$. It is evident that $\beta_{\alpha} \rightarrow 1$ and hence $\mu\left(P_{\alpha}^{\prime}\right) / \mu\left(P_{\alpha}\right) \rightarrow 1$, so the desired conclusion for the sequence $P_{\alpha} \rightarrow P$ is implied by that for the sequence $P_{\alpha}^{\prime} \rightarrow P$. We assume henceforth that $P_{i} \supset P$ for all i.

Let Q_{1}, \ldots, Q_{m} be the s-faces of P, where $m=f_{s}(P)$. The sets $\varrho Q_{j}(1 \leq j \leq m)$ are pairwise disjoint, so each point x of their union is in a unique set $\varrho Q_{j(x)}$. We shall denote by $F(x)$ the $(d-s)$-dimensional flat in E that is orthogonal
to $Q_{j(x)}$ and intersects $Q_{j(x)}$ only at x. Then $F(x)$ intersects the interior of P and hence the intersection $P \cap F(x)$ is a $(d-s)$-polytope, to be denoted here by $P(x)$. Similarly, we define the $(d-s)$-polytopes $P_{i}(x) \cdot=P_{i} \cap F(x)$. It is evident that x is a vertex of $P(x)$ and that $P_{i}(x) \supset P(x)$; it is easily verified that $P_{\alpha}(x) \rightarrow P(x)$.

For $x \epsilon \cup_{j=1}^{m} \varrho Q_{j}$ and for $i=1,2, \ldots$, let $d_{i}(x)$ denote the minimum distance from x to a vertex of the polytope $P_{i}(x)$; that is,

$$
d_{i}(x) \cdot=\inf \left\{\|x-v\|: v \in \operatorname{ex} P_{i}(x)\right\} .
$$

We claim that $d_{\alpha}(x) \rightarrow 0$. Indeed, let z be a relatively interior point of $P(x)$ and for each i let γ_{i} be the largest positive number such that

$$
P(x) \supset P_{i}^{*}(x) \cdot=z+\gamma_{i}\left(P_{i}(x)-z\right) .
$$

Then $\gamma_{\alpha} \rightarrow 1, P_{\alpha}^{*}(x) \rightarrow P(x)$, and for the desired conclusion it suffices to show that as $i \rightarrow \infty$, the minimum distance from x to a vertex of $P_{i}^{*}(x)$ converges to 0 . Since x is a vertex of $P(x)$, every neighborhood U of x relative to $P(x)$ contains the closure of $J \cap P(x)$ for some open halfspace $J \ni x$. Since $P_{\alpha}^{*}(x) \rightarrow P(x)$, it is true for almost all i that $P_{i}^{*}(x)$ intersects J, and then since J is a halfspace it must include a vertex u of $P_{i}(x)$. But then $u \epsilon U$ and the desired conclusion follows.

Now consider an arbitrary $\epsilon>0$. We want to show that $\zeta_{s}\left(P_{i}\right)>\zeta_{s}(P)-2 \epsilon$ for almost all i. Note first that if

$$
\begin{equation*}
Q_{k}^{\delta} \cdot=Q_{k} \sim N_{2 \delta}\left(\cup_{1 \leq j \leq m, j \neq k} Q_{j}\right), \tag{1}
\end{equation*}
$$

then $\mu_{s}\left(Q_{k}^{\delta}\right) \rightarrow \mu_{s}\left(Q_{k}\right)$ as $\delta \rightarrow 0$. Thus we can choose $\tau>0$ so that

$$
\sum_{j=1}^{m} \mu_{s}\left(Q_{j}^{\tau}\right)>\sum_{j=1}^{m} \mu_{s}\left(Q_{j}\right)-\epsilon=\zeta_{s}(P)-\epsilon .
$$

The set Q_{j}^{τ} will be denoted henceforth by G_{j}. For each positive integer $h, G_{j}(h)$ will denote the set of all points x of G_{j} such that for all $i \geq h$, the set $N_{\tau}\left(G_{j}\right)$ includes at least one vertex of $P_{i}(x)$. Obviously $G_{j}(1) \subset G_{j}(2) \subset \ldots$, and by the previous paragraph the union of these sets is G_{j} itself. Hence $\mu_{s}\left(G_{j}(\alpha)\right) \rightarrow \mu_{s}\left(G_{j}\right)$, and there exists an integer h_{0} such that

$$
\sum_{j=1}^{m} \mu_{s}\left(G_{j}(h)\right)>\sum_{j=1}^{m} \mu_{s}\left(G_{j}\right)-\epsilon \text { for all } h>h_{0} .
$$

Now consider an arbitrary integer $h>h_{0}$, and for $x \in G_{j}(h)$ (with $\mathrm{l} \leq j \leq m)$ let $W_{h}(x) \cdot=N_{\tau}\left(G_{j}\right) \cap$ ex $P_{h}(x)$; since each point of $W_{h}(x)$ is a vertex of the polytope $P_{h}(x)=P_{h} \cap F(x)$, it follows that $W_{h}(x) \subset \sigma_{s} P_{h}$. Define

$$
T_{j, h}=\cup_{x \in G_{j}(k)} W_{h}(x) .
$$

We claim that the sets $T_{j, h}(1 \leq j \leq m)$ are pairwise disjoint, are $G_{\delta \sigma}$ sets and hence μ_{s}-measurable, and that always $\mu_{s}\left(T_{j, h}\right) \geq \mu_{s}\left(G_{j}(h)\right)$. When we
have established these claims we can conclude that

$$
\begin{gathered}
\zeta_{s}\left(P_{h}\right)=\mu_{s}\left(\sigma_{s} P_{h}\right) \geq \sum_{j=1}^{m} \mu_{s}\left(T_{j, h}\right) \geq \sum_{j=1}^{m} \mu_{s}\left(G_{j}(h)\right) \\
>\sum_{j=1}^{m} \mu_{s}\left(G_{j}\right)-\epsilon \geq \sum_{j=1}^{m} \mu_{s}\left(F_{j}\right)-2 \epsilon=\zeta_{s}(P)-2 \epsilon
\end{gathered}
$$

and the proof will be complete.
Note that $T_{j, h} \subset N_{\tau}\left(G_{j}\right)=N_{\tau}\left(Q_{j}^{\tau}\right)$. From the definition (1) it follows that $N_{\tau}\left(Q_{j}^{\tau}\right) \cap N_{\tau}\left(Q_{k}^{\tau}\right)=\varnothing$ when $j \neq k$, and consequently the sets $T_{j, h}(1 \leq j \leq m)$ are pairwise disjoint.

If x is a point of the set $G_{j}(h)$, then the $(d-s)$-flat $F(x)$ is orthogonal to the s-flat aff Q_{j} and the two flats intersect only at x. Since $\varnothing \neq W_{h}(x) \subset P_{h}(x) \subset F(x)$, we see that the orthogonal projection of E onto aff Q_{j} is a metric contraction that carries $T_{j, h}$ onto $G_{j}(h)$. Thus surely $\mu_{s}\left(T_{j, h}\right) \geq \mu_{s}\left(G_{j}(h)\right)$, and it remains only to show that the set $T_{j, h}$ is s-measurable.

Note that for each i, the set-valued function $P_{i}(x) \mid x \epsilon \varrho Q_{j}$ is continuous, whence the function ex $P_{i}(x) \mid x \in \varrho Q_{j}$ is lower semicontinuous. By using this semicontinuity in conjunction with the definition of $G_{j, h}$ and the fact that $N_{\tau}\left(G_{j}\right)$ is open, one verifies that $G_{j}(h)$ is a G_{δ} set relative to the closed set G_{j} and hence $G_{j}(h)$ is a G_{δ} set in F_{j}; further, the set-valued function $W_{h}(x) \mid x \in G_{j}(h)$ is lower semicontinuous. For each n, let C_{n} denote the set of all points $x \epsilon G_{j}(h)$ for which the set $W_{h}(x)$ consists of exactly n points. From the lower semicontinuity it follows that each function $W_{h}(x) \mid x \epsilon C_{n}$ is continuous, and that each set C_{n} is the difference of two relatively closed subsets of $G_{j}(h)$. But then C_{n} is a G_{δ} set in aff F_{j} and the set $\cup_{x \in C_{n}} F(x)$ is a G_{δ} set in E. The continuity of W_{h} on C_{n} guarantees that the set $\cup_{x \in C_{n}} W_{h}(x)$ is closed relative to the set $\bigcup_{h \in C_{n}} F(x)$ and hence is a G_{δ} set in E. But of course

$$
T_{j, h}=\cup_{n=1}^{\infty} \cup_{x \in C_{n}} W_{h}(x)
$$

so $T_{j, h}$ is a $G_{\delta \sigma}$ set and the proof is complete.
It seems probable that the convexity assumption in 3.1 can be considerably weakened, although we have no satisfactory result in that direction. Suppose X is a subset of E and $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ is a sequence of homeomorphisms of X into E such that φ_{α} converges uniformly to φ_{0}. Suppose that for $i=0,1$, $2, \ldots, K_{i}$ is a complex such that $\left|K_{i}\right|=\varphi_{i} X$, and suppose that K_{0} has the property $A_{*}(s)$. Is it then necessarily true that $\lim \inf \zeta_{s}(K) \geq \zeta_{s}\left(K_{0}\right)$? An affirmative answer would provide a generalization of 4.1. It is clear that for $s \geq 2$, some sort of regularity condition must be imposed on the convergence of $\left|K_{\alpha}\right|$ to $\left|K_{0}\right|$, even when the individual complexes are well-behaved. For example, if Z_{α} is a sequence of polygonal arcs in E^{3}, converging to the boundary B of a simplex, we may surround each set Z_{i} by a polyhedral 2 -sphere S_{i} in such a way that $S_{\alpha} \rightarrow B$ but $\mu_{2}\left(S_{\alpha}\right) \rightarrow 0$.

5. Inequalities for the function ζ_{s}

In preparation for our next main result, we require three lemmas.
5.1. For each a-face F^{a} of an $(a+b)$-polytope P, there is a b-face F^{b} of P such that the polytope con $\left(F^{a} \cup F^{b}\right)$ is $(a+b)$-dimensional.

Proof. We may assume that the containing space E is of dimension $a+b$. Let G be a b-flat orthogonal to aff F^{a} in E and let π denote the orthogonal projection of E onto G. It suffices to choose F^{b} so that πF^{b} is b-dimensional, and the existence of such an F^{b} follows from 1.5.
5.2. Suppose P is a d-polytope, $1 \leq a \leq d, y$ is a point of an ($a-1$)-face of P, and C is the smallest convex cone which has vertex y and contains every a-face of P that includes y. Then C contains P.

Proof. Let F be the lowest-dimensional face that includes y, whence $y \in \varrho F$. It suffices to consider the case in which the containing space E is of dimension $d, y=0$, and $\operatorname{dim} F=a-1$, so that aff F is an $(a-1)$-dimensional linear subspace of E. Let π denote the orthogonal projection of E onto the orthogonal supplement M of aff F, and let K denote the cone from y over P (that is, $K \cdot=\cup_{p \in P}[0, \infty[p)$. Since aff $F \subset C \cap K$, it is easy to verify that

$$
C=\operatorname{aff} F+\pi C \quad \text { and } \quad K=\operatorname{aff} F+\pi K,
$$

so to show that $C \supset P$ it suffices to prove that $\pi C \supset \pi K$. Now $\pi K=K \cap M$, a polyhedral convex cone that is pointed and hence is the convex hull of its extreme rays. For each extreme ray J of $K \cap M$ there is a linear functional f on M such that

$$
K \cap M \subset\{u \in M: f(u) \geq 0\} \quad \text { and } \quad J=\{u \in K \cap M: f(u)=0\} .
$$

Then $f \pi$ is a linear functional g on E such that

$$
K \subset\{v \in E: g(v) \geq 0\} \quad \text { and } \quad(\text { aff } F)+J=\{v \in K: g(v)=0\} .
$$

The intersection (aff $F+J) \cap P$ is an a-face of P that contains F and whose image under π includes a point of $J \sim\{0\}$. Thus πC contains every extreme ray of πK, whence $\pi C \supset \pi K$ and the proof is complete.
5.3. Suppose P is a d-polytope, $0<a<d, x \in P, y$ is a point of $\sigma_{a} P$ nearest to x, and F is an a-face of P that includes y. Then y is relatively interior to F and the segment $[x, y]$ is orthogonal to the flat aff F.
Proof. Let B denote the Euclidean ball of center x and radius $\|y-x\|, H$ the hyperplane through y orthogonal to $[x, y]$, and Q the closed halfspace that
is bounded by H and misses the interior of B. Clearly $\sigma_{a} P$ does not intersect the interior of B. Since H is tangent to B, the set $\sigma_{a} P$ cannot contain any line segment $] y, z[$ for which $z \in E \sim Q$, and consequently Q contains every a-face of P that includes y. But this implies that $y \in \varrho F$ (whence $F \subset H$ and $[x, y]$ is orthogonal to aff $F)$, for otherwise y would lie in an $(a-1)$ face of P and 5.2 would lead to the impossible conclusion that $P \subset Q$.

Theorem 5.4. If K is a cell-complex in E and a and b are nonnegative integers then

$$
\zeta_{a+b}(K) \leq \zeta_{a}(K) \zeta_{b}(K)
$$

Proof. We assume that $a>0<b$, for the remaining cases are trivial. For each s, let the s-faces of K be $F_{1}^{s}, \ldots, F_{n(s)}^{s}$, where of course $n(s) \cdot=f_{s}(K)$. Let A denote the set of all ordered triples (i, j, k) of positive integers that satisfy the following three conditions:
(i) $\mathbf{1} \leq i \leq n(a), \mathbf{l} \leq j \leq n(b), 1 \leq k \leq n(a+b) ;$
(ii) F_{i}^{a} and F_{j}^{b} are both faces of F_{k}^{a+b};
(iii) the set con $\left(F_{i}^{a} \cup F_{j}^{b}\right)$ is of dimension $a+b$, and hence intersects ϱF_{k}^{a+b}.
Note that if $(i, j, k) \in A$ and $\left(i, j, k^{\prime}\right) \in A$, then $k=k^{\prime}$, for different faces of K have no relative interior points in common.

With $(i, j, k) \in A$, let $\pi_{(i, j, k)}$ denote the transformation which projects aff F_{k}^{a+b} orthogonally onto a b-flat $G(i, j, k)$ that is orthogonal to aff F_{i}^{a} in aff F_{k}^{a+b}. According to 1.5 , the set $\pi_{(i, j, k)} F_{k}^{a+b}$ is not merely the projection of F_{k}^{a+b} but is the projection of $\sigma_{b} F_{k}^{a+b}$, and except possibly for a set of zero b-measure each point of $\pi_{(i, j, k)} F_{k}^{a+b}$ lies in the projection of a b-face F_{m}^{b} of F_{k}^{a+b} such that $(i, m, k) \in A$. It follows that

$$
\begin{equation*}
\mu_{a+b}\left(F_{i}^{a} \oplus \pi_{(i, j, k)} F_{k}^{a+b}\right) \leq \mu_{a}\left(F_{i}^{a}\right) \Sigma_{(i, m, k) \in A} \mu_{b}\left(F_{m}^{b}\right) \tag{1}
\end{equation*}
$$

where it is convenient to let ' \oplus ' denote vector addition with respect to an origin at the intersection of aff F_{i}^{a} with $G(i, j, k)$.

For each k, let $I(k)$ denote the set of all i for which F_{i}^{a} is a face of F_{k}^{a+b}, and for each $i \in I(k)$ let $j(i)$ be such that $(i, j(i), k) \epsilon A$. The existence of $j(i)$ follows from 5.1. Then with the above interpretation of \oplus, it is true that

$$
\begin{equation*}
F_{k}^{a+b} \subset \cup_{i \in I(k)}\left(F_{i}^{a} \oplus \pi_{(i, j(i), k)} F_{k}^{a+b}\right) \tag{2}
\end{equation*}
$$

To see this, we consider an arbitrary point $x \in \varrho F_{k}^{a+b}$ and let y be a point of $\sigma_{a} F_{k}^{a+b}$ nearest to x. By 5.3, there is a unique i such that $y \in F_{i}^{a}$ and $[x, y]$ is orthogonal to the flat aff F_{i}^{a}, and then we have

$$
x=y \oplus \pi_{(i, j(i), k)}(x) \in F_{i}^{a} \oplus \pi_{(i, j(i), k)} F_{k}^{a+b}
$$

From (1) and (2) it follows that

$$
\begin{aligned}
\mu_{a+b}\left(F_{k}^{a+b}\right) & \leq \sum_{i \in I(k)} \mu_{a+b}\left(F_{i}^{a} \oplus \pi_{(i, 3(i), k)} F_{k}^{a+b}\right) \leq \\
& \leq \Sigma_{i \in I(k)}\left[\mu_{a}\left(F_{i}^{a}\right) \sum_{(i, m, k) \in A} \mu_{b}\left(F_{m}^{b}\right)\right] \leq \\
& \leq \sum_{(i s, k) \in A} \mu_{a}\left(F_{i}^{a}\right) \mu_{b}\left(F_{j}^{b}\right) .
\end{aligned}
$$

But then

$$
\zeta_{a+b}(K)=\sum_{k=1}^{n(a+b)} \mu_{a+b}\left(F_{k}^{a+b}\right) \leq \sum_{k=1}^{n(a+b)} \sum_{(i, s, k) \in A} \mu_{a}\left(F_{i}^{a}\right) \mu_{b}\left(F_{j}^{b}\right),
$$

and since no pair (i, j) can be associated in A with more than one value of k it follows that

$$
\zeta_{a+b}(K) \leq\left(\Sigma_{i=1}^{n(a)} \mu_{a}\left(F_{i}^{a}\right)\right)\left(\sum_{j=1}^{n(b)} \mu_{b}\left(F_{i}^{b}\right)\right)=\zeta_{a}(K) \zeta_{b}(K) .
$$

Corollary 5.5. Suppose that r and s are positive integers and r is a divisor of s. Then

$$
\frac{\zeta_{s}(K)^{1 / 8}}{\zeta_{r}(K)^{1 / r}} \leq 1
$$

for every cell-complex K in a EucLidean space.
Proof. Suppose $s=m r$. From 5.4 it follows that

$$
\zeta_{s}(K) \leq \zeta_{r}(K) \zeta_{s-r}(K) \leq \zeta_{r}(K)^{2} \zeta_{s-2 r}(K) \leq \ldots \leq \zeta_{r}(K)^{m}
$$

whence $\left(\zeta_{s}(K) / \zeta_{r}(K)^{m}\right)^{1 / s} \leq 1$ and this is the desired inequality.
When $r<s$ but r is not a divisor of s, we are unable to determine whether the quotient $\zeta_{s}(K)^{1 / s} / \zeta_{r}(K)^{1 / r}$ is uniformly bounded as K ranges over all cellcomplexes in Euclidean spaces. However, we are primarily interested in convex polytopes, and there a little more information is available.

Theorem 5.6. Suppose $1 \leq r \leq s \leq d$, and $s=d$ or $s=d-1$ or r is a divisor of s. Then there is a smallest finite constant $\gamma(d, r, s)$ such that $\zeta_{s}(P)^{1 / s} / \zeta_{r}(P)^{1 / r} \leq \gamma(d, r, s)$ for all Euclidean d-polytopes P.

Proof. When r divides s, we merely apply 5.5. Note that for all d, r and s, the existence of $\gamma(d, r, s)$ is equivalent to the condition:
$\Gamma(d, r, s)$: For each family of d-polytopes P such that $\zeta_{r}(P)$ is uniformly bounded, $\zeta_{s}(P)$ is also uniformly bounded.
Obviously $\Gamma(d, r, s)$ is implied by the existence of $\gamma(d, r, s)$. Conversely, $\Gamma(d, r, s)$ implies the existence of a finite constant that bounds the quotients $\xi(P) \cdot=\zeta_{s}(P)^{1 / s} / \zeta_{r}(P)^{1 / r}$ for d-polytopes P such that $\zeta_{r}(P)=1$, and since $\xi(\lambda P)=\xi(P)$ for all $\lambda>0$, this is in fact a general bound.

Now we recall the classical isoperimetric inequality ([11], p. 195) and CAUCHY's formula for surface area ([11], p. 208), both applying to n-polytopes
and asserting respectively that

$$
\left(I_{n}\right) \quad \zeta_{n}(P)^{1 / n} \leq \frac{1}{n \omega_{n}^{1 / n}} \zeta_{n-1}(P)^{1 /(n-1)}
$$

and

$$
\left(C_{n}\right) \quad \zeta_{n-1}(P)=\frac{1}{\omega_{n-1}} \int \zeta_{n-1}\left(\pi_{u} P\right) d u
$$

where ω_{n} is the n-measure of the unit ball in E^{n}, π_{u} denotes the orthogonal projection of E^{n} onto a hyperplane orthogonal to the line $R u$, and u ranges over the unit sphere in E^{n}. Let A_{d} denote the assertion that $\Gamma(d, r, s)$ is valid whenever $1 \leq r \leq s \in\{d-1, d\}$. Then A_{1} is trivial and A_{2} is an immediate consequence of I_{2}. Suppose A_{d-1} is known and consider a family of d-polytopes P in E^{d} for which $\zeta_{r}(P)$ is uniformly bounded. Since $\zeta_{r}\left(\pi_{u} P\right) \leq \zeta_{r}(P) \quad$ (use 1.5 and a basic property of HAUSDORFF measure), $\zeta_{r}\left(\pi_{u} P\right)$ is also uniformly bounded (for all u and for all P in the family) whence $\zeta_{d-1}\left(\pi_{u} P\right)$ is uniformly bounded by the inductive hypothesis, $\zeta_{d-1}(P)$ is uniformly bounded by $\left(C_{d}\right)$, and $\zeta_{d}(P)$ is uniformly bounded by $\left(I_{d}\right)$. This completes the proof.

We have not determined the existence of $\gamma(d, r, s)$ except in the cases covered by 5.6 ; even in those cases we know the values of the constants only when $r=d-1$ and $s=d$. A theorem of Aberth [1] implies that $\gamma(3,1,2)$ $\leqq(6 \pi)^{-1 / 2}$.

Let C^{d} denote the space of all convex bodies in E^{d}, metrized by the Hausdorff distance, and let P^{d} denote the dense subspace consisting of all d-polytopes in E^{d}. Since the functions ζ_{s} are all lower semicontinuous on P^{d}, they can be extended in the usual way to all of C^{d}; specifically,

$$
\begin{equation*}
\zeta_{s}(C) \cdot=\liminf _{P \in P d, P \rightarrow C} \zeta_{s}(P) \tag{*}
\end{equation*}
$$

for each $C \epsilon C^{d}$. The extended functions ζ_{s} are also lower semicontinuous, and they provide a natural way of assigning such quantities as total edgelength and total area of 2 -faces to an arbitrary convex body C in E^{d}. It would be interesting to find a simple geometric characterization of the members of C_{s}^{d}, where this is the set of all $C \in C^{d}$ for which $\zeta_{s}(C)<\infty$. Note that $C_{o}^{d}=P^{d}$, while $C_{d-1}^{d}=C_{d}^{d}=C^{d}$; for $1 \leq s \leq d-2, \quad C_{s}^{d}$ properly contains P^{d} but is of the first category in C^{d}. Note that if r, s, and d are as in 5.6 and if $C \in C_{r}^{d}$, then $\zeta_{s}(C)^{1 / s} / \zeta_{r}(C)^{1 / r} \leq \gamma(d, r, s)$.

Many problems of isoperimetric type are of interest not only for the class P^{d} of all d-polytopes in E^{d}, but also for certain subclasses Q, such as the class $P^{d, v}\left\langle\right.$ resp. $\left.P^{d, f}\right\rangle$ of all members of P^{d} that have exactly d edges incident to each vertex <resp. $d(d-2)$-faces incident to each $(d-1)$-face〉. (The letters
v and f are to suggest regularity of behavior at vertices and maximal faces respectively.) In connection with isoperimetric problems for Q, it may be useful to extend ζ_{s} in a different way:

$$
\zeta_{s}(Q, C) \cdot=\liminf _{Q \in Q, Q \rightarrow C} \zeta_{s}(Q)
$$

for each body C in the closure of Q. The functions $\zeta_{s}(Q, \cdot)$ are also lower semicontinuous, are defined on all of C^{d} when Q is dense in P^{d}, and of course they agree with ζ_{s} on Q itself. However, the functions $\zeta_{s}(Q, \cdot)$ may fail to agree with ζ_{s} on the set $P^{d} \sim Q$; this is true in particular when $Q=P^{d, v}$ and when $Q=P^{d, t}$. Various relationships among the functions ζ_{s} as restricted to Q yield the corresponding relationships among the extended functions $\zeta_{s}(Q, \cdot)$. In particular, it can be proved that when $1 \leq r \leq s \leq d$ the quotient $\zeta_{s}(P)^{1 / 8} / \zeta_{r}(P)^{1 / r}$ is uniformly bounded as P ranges over $P^{d, v}$ and consequently $\zeta_{s}\left(P^{d, v}, C\right)^{1 / s} / \zeta_{r}\left(P^{d, v}, C\right)^{1 / r}$ is uniformly bounded as C ranges over C^{d}. We do not know whether the same statement is valid with $P^{d, v}$ replaced by $P^{d, f}$, though of course its validity is guaranteed by 5.6 when $s=d$ or $s=d-1$ or r is a divisor of s.

In the rest of this section, we shall regard the functions f_{s} and ζ_{s} as defined on all of C^{d} by means of the natural lower semicontinuous extension (as in (*) above) from P^{d}. This will simplify certain statements, and seems to be of genuine interest for the functions ζ_{s} when $0<s$. On the other hand, $f_{s}(C)=\infty$ whenever $s<d$ and $C \in C^{d} \sim P^{d}$, and of course the same is true of $\zeta_{0}\left(=f_{0}\right)$.

Theorems 1.7, 3.1 and 5.6 lead to the existence of solutions for a wide variety of isoperimetric problems, involving polytopes, analogous to those discussed in [9] and [11]. A few of these are described below. We shall not actually determine the solutions, but merely prove their existence.

Proposition 5.7. Suppose B and C are convex bodies in E^{d}, with $B \subset C$, and s is an integer with $0 \leq s \leq d$. Among all the convex bodies P for which $B \subset P \subset C$, there is one (or more) for which $f_{s}(P)$ is a minimum and there is one (or more) for which $\zeta_{s}(P)$ is a minimum.

Proof. Blaschke's selection theorem implies the compactness of the class of all convex bodies P for which $B \subset P \subset C$. Then apply the lower semicontinuity of f_{s} and ζ_{s}.

In preparation for the next proposition, a lemma is required.
5.8. Suppose $0<t \leq d, \tau<\infty$, and B is a convex body in E^{d}. Then there exists a convex body C in E^{d} such that $P \subset C$ whenever P is a convex body in E^{d} with $B \subset P$ and $\zeta_{t}(P) \leq \tau$.

Proof. The assertion is obvious when $t=d$ and also when $d \leq 2$. To handle the general case, we proceed by induction on d. If the lemma is false for some $d>2$ and some τ and B, there is a sequence C_{α} of convex bodies in E^{d} such that

$$
B \subset C_{i}, \zeta_{t}\left(C_{i}\right) \leq \tau \quad(i=1,2, \ldots)
$$

and

$$
\lim _{i \rightarrow \infty} \sup \left\{\|x\|: x \epsilon C_{i}\right\}=\infty .
$$

Assuming for notational convenience that $0 \in B$, we employ the definition of ζ_{t} and a straightforward compactness argument to produce a sequence P_{α} of polytopes, a ray $\left[0, \infty\left[x_{0}\right.\right.$ emanating from 0 (where $x_{0} \in E \sim\{0\}$), and a sequence of real numbers $\beta_{\alpha} \rightarrow \infty$ such that

$$
\left[0, \beta_{i}\right] x_{0} \subset P_{i} \quad(i=1,2, \ldots) .
$$

Now let E^{d-1} be a hyperplane in E^{d} such that $\left[0, \infty\left[x_{0} \subset E^{d-1}\right.\right.$, and let π be the transformation that projects E^{d} orthogonally onto E^{d-1}. Then of course

$$
\pi B \cup\left[0, \beta_{i}\right] x_{0} \subset \pi P_{i} \quad(i=1,2, \ldots),
$$

and from 1.5 in conjunction with the basic property of Hausdorff measure that we have used several times earlier, it follows that

$$
\zeta_{t}\left(\pi P_{i}\right) \leq \zeta_{t}\left(P_{i}\right) \leq \tau \quad(i=1,2, \ldots) .
$$

This shows that the lemma fails in E^{d-1} if it fails in E^{d}.
Theorem 5.9. Suppose B is a convex body in E^{d}, r, s, t and k are integers, and τ is a real number. Suppose $0 \leq r \leq d, 0 \leq s<d, 0<t \leq d$, and there exists a polytope P in E^{d} such that $B \subset P, f_{s}(P) \leq k$, and $\zeta_{t}(P) \leq \tau$. Then among all such polytopes P, there is one for which $\zeta_{s}(P)$ is a minimum, and if $s=d$ or $s=d-1$ there is also one for which $\zeta_{r}(P)$ is a maximum.

Proof. Use 5.8, Blaschke's selection theorem, the lower semicontinuity of f_{s}, ζ_{t}, and ζ_{s}, and the continuity of ζ_{s} when $s=d$ or $s=d-1$.

Theorem 5.10. Suppose r, s, d and k are integers with $1 \leq r<d, 0 \leq s<d$, and $k \geq\binom{ d+1}{s+1}$. Then among the convex bodies C of unit volume in E^{d}, there are those for which $\zeta_{r}(C)$ is equal to its minimum value $1 / \gamma(d, r, d)^{r}$. And among the d-polytopes P of unit volume for which $f_{s}(P) \leq k$, there are those for which $\zeta_{r}(P)$ is a minimum.

Proof. We discuss only the first assertion, for the second is similar. Since $\gamma(d, r, d)$ is the largest constant subject to the requirement that $\zeta_{r}(C)^{1 / r} \geq$ $\geq \zeta_{d}(C)^{1 / d} / \gamma(d, r, d)$ for all convex bodies C in E^{d}, it follows from the definition of ζ_{r}, the semicontinuity of ζ_{r} and the continuity of ζ_{d} that there is a sequence P_{α} of polytopes in E^{d} such that $\mu_{d}\left(P_{\alpha}\right) \rightarrow 1$ and $\zeta_{r}\left(P_{\alpha}\right) \rightarrow 1 / \gamma(d, r, d)^{r}$.

In view of the translation-invariance of μ_{d} and ζ_{r}, we may assume that each polytope P_{i} includes the origin. Now suppose for the moment that the sequence $\left\{\right.$ width of P_{α} \} is bounded from 0 . Then, since $\mu_{d}\left(P_{\alpha}\right) \rightarrow 1$, the sequence $\operatorname{diam}\left(P_{\alpha}\right)$ is bounded from ∞ and with $0 \epsilon P_{i}$ the sequence P_{α} has a subsequence that converges to a convex body C_{0} in $E^{d} ; C_{0}$ is of unit volume and $\zeta_{r}\left(C_{0}\right)=1 / \gamma(d, r, d)^{r}$.

It remains only to show that the sequence \{width of P_{α} \} is bounded away from 0 . Suppose the contrary, whence there exists a subsequence Q_{α} of P_{α} and a sequence H_{α} of hyperplanes in E^{d} such that the width of Q_{i} in the direction orthogonal to H_{i} converges to zero as $i \rightarrow \infty$. Let πQ_{i} denote the orthogonal projection of Q_{i} onto H_{i}. Since $\mu_{d}\left(Q_{\alpha}\right) \rightarrow 1$ it is evident that $\mu_{d-1}\left(\pi Q_{\alpha}\right) \rightarrow \infty$ and it then follows from 5.6 that $\zeta_{r}\left(\pi Q_{\alpha}\right) \rightarrow \infty$. But then with the aid of 1.5 we see that $\zeta_{r}\left(Q_{\alpha}\right) \rightarrow \infty$, and this is a contradiction completing the proof.

In the first assertion of 5.10 , we do not know whether the minimum value of ζ_{r} is actually attained by a polytope. We are also unable to decide whether 5.10 remains valid when the condition of unit volume is replaced by that of unit surface area, though this can be established without difficulty when $r=1$.

6. Intersection properties of simplices

By definition, a d-simplex (in a real linear space L) is a set that is the convex hull of $d+1$ affinely independent points, its vertices. It was apparently Choquet [5] who first noticed that among the finite-dimensional compact convex sets, the simplices are exactly those sets S that have the following property:
(Σ) whenever the intersection of two homothets of S is at least one-dimensional, then the intersection is itself a homothet of S.
(Here a homothet of S is a set of the form $x+\alpha S$ for $x \epsilon L$ and $\alpha>0$.)
Choquet then used the condition (Σ) to define the notion of a simplex in the infinite-dimensional case, and established the equivalence of (Σ) to various other conditions (see Choquet and Meyer [6] and Kendall [13]). Independently of Choquet but a bit later, Rogers and Shephard [19] showed that the simplices are characterized by the following property, obviously implied by (Σ) :
$\left(\Sigma^{\prime}\right)$ whenever the intersection of two translates of S is at least one-dimensional, then the intersection is a homothet of S.
(Actually, the conditions (Σ) and (Σ^{\prime}) are known to be equivalent, but that fact will not be used here.)

With the aid of these characterizations, it is a simple matter to prove the theorem of Kolmogorov and Borovikov [3] stated in the Introduction, and to free it from the assumption of finite-dimensionality.

Theorem 6.1. Suppose that S is a family of compact sets in a Hausdorff linear space L, that each set $S \in S$ has the property $(\Sigma)\left\langle\right.$ resp. $\left.\left(\Sigma^{\prime}\right)\right\rangle$, and that the intersection of any two members of S contains a member of S. Then the set $\cap S$ also has the property $(\Sigma)\left\langle\right.$ resp. $\left.\left(\Sigma^{\prime}\right)\right\rangle$.

Proof. An equivalent formulation of condition $(\Sigma)\left\langle\right.$ resp. $\left.\left(\Sigma^{\prime}\right)\right\rangle$ is that whenever the intersection of two homothets 〈resp. translates〉 of S is nonempty, then it has the form $x+\alpha S$ for some $x \epsilon E$ and $\alpha \epsilon[0,1]$. Now let $K \cdot=\cap S$ and consider points $y_{i} \in L$ and numbers $\beta_{i}>0$ such that the intersection $\left(y_{1}+\beta_{1} K\right) \cap\left(y_{2}+\beta_{2} K\right)$ is nonempty; when considering $(\Sigma)^{\prime}$, we assume further that $\beta_{1}=\beta_{2}=1$. For each $S \in S$,

$$
\left(y_{1}+\beta_{1} S\right) \cap\left(y_{2}+\beta_{2} S\right) \supset\left(y_{1}+\beta_{1} K\right) \cap\left(y_{2}+\beta_{2} K\right) \neq \varnothing,
$$

so by hypothesis there exist $x_{S} \epsilon L$ and $\alpha_{S} \epsilon[0,1]$ such that

$$
\begin{equation*}
\left(y_{1}+\beta_{1} S\right) \cap\left(y_{2}+\beta_{2} S\right)=x_{S}+\alpha_{S} S \tag{1}
\end{equation*}
$$

Choose $\quad S^{\prime} \in S$, define $J \cdot=y_{1}+\beta_{1} S^{\prime}-[0,1] S^{\prime}$, and note that $x_{S} \in J$ whenever $S \subset S^{\prime}$. Since the set $J \times[0,1]$ is compact, some point $\left(x_{0}, \alpha_{0}\right)$ of $J \times[0,1]$ is a cluster point of the net $\left(x_{S}, \alpha_{S}\right) \mid S \in S$. From (1) we see that

$$
\begin{align*}
& \left(y_{1}+\beta_{1} K\right) \cap\left(y_{2}+\beta_{2} K\right) \subset x_{S}+\alpha_{S} S \quad \text { for all } S \in S \tag{2}\\
& \left(y_{1}+\beta_{1} S\right) \cap\left(y_{2}+\beta_{2} S\right) \supset x_{S}+\alpha_{S} K \quad \text { for all } S \in S \tag{3}
\end{align*}
$$

whence with the aid of compactness it follows in a straightforward manner from (2) that

$$
\left(y_{1}+\beta_{1} K\right) \cap\left(y_{2}+\beta_{2} K\right) \subset x_{0}+\alpha_{0} K
$$

and from (3) that

$$
\left(y_{1}+\beta_{1} K\right) \cap\left(y_{2}+\beta_{2} K\right) \supset x_{0}+\alpha_{0} K .
$$

Corollary 6.2. The intersection of a decreasing sequence of simplices is itself a simplex.

In Choquet's approach, some measure theory and the notion of a vector lattice are involved in showing that the simplices are characterized by (Σ). In the Rogers and Shephard proof [19] that the simplices are characterized by (Σ^{\prime}), the most difficult and lengthy part is the demonstration that if a d-polytope S in a d-dimensional Euclidean space E has the property $\left(\Sigma^{\prime}\right)$, then S is a simplex. We shall now indicate an alternative proof of this fact, proceeding by induction on the dimension d. The statement is obvious for $d \leq 1$. Assuming $d>1$ we note that if a $(d-1)$-face F of S is contained in the supporting hyperplane H, then
(4) F has property $\left(\Sigma^{\prime}\right)$ and hence is a ($d-1$)-simplex by the inductive hypothesis;
(5) S is intersected in a single point v by its supporting hyperplane H^{\prime} that is parallel to H but different from H.

For (4) we may assume that $0 \epsilon F$ and denote by Q the halfspace that contains S and is bounded by H. With $x, y \in H$, we are interested in the intersection $(x+F) \cap(y+F)$, assumed to be nonempty. From $\left(\Sigma^{\prime}\right)$ and the nonemptiness of $(x+S) \cap(y+S)$ we have

$$
(x+S) \cap(y+S)=z+\alpha S \quad \text { with } z \in E, \alpha \in[0,1]
$$

But then $z \epsilon x+S \subset Q$ and since

$$
H \supset(x+F) \cap(y+F) \subset z+\alpha S \subset z+Q
$$

it follows that $z \in H$. Hence

$$
\begin{gathered}
(x+F) \cap(y+F)=(x+S \cap H) \cap(y+S \cap H)=(x+S) \cap(y+S) \cap H= \\
=(z+\alpha S) \cap H=z+\alpha(S \cap H)=z+\alpha F
\end{gathered}
$$

and (4) is established.
For (5) we note that if $S \cap H^{\prime}$ should contain a segment parallel to the segment $[0, x]$, then for a sufficiently small $\epsilon>0$ the set $S \cap(\epsilon x+S)$ would have both H and H^{\prime} as supporting hyperplanes, whence this set, being a homothet of S by $\left(\Sigma^{\prime}\right)$, would actually be a translate of S; this is impossible, for the width of $S \cap(\epsilon x+S)$ in the direction x is less than that of S.

Now let F and v be as in (4) and (5), let w be the centroid of F, and let $S_{\beta}=\beta(v-w)+S$. For $\beta<1$ sufficiently near to 1 , the only face of S_{β} intersecting S is $\beta(v-w)+F$ and the only vertex of S contained in S_{β} is the vertex v. Thus the set $S_{\beta} \cap S$ is a pyramid with apex v and base contained in $\beta(v-w)+F$. By $\left(\Sigma^{\prime}\right)$, the set $S_{\beta} \cap S$ is homothetic to S and thus its base is homothetic to F. Since F is a ($d-1$)-simplex, $S_{\beta} \cap S$ must be a d-simplex and hence S is a d-simplex as claimed.

7. Sections of simplices

It was recently proved (Brands and Laman [4], Egqleston [8], Croft [7]) that among all the plane sections of a tetrahedron in Euclidean 3 -space E^{3}, some 2 -face has the greatest area. This suggests the following questions.
(1) If S is a d-simplex in E^{d} and P is an r-polytope in S, must S have an r-face whose r-measure is at least that of P ?
(2) If S is a d-simplex in E^{d} and P is an r-polytope in S having at most $r+2$ vertices, must S have an r-face whose r-measure is at least that of P ?

An affirmative answer to (1) implies one to (2). The answer to (1) is clearly affirmative if $r=0, r=1$, or $r=d$, and by the result quoted above it is affirmative if $d \leq 3$. In 7.1 below, we establish an affirmative answer to (2)
when $r=d-1$. The relevance to 6.2 lies in the fact that an affirmative answer to (2) (for a given d and r) can be used to show that if an r-dimensional set S is the intersection of a decreasing sequence $S_{1} \supset S_{2} \supset \ldots$ of d-simplices, then S is an r-simplex. For suppose S is not a simplex. Then S contains an r polytope P that has $r+2$ vertices and has greater r-measure than the largest r-simplex in S. For $i=1,2, \ldots, S_{i}$ has an r-face F_{i} whose r-measure is at least that of P, and the sequence F_{α} admits a subsequence $F_{n(\alpha)}$ that converges to an r-simplex T in S. But then

$$
\mu_{r}(T)=\lim \mu_{r}\left(F_{n(\alpha)}\right) \geq \mu_{r}(P)>\mu_{r}(T)
$$

a contradiction completing the proof.
Theorem 7.1. Suppose S is a d-simplex in E^{d} and P is a $(d-1)$-polytope in S that has at most $d+1$ vertices. If P is not $a(d-1)$-face of S, then some $(d-1)$-face of S has greater $(d-1)$-measure than P.

Proof. For each hyperplane H in E^{d} whose intersection with S is $(d-1)$ dimensional, let $P(H)$ be a $(d-1)$-polytope of maximum ($d-1$)-measure among those $(d-1)$-polytopes that are the convex hull of $d+1$ or fewer vertices of the ($d-1$)-polytope $S \cap H$. By compactness, there is a hyperplane H_{0} such that $\mu_{d-1}(P \cap H)$ is a maximum when $H=H_{0}$, and of course this maximum value is positive. Let v_{1}, \ldots, v_{k} denote the vertices of S that are in H_{0} and let u_{k+1}, \ldots, u_{d+1} denote the remaining vertices of S.

Clearly the points v_{i} are vertices of $S \cap H_{0}$, and in fact they are vertices of $P\left(H_{0}\right)$. For suppose v_{i} is in H_{0} but not in $P\left(H_{0}\right)$ and let F_{2} denote the $(d-1)$ face of S that is opposite to v_{i}. Since $S \cap H_{0}$ is the convex hull of the union $\left(F_{i} \cap H_{0}\right) \cup\left\{v_{i}\right\}, F_{i}$ includes all the vertices of $S \cap H_{0}$ other than v_{i} and consequently $F_{i} \supset P\left(H_{0}\right)$. But then $P\left(H_{0}\right)$ lies in the $(d-2)$-flat $F_{i} \cap H_{0}$ and $\mu_{d-1}\left(P\left(H_{0}\right)\right)=0$, a contradiction showing that, indeed, each v_{i} is a vertex of $P\left(H_{0}\right)$, or $S \cap H_{0}$ is F_{i} and the result is proved.

We want to show that $P\left(H_{0}\right)$ is a $(d-1)$-face of S, and for this it suffices to show that $P\left(H_{0}\right)$ includes at least d vertices of S. We suppose, on the contrary, that $k<d$, and let w_{k+1}, \ldots, w_{l} denote the remaining vertices of $P\left(H_{0}\right)$, where $l=d$ or $l=d+1$. In each case we shall produce a hyperplane H_{z} for which $\mu_{d-1}\left(P\left(H_{z}\right)\right)>\mu_{d-1}\left(P\left(H_{0}\right)\right)$, a contradiction completing the proof.

First case: $l=d$. In this case the $(d-1)$-polytope $S \cap H_{0}$ has exactly d vertices and hence is identical with $P\left(H_{0}\right)$, for otherwise, by adding to the vertices of $P\left(H_{0}\right)$ a new vertex from those of $S \cap H_{0}$ not in $P\left(H_{0}\right)$, we could generate a ($d-1$)-polytope in $S \cap H_{0}$ that has at most $d+1$ vertices and that properly contains $P\left(H_{0}\right)$, contradicting the definition of $P\left(H_{0}\right)$. Let

$$
K \cdot=\operatorname{con}\left\{v_{1}, \ldots, v_{k}, w_{k+1}, \ldots, w_{d-1}\right\}
$$

and let $M \cdot=$ aff $K, a(d-2)$-flat in E^{d}. Let M^{\perp} be a 2 -flat orthogonal to M in E^{d}, intersecting M at a point q, and let π denote the transformation that projects E^{d} orthogonally onto M^{\perp}.

With $k<d, w_{d}$ is a vertex of $P\left(H_{0}\right)$ but not of S. Hence w_{d} is a point of an open segment Z in S, and Z is not parallel to M, for if it were then Z would lie in H_{0} and hence in $S \cap H_{0}=P\left(H_{0}\right)$. For each $z \in Z$, let

$$
H_{z} \cdot=\operatorname{aff}(M \cup\{z\}),
$$

a hyperplane in E^{d}, and let $K_{z} \cdot=\operatorname{con}(K \cup\{z\})$. Then K_{z} is a (d-1)-polytope in $S \cap H_{z}$ and K_{z} has d vertices. Since $\pi K=\{q\}$, the altitude of the pyramid K_{z} is equal to $\|\pi(z)-q\|$, and consequently

$$
\mu_{d-1}\left(P\left(H_{z}\right)\right) \geq \mu_{d-1}\left(K_{z}\right)=\frac{\|\pi(z)-q\|}{d-1} \mu_{d-2}(K)
$$

Since Z is not parallel to $M, \pi Z$ is an open segment in M^{\perp} and it is possible to choose $z \in Z$ such that $\|\pi(z)-q\|>\left\|\pi\left(w_{d}\right)-q\right\|$. But then $\mu_{d-1}\left(P\left(H_{z}\right)>\mu_{d-1}\left(P\left(H_{0}\right)\right)\right.$, a contradiction completing the discussion of the first case.

Second case: $l=d+1$. Note that every point of S lies on a segment joining a point of the simplex $T^{\prime}=\operatorname{con}\left\{v_{1}, \ldots, v_{k}\right\}$ to a point of the simplex $\quad T^{\prime \prime} \cdot=\operatorname{con}\left\{u_{k+1}, \ldots, u_{d+1}\right\}$. Since $T^{\prime} \subset H_{0}$, every vertex of $S \cap H_{0}$ that is not in T^{\prime} must be in $T^{\prime \prime}$. In particular,

$$
T^{\prime \prime} \supset Q \cdot=\operatorname{con}\left\{w_{k+1}, \ldots, w_{d+1}\right\}
$$

But $P\left(H_{0}\right)=\operatorname{con}\left(T^{\prime} \cup Q\right)$, and since the sets T^{\prime} and Q lie respectively in the skew flats aff T^{\prime} and aff $T^{\prime \prime}$ it follows that
whence

$$
\operatorname{dim} P\left(H_{0}\right)=\operatorname{dim} T^{\prime}+\operatorname{dim} Q+1
$$

$$
\operatorname{dim} Q=d-k-1
$$

Since Q has $d-k+1$ vertices, there must be two vertices of Q that are separated in aff Q by a $(d-k-2)$-flat F which is determined by the remaining $d-k-1$ vertices of Q. Indeed, it suffices to choose $d-k$ vertices of K that form a simplex and to note that the remaining vertex of Q must lie outside one of the closed halfspaces (in aff Q) that contain the simplex and have bounding hyperplane determined by a face of the simplex.

We may assume that

$$
F=\operatorname{aff}\left\{w_{k+1}, \ldots, w_{d-1}\right\}
$$

separating w_{d} from w_{d+1} in aff Q, whence the ($d-2$)-flat

$$
M \cdot=\operatorname{aff}\left\{v_{1}, \ldots, v_{k}, w_{k+1}, \ldots, w_{d-1}\right\}
$$

separates w_{d} from w_{d+1} in H_{0}. Let K, M^{\perp}, q, π, Z, and H_{z} be as in the preceding case, and let Z^{\prime} be an open segment in S that includes w_{a+1} and is
not parallel to M. Since M separates w_{d} from w_{d+1} in H_{0}, since $\pi M=\{q\}$, and since πH_{0} is a line in M^{\perp}, the point q must lie in the open segment $] \pi\left(w_{d}\right), \pi\left(w_{d+1}\right)$. Since Z and Z^{\prime} are not parallel to M, the sets πZ and πZ^{\prime} are open segments in M^{\perp}, and it is possible to choose $z \epsilon Z$ and $z^{\prime} \epsilon Z^{\prime}$ such that $q \epsilon] \pi(z), \pi\left(z^{\prime}\right)[$ and

$$
\left\|\pi(z)-\pi\left(z^{\prime}\right)\right\|>\left\|\pi\left(w_{a}\right)-\pi\left(w_{a+1}\right)\right\|
$$

But then $z^{\prime} \in H_{z}$, and since the set $K_{z} \cdot=\operatorname{con}\left(K \cup\left\{z, z^{\prime}\right\}\right)$ has $d+1$ vertices and is a double pyramid over K, we have

$$
\begin{gathered}
\mu_{d-1}\left(P\left(H_{z}\right)\right) \geq \mu_{d-1}\left(K_{z}\right)=\frac{\left\|\pi(z)-\pi\left(z^{\prime}\right)\right\|}{d-1} \mu_{d-2}(K)> \\
>\frac{\left\|\pi\left(w_{d}\right)-\pi\left(w_{d+1}\right)\right\|}{d-1} \mu_{d-2}(K)=\mu_{d-1}\left(P\left(H_{0}\right)\right)
\end{gathered}
$$

a contradiction completing the proof.

REFERENCES

[1] O. Aberth, An isoperimetric inequality. Proc. London Math. Soc. (3) 13 (1963), 322-336.
[2] P. Alexandroff und A. Hopf, Topologie I. Springer, Berlin, 1935.
[3] V. Borovikov, On the intersection of a sequence of simplices (Russian). Uspehi Mat. Nauk 7, No. 6 (52), (1952) 179-180.
[4] J. J. A. M. Brands and G. Laman, Plane section of a tetrahedron. Amer. Math. Monthly 70 (1963), 338-339.
[5] G. Choquet, Unicité des representations intégrales dans les cônes convexes. C. R. Acad. Sci. Paris 243 (1956), 699-702.
[6] G. Choquet and P.-A. Meyer, Existence et unicité des représentations intégrales dans les convexes compacts quelconque. Ann. Inst. Fourier, Grenoble 13 (1963) 135-154.
[7] H. T. Croft, Some geometrical thoughts. Math. Gaz., to appear.
[8] H. G. Egaleston, Plane section of a tetrahedron. Amer. Math. Monthly 70 (1963) 1108.
[9] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin, 1953.
[10] David Gale, On the number of faces of a convex polyhedron. Canad. J. Math. 16 (1964), 12-17.
[11] H. Hadwiger, Vorlesungen über Inhalt, Oberfäche und Isoperimetrie. Springer, Berlin, 1957.
[12] W. Hurewicz and H. Wallman, Dimension Theory. Princeton Univ. Press, Princeton (N. J.), 1948.
[13] D. G. Kendall, Simplexes and vector lattices. J. London Math. Soc. 37 (1962), 365-371.
[14] V. Klee, On the number of vertices of a convex polytope. Canad. J. Math. 16 (1964), 701-720.
[15] V. Klee, Diameters of polyhedral graphs. Canad. J. Math. 16 (1964), 602-614.
[16] V. Klee, A property of d-polyhedral graphs. J. Math. Mech., to appear.
[17] V. Klee, Heights of convex polytopes. J. Math. Anal. Appl., to appear.
[18] G. Nöbelina, Über die Länge der euklidischen Kontinuen. Jber. Deutsch. Math. Verein. 52 (1942), 189-197.
[19] C. A. Rogers and G. C. Shephard, The difference body of a convex body. Arch. Math. 8 (1957), 220-233.
[20] H. Weyl, Elementare Theorie der konvexen Polyeder. Comment. Math. Helv. 7 (1935), 290-306.

[^0]: ${ }^{1}$) This paper was written at the University of Washington (Seattle, Washington, U. S. A.) while Professors Egqleston and Grünbaum were visiting there, on leave respectively from Bedford College, London and The Hebrew University, Jerusalem. Egaleston's work was supported by a fellowship from the National Science Foundation (U.S. A.), Grünbaum's and Klee's by an N. S. F. grant (NSF-GP-378).
 ${ }^{2}$) As basic references, we mention Weyl [20] for convex polytopes, Alexandroff and Hopf [2] for cell-complexes, Hurewicz and Wallman [12] for Hausdorff s-measure, and Hadwiger [11] for isoperimetric problems.
 ${ }^{3}$) It is well-known (e.g. [11]) that for d-polytopes P, the functions $\zeta_{d}(P)$ and $\zeta_{d-1}(P)$ are continuous; they represent the volume and the surface area of P.

[^1]: ${ }^{4}$) We are indebted for this reference to Professors T. Ganea and A. Kolmogorov.
 ${ }^{5}$) This was posed as a problem by H. Grossman and E. Ehriart, Amer. Math. Monthly 65 (1958) 43 and 69 (1962) 63.

