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Some Semicontinuity Theorems for Convex Polytopes
and Cell-complexes

H. G. Eggleston, Branko Grûnbaum and Victor Klee1)

Introduction

In a finite-dimensional EucLiDean spaceE, a convexpolytope Pis a, set which
is the convex hull of a finite set; hère such a set P will simply be called a polytope,

or, if it is &lt;i-dimensional, a d-polytope.2) An s-face of P is an s-dimensional
set (necessarily an s-polytope) which is either P itself or is the intersection of P
with a supporting hyperplane. The number of s-faces of P will be denoted by
fs(P) and the s-measure of their union by ÇS(P). Our section headings are as
follows :

1. The functions fs for cell-complexes
2. A pulling process
3. The functions Ç8 for cell-complexes
4. The functions £s for convex polytopes
5. Inequalities for the functions Cs

6. Intersection properties of simplices
7. Sections of simplices
Each polytope is a compact set, and thus the class of ail polytopes in E can

be metrized by the Hausdorff distance. Our principal aim in § 1 is to show
that when the polytopes are topologized in this way, each of the functions fs
is lower semicontinuous; thus for each polytope P in E it is true that ail polytopes

sufficiently close to P hâve at least as many s-faces as P. In connection
with various extremal problems, this resuit can be used to restrict attention to
polytopes whose vertices are in gênerai position, but for that purpose the
pulling process described in §2 is more advantageous.

Lower semicontinuity of the functions £s is established in §§3-4.3) The
reasoning of §3, like that of § 1, applies not only to convex polytopes but also

x) This paper was written at the University of Washington (Seattle, Washington, U. S. A.)
while Professors Eggleston and Grûnbaum were visiting there, on leave respectively from
Bedford Collège, London and The Hebrew University, Jérusalem. Eggkeston&apos;s work was sup-
ported by a fellowship from the National Science Foundation (U. S. A.), Grunbaum&apos;s and
Klee&apos;s by an N. S. F. grant (NSF-GP-378).

2) As basic références, we mention Weyl [20] for convex polytopes, Alexandroff and Hopf
[2] for cell-complexes, Hurewicz and Wallman [12] for Hausdobff s-measure, and Hadwiger
Ul] for isoperimetric problems.

3) It is well-known (e. g. [11]) that for d-polytopes P, the functions Çd{P) and ^_x(P) are
contmuous; they represent the volume and the surface area of P.
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to a rather gênerai class of cell-eomplexes2); however, it is based on a supple-
mentary hypothesis that is removed in §4 for the case of convex polytopes. As
is shown in § 5, the lower semicontinuity of the functions f8 and £&quot;« can be
used to establish the existence of solutions to various isoperimetric problems.
Also in § 5 is a proof that if P is a d-polytope and a and 6 are positive integers
whose sum is at most d, then Ca+5(P) &lt; fa(P)f&amp;(P). From this and some
related results we conclude that if 1 &lt; r &lt; s &lt; d and if r divides s or
s d — 1 or s d, then there exists a finite constant y(d, r, s) such that
Çs(P)1/3IÇr(P)1/r &lt; y(d, r, s) for ail d-polytopes P. We do not détermine the
best values for thèse constants, nor even their existence except when r and s

are as indicated.
From the lower semicontinuity of f8 it follows that if a decreasing séquence

of d-simplices has a d-dimensional intersection S, then S is also a simplex.
However, this was conjectured by Kolmogorov and proved by Borovikov [3]4)

without the assumption that S is riS-dimensional; that is, the intersection of
a decreasing séquence of simplices is always a simplex. § 6 contains a new proof
that applies also to infinite-dimensional simplices; it is based on a characteri-
zation of simplices due to Choquet [5] and to Rogers and Shephard [19].

In §7 a third approach is indicated, related to the fact (Brands and Laman [4],
Eggleston [8], Croft [7]) that some 2-faee of a tetrahedron has an area not
exceeded by that of any plane section5); in particular, an n-dimensional

generalization of this fact is established. Borovikov&apos;s proof of his theorem is

shorter than either of ours, but our supplementary facts seem interesting in
themselves.

1. The fonctions/# for cell-complexes

Recall that the set K of ail faces of a polytope forms a cell-complex [2] ;

that is, K is a finite family of polytopes in E such that each face of a member

of K is itself a member of K, and such that the intersection of any two members

of K is a face of both. The s-dimensional members of a cell-complex K will be

called its s-faces, and the number of s-faces will be denoted by /S(/C). Hence-

forth, the terms complex and cell-complex will be used interchangeably. For a

polytope P or a complex K,o8P or osK will dénote the union of ail s-faces.

When C is a convex subset of E and aff C is the smallest flat containing G,

the interior of C relative to aff G is called the relative interior of C ; it will be

denoted hère by q C, and the set C is relatively open if and only if G qC.

4) We are indebted for this référence to Professors T. Ganea and A. Kolmogobov.
5) This was posed as a problem by H. Grossman and E. Ehrhart, Amer. Math. Monthly fà

(1958) 43 and 69 (1962) 63.
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For each complex K, let | K | dénote the union of ail members of K ; K will be
said to hâve the property A (s) provided whenever F is a face of K, G is a

relatively open convex subset of | K |,

C n qF ^ 0 and dim C &gt; dim F s

then Ocjp,
This condition will appear in Theorem 1.7 below. Its relevanee to polytopes

rests on the foliowing fact.

1.1. If K is a subcomplex of the complex of ail faces of a polytope P, then

every relatively open convex subset C of \K\is contained in the relative interior of
a single face of K; hence K has the property A (s) for ail values of s.

Prooî. We proceed by induction on the dimension d of the polytope, the
assertion being obvious when d 1. Suppose it is known for ail d &lt; k, and
consider the case of a i-polytope P. If C c qP, the desired conclusion holds.

If C is not contained in qP then C includes a relative boundary point z of P
and P is properly supported at z by a hyperplane H. But then C c H, and
the desired conclusion follows from the inductive hypothesis as applied to the
cell-complex {Q f) H :Q eK).

Sometimes the property A (s) of a complex K can be conveniently verified in
terms of the stronger property A * (s), where K is said to hâve the property
A * (s) provided every relatively open s-dimensional convex subset of | /C | is
contained in the relative interior of a single face of /C. Although the properties
A {s) are independent for the various values of 5, this is not true of A * (s).

1.2. Every cell-complex K has the property 4*(0). If K has the property
A * (s) for some s &gt; 1, then K has the property A * (t) for ail t &gt; s and hence
also the property A{t) for ail t &gt; s. If K has the property A*(l) then K fias
the property A (s) for ail values of s.

Proof. The first assertion is obvious. For the second, let us assume that K
lacks the property A* (t). Then there is a relatively open £-dimensional convex
subset J* of | K | and there are faces F and G of K such that J* intersects
both qF and qG. Choose œcJ&apos;n qF&gt; ye^f) Q@&gt; an(i kt Js dénote the
intersection of Jt with an s-flat in aff Jt that contains the segment [x9 y],
Then Js is a relatively open s-dimensional convex subset of K and Js intersects
both q F and q G, so K lacks the property A * (s). This takes care of the second
assertion. For the third assertion, it remains only to verify that A * (1) implies
A (0), and that is easily done.

Four lemmas are required in préparation for the main resuit.
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1.3. // x is an affine transformation of a polytope P onto a polytope Q,
then for every face G of Q there is a face F of P such that xF G.

Prooî. It suffices to consider the case in which 6 is a proper face of Q,
whence there is an affine functional &lt;p on affQ such that &lt;pG 1 and cp &lt; 1

on Q ~ G. Then ç&gt;x is an affine functional on aff P (where x carries afF P
onto afF Q), and we obtain the desired face F of P by defining

F- {xeP:&lt;p(Tx) 1}.

1.4. If P is a polytope and M is a fiât in afF P that intersects P, then M
intersects a (dim P—dim M)-face of P.

Prooî. We proceed by induction on the dimension m of M, the assertion

being obvious for m 0 and also for m 1, since the relative boundary of
P is intersected by every line in afFP that intersects P itself. Suppose the
theorem is known for ail m &lt;k, and consider the case in which m k &gt; 1.

We may assume that P is a d-polytope in Ed with OeP and that M is a i-flat
in Ed with Ocitf. Let H be a (d — l)-flat such that OeH a Ed and
dim (M f] H) k — 1, and let r be a linear projection of Ed onto iï that
carries M onto M f] H. Applying the inductive hypothesis to the polytope
xP and the fiât M ç\ H, we see that M f] H must include a point z of a

(d _ fe)-face G of tP. By 1.3, there is a face F of P such that xF G. The

nature of ris such that d—&amp; &lt;dimjP&lt;d—k-\-1 andtheset t&quot;1^) isalineinilf
that intersects F. If dim F d—k, the desired conclusion holds. If dim F
— d — k -{- 1, then x~1{z) c aff F and it follows from the inductive hypothesis
that x~1(z) intersects a (d — &amp;)-face of F. But then of course M intersects a

(d — &amp;)-face of P, and this complètes the proof.

1.5. If x is an affine transformation of a polytope P onto an s-polytope Q,
then x{asP) =Q.

Proof. Let d dim P and consider an arbitrary point q e Q. Then
T&quot;&quot;1(?) is a (^ —s)-flat in aff P and hence, by 1.4, r&quot;1(g) must intersect an
5-face of P. The desired conclusion follows.

1.6. If an s-polytope S is the limit of a séquence of polytopes Pa, then the

séquence &lt;rsPa is also convergent to S.

Proof. Let r be an affine projection of the containing space onto aff S.

We note :

(*) foreach e&gt; 0 there exists m€ such that \\x — xx\\ &lt; e

whenever x e P. and i&gt;m(:.
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From (*) and the fact that Pa-&gt;S, it follows that rP^-^S. By 1.5,
r(asPi) rPt and thus T(crsPa) -&gt;$; a second application of (*) shows
that asPa -&gt;£.

In view of 1.1 we see that the first semicontinuity theorem stated in the
Introduction is an immédiate conséquence of the following more gênerai
resuit.

Theorem 1.7. Suppose Ka is a séquence of cell-complexes in E, K is a cell-
complex in E having the property A (s), and the séquence | Ka \ is convergent to

\K\. Suppose further that ai least one of the following conditions is satisfied:
(i) the séquence /O(/Ca) is bounded;

(ii) for each i,\Kt\is covered by Kt&apos;s faces of dimension &gt; s;
(iii) for each point z in an s-face of K, there is a séquence za converging to z such
that always zt is in a face of Kt of dimension &gt; s.

Then liminf/s(Ka)&gt;/s(K).

Proof. Since condition (iii) is implied by (ii), it suffices to consider (i) and
(iii). Suppose the desired conclusion fails. Then there exist a subsequence
Da of Ka and an integer ns such that for ail i,

fs(Dt) ns&lt;fs(K).

For t &gt; s, each £-face of Dt is uniquely determined by the set of its own
5-faces, and a f-face has at least (f + {) s-faces. Consequently the séquence
ft{Da) is bounded for ail t&gt;s, and of course it is identically zéro for t&gt;d •

dim E. Thus we can choose a subsequence Ca of Da, non-negative integers
ws,..,,^d) and for each i an indexing of the faces of Ct such that the following

three conditions are ail satisfied :

for s &lt; t &lt;d and for each i, the cell-complex Ct has exactly nt £-faees
pt,l T&gt;t,nt.X l &gt; • • • J * i

for s &lt; t &lt; d and for 1 &lt; h &lt; nt, the séquence P%h is convergent to a
compact convex set Pt&gt;h of dimension d(t,h) ^t;

for each i, f8(Ct) ns&lt; fs(K)
If condition (i) holds, we may assume that the sets P\*h and Pa hâve been
chosenfor 0 &lt; t &lt;d.

Let Ql9 Qm be the «s-faces of K. Since each of thèse sets is closed and
none is covered by the others, there exist e &gt; 0 and points xk such that for

where Nb of a point or set will dénote its open &lt;5-neighborhood. The s-dimen-
sional set N€(xk) f\ gQk is not the union of finitely many convex sets of
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dimension &lt; s, and consequently there exists a point

If (i) holds, then V &gt; s&apos; may be replaeed by V &gt; 0&apos;. Hence if either (i) or
(iii) is satisfied we hâve

yk€QPHkhe{k)
Wlth

t{k) &gt;8,1&lt; e{k) &lt; ntikUd(t(k), e(k)) &gt; s

Since yk€gQk, it follows from the property A (s) of K that

Qpt(khe(k) clQQk (i &lt; Jfc &lt; m),

whence d(t(k), e(k)) s.
Recalling that p* &lt;*&gt;»«&lt;*&gt; is the limit of the séquence Pf)te(i), we see from

1.6 that the séquence o8Plik)&apos;eik) is also convergent to p*&lt;*&gt;»«&lt;*&gt;. Hence there
exists n such that for each i &gt; n there is an s-face Fki of p^*)»e(*) for
which Fkii c ^(Q^.) and J7^^ intersects N€(yk). But then Fki intersects
N2€(xk), and because of our spécial choice of € this implies that Fki is

not contained in the c-neighborhood of any set Q^ with ; =fck. Thus (for
i &gt; n) the association of the Fki*8 with the Qks is biunique and we hâve

/S(CJ &gt; f8(K), a contradiction completing the proof.
It would be interesting to find a simple characterization of those cell-complexes

K for which 1.7 is valid. Certainly the property A (s) is not necessary, for with
arbitrary E and s the plane complex A below has the stated property even

though A lacks the property 4(1). However, the property fails for B below

(E arbitrary, 5=1) and also for C(dim E &gt; 3, s 1).

A suitable 2-complex in U3 shows that condition (ii) cannot be replaeed by the

requirement that each vertex of K{ lies in a face of dimension &gt; s.

2. Â pulling process

We know by 1.7 that for ail s, every polytope Q sufficiently close to a given
polytope P has at least as many s-faces as P ; however, except for this restriction

the facial structure of Q may be radically différent from that of P. In
various circumstances, it is convenient to be able to choose Q so that its facial
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structure is well-behaved in some spécifie way (for example, so that ail of Q&apos;s

proper faces are simplices) and at the same time is closely related to the facial
structure of P. This may be accomplished with the aid of the &apos;pushing process&apos;

of [14] or the &apos;pulling process&apos; described below. For some purposes [10, 14, 15]
thèse are interchangeable; for others [16, 17], the pulling process is préférable
because its effect on facial structure is more easily described. Let us dénote the
convex hull of a set X by con X, and the set of ail vertices or extrême points of
a polytope P by ex P. When X is the set of ail vertices of a d-polytope con X
in Ed, and q is one of thèse vertices, we say that X1 is obtained from X by
pulling (resp. pushing) q to q&apos; provided Xf — (X ~ {q}) U {qf}, where q&apos; is a
point of Ed such that the half-open segment ]q,qf] does not intersect any
hyperplane determined by points of X and such that q e int con X1 (resp.
q&apos; e int con X). It is clear that such a pulling and pushing are always possible,
and that ex (con Z&apos;) — (X ~ {q}) U {q&apos;}. The following resuit may be

compared with 2.4 of [14],

Theorem 2.1. Suppose X is the set of ail vertices of a d-polytope con X in Ed,
and X1 is obtained from X by pulling q to q&apos;&apos;. For 0 &lt; s &lt; d — 1, the s-faces of
con X1 are exactly the sets F8 and the sets con (G8*1 U {qr}), where Fs is an s-face
of con X such that qt F8 and G8-1 is an (s — l)-face of a (d — l)-face Kd-X
of con X such that q c Kd~x ~GS~1.

Proof. We recall that if S is a proper subset of the set T of ail vertices of a
polytope P con T, then the following three assertions are équivalent :

S is the set of ail vertices of some face of P ; aff S f] con (T ~ S) 0 ; T
admits a supporting hyperplane H for which T f\ H 8. Thèse characteri-
zations will be used without further explicit référence.

Note that in the statement of 2.1, Fs may be described alternatively as an
s-face of a (d — l)-face Jd~x of con X such that q$ J*-1. Clearly q lies in an
open halfspace Q determined by the hyperplane affJ^-1, and from the définition

of pulling it follows that also q&apos;eQ. Now if F8 were not a face of con X&apos;,

then aff F8 would intersect the set con (Xf ~ ex F8) and hence (since
aff .F5 c aff Jd~x and qf€Q)&amp;ïïF8 would intersect con (X — ex F8), con-
tradicting the fact that F8 is a face of con X. It follows that F8 is a face of
con X&apos;

; and from the fact that q c int con X&apos; we deduce easily that every
face of con X1 that is not incident to q1 must also be a face of con X.

Next, consider G8-1 and K*-1 as described, and let Gd~2 be a (d—2)-
face of Rà-1 such that qeKd-x ~ Gd-%. By the preceding paragraph,
Gd~2 is a (d — 2)-face of both con X and con X1, and hence is incident to
exactly two (d — l)-faces of each of thèse d-polytopes. Since one of the former
two faces (K6-1) includes g, one of the latter must include q&apos;. That is, the set
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gd-2 \j |g^ nes jn a supporting hyperplane H of Xf. By the définition of
pulling, H n (X ~Gd~2) 0, and consequently the set con (Gd~2 U {qf})
is a (d — l)-face of con X&apos;. But then con (G8-1 U {q&apos;}) is an «s-face of con X&apos;.

To complète the proof we must show that if F% is an «s-face of con X&apos; that
is incident to q&apos;, then FI con (F8-1 U {g7}) where F3-1 is an (5 — l)-face
ofa (d — l)-face K*-1 of con X such that g eK*-1 -F8-1. Let jPf1 be a

(d — l)-face of con X&apos; that contains F%\ let W - ex FI ~ {q&apos;} and
Z - exFt1 -(q&apos;}- If bSW is s-dimensional, then g&apos;eaff W and this
contradicts the définition of pulling; thus aff W is (s — l)-dimensional and
the set F8-1 • con W is an (s — l)-face of con X&apos;, whence also of con X.
Similarly, con Z is a (d — 2)-faee of con X&apos; and of con X. Let H •

— a,ff (Z \J {q}), a hyperplane in Ed. Then H supports X, for otherwise sortie

point of X would lie on the q&apos; side of H, whence ]q, qf] f] aff (Z U {x}) ^ 0
and the définition of pulling is contradicted. With H supporting X, we see

that the set £ „ /rTr r _(aff (W U {g})) n conl
isafaceof conl; denoting by jfi^-1 any (d — l)-face of con X containing it,
we see that F8-1 isafaceof Kd~1. This complètes the proof.

3. The functions Ç8 for cell-complexes

In the présent section, jus will dénote an arbitrary positive-valued real func-
tion subject to the foliowing four conditions :

(a) the domain of jbts is the family Us of ail nonempty subsets of E that can be

expressed as the union of finitely many s-polytopes;
(b) if U e Us and Px, Pn are «s-polytopes in E such that U c U^i-P» &gt;

then ^(tO&lt;2?_iiM^);
(c) if Pl9 Pw are distinct s-faees of a complex in E, then /ws(U^==1JPî)

(d) if a séquence Pa of 5-polytopes in E is convergent to an s-polytope P,
then ft(P) &lt;liminf^(Pa).

For each complex K, Cs(/C) • ^8{as^)i ^e 5-measure of the 5-skeleton

Obviously conditions (b) and (c) are satisfied by the 5-dimensional Haus-

dorff measure2) based on a EucLiDean metric for E. To see that condition (d)

is also satisfied, we dénote by n the orthogonal projection of E onto the flat
aff P, whence nPa is convergent to P and hence jus(P) lim jbts(7iPa) by a

well-known resuit [11] on the continuity of volume. On the other hand,

ft8(nPt) &lt; ft8(Pt) because the transformation n is a metric contraction.
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A complex K will be said to hâve the property A* (s) provided there is no
«s-dimensional face F of K whose relative interior qF intersects a relatively open
convex subset C of \K \ of dimension &gt; s ; this amounts to replacing the
condition &apos;0 c F&apos; in the définition of A (s) by the condition that &apos;dim C &lt;

&lt; dim F&apos;. Thus A * (s) =&gt; A (s) =&gt; A* (s). The three complexes pietured
in § 1 ail hâve the property &gt;4*(1) but not the property &gt;4(1).

Theorem 3.1. Suppose Ka is a séquence of cell-complexes in E, K is a cell-

complex in E, and the séquence \ Ka\ is convergent to \ K \. Suppose further that
the séquence fo(Ka) is bounded, and that K has the property A*(s) or lim inf
(Ts/Ca 3 OSK.

Then lim inf CS(PJ&gt; f,(P).

Prooî. Suppose the desired conclusion fails. Then as in 1.7, there exist a
subsequence Ca of Ka, a number ô e]0,l[, integers nQ, nd, and for
each i an indexing of the faces of Ct such that the following three conditions
are ail satisfied :

for 0 &lt; t &lt; d and for each i, the cell-complex Ct has exactly nt t-
faces Pt&gt;\...,Pl&apos;n*;

for 0 &lt; t &lt; d and for 1 &lt; h &lt;ntJ the séquence P£Â is convergent to a
polytope Ptth of dimension d(t,h) &lt;t;

liminf^(asCa)&lt;^s((TsK). (1)

Now suppose first that liminfcrs/Ca 3 osK, whence of course lim inf
(TsCa 3 asK. Since fo(Ca) is bounded, it foliows with the aid of 1.6 that

osK c [)i€jP*-&apos; (2)

where J is the set of ail indices j such that 1 &lt; j &lt; n8 and d(s, j) s. Since
the séquence Ps^ converges to Ps&gt;j, it follows from (d) that for ail sufficiently
largeiwehave ,ÀP^&gt;è,ÀP^ {&amp;MjeJ). (3)

Then from (b) and (c) in conjunction with (2) and (3) we see that

fls(osK) &lt; Zfejft.iP*) &lt; | SxjfiAPï&apos;) &lt; J /*.{°.Ct)

contradicting (1) and completing the proof.
Finally, suppose K has the property A* (s) and consider an arbitrary

s-face Q of K. Let n*
Then Q* is covered by the sets atPr^ with t &gt; s, whence (since K has the
property A*(s)) Ç* is covered by the sets Pr&gt;j for which d(r, j) s. But
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then Q is also eovered by thèse sets, we are led again to (2) above and the proof
proeeeds as before.

Note that if /^ is one of the (équivalent) standard 1-measures related to the
EucLiDean metric for E, and if each of the complexes Kt is connected, then
the validity of 3.1 for s 1 does not require boundedness of the séquence
fo(Ka). For even without the boundedness, a^^ is a séquence of continua in E
and it is known (Nôbeling [18]) that ^(M) &lt; lim inf ^(^K^ for every
continuum M c lim inf Oi JTa. In the next section is proved that for arbitrary
s, the boundedness of fQ(Ka) may be abandoned when we are concerned only
with the faces of convex polytopes rather than more gênerai cell-complexes.

4. The îunctions Çs for convex polytopes

The proof to be presented hère employs more properties of the s-measure fi8
than were required in the previous section; for the sake of simplicity we shall

assume that E is equipped with a EtrcLiDean metric and fjt8 is the s-dimensional
Hafsdokff measure based on that metric. For a polytope P, Ç8 (P) • ju8 (asP).

Theorem 4.1 • If Pa is a séquence of convex polytopes in E converging to a

polytope P, then lim inf Ç8{Pa) &gt; Ç8(p)-

Proof. We may assume that ail of the polytopes Pt and P are of the same
dimension d as E, and hence hâve nonempty interior in E. For let E&apos; dénote
the smallest flat containing P and let n dénote the orthogonal projection of E
onto Ef. Then the séquence nPa is convergent to P. Further, £ (^PJ &lt; C (Pi)&gt;

for n is a metric contraction and from 1.3 and 1.5 it follows that 7tasPtZD a8nPt.
Thus the desired conclusion for the séquence Pa -^ P is implied by that for
the séquence nPa -&gt; P, and we assume henceforth that the sets E, P, and P4

are ail d-dimensional.
We may assume that Pt z&gt; P. For let z be an interior point of P and note

that for each € € [0,1] it is true that

z + (1 - e)(P -z) c P% c z + (1 + €)(P -z)
for almost ail i. Thus for almost ail i there exists a smallest positive number
&amp; such that P c P[ • x + &amp;(P — x). It is évident that pa -&gt; 1 and

hence //(P«) / ^(P^) -&gt; 1, so the desired conclusion for the séquence Pa-+P
is implied by that for the séquence Pra-&gt;P. We assume henceforth that
Ptz&gt; P for ail t.

Let Ql9 ...,Qm bethes-facesofP, where m f8(P). The sets ^(1 &lt;j &lt;m)

are pairwise disjoint, so each point x of their union is in a unique set qQ3{X) •

We shall dénote by F(x) the (d — s)-dimensional flat in E that is orthogonal
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to Qj{x) and intersects Qj(x) only at x. Then F(x) intersects the interior of P
and hence the intersection P f] F(x) is a (d — s)-polytope, to be denoted hère

by P(%). Similarly, we define the (d —s)-polytopes Pt(x) • Pt n F(x).
It is évident that x is a vertex of P(x) and that Pt(x) d P(x); it is easily
verifiedthat Pa(x) -&gt; P{x).

For x e U™^xqQ3 and for i 1, 2, let dt(x) dénote the minimum
distance from a; to a vertex of the polytope Pt(x) ; that is,

dt(x) • inf {|| x— v\\ :v€exPt(x)}.
We claim that da(x) -&gt; 0. Indeed, let z be a relatively interior point of P(x)
and for each i let y% be the largest positive number such that

P(x) z&gt; P&apos;Ax) ¦ z + y,(Pt(x) -z)
Then ya -&gt; 1, P*a{x) -&gt;P(x), and for the desired conclusion it suffices to
show that as i -&gt; oo, the minimum distance from a: to a vertex of P*(x)
converges to 0. Since a; is a vertex of P (x), every neighborhood U of x relative
to P(x) contains the closure of J f| P(x) for some open halfspace Jz x.
Since P*(x) -&gt;P(x), it is true for almost ail i that P*(x) intersects J,
and then since J is a halfspace it must include a vertex u of Pl(x). But then
u çU and the desired conclusion follows.

Now consider an arbitrary e &gt; 0. We want to show that £s (Pt) &gt; Ç8 (P) — 2 e

for almost ail i. Note first that if
Ql-^Qt-N^iu^^^Q,), (i)

then iu8(Ql) -&gt; /u&gt;s(Qk) as ô -&gt; 0. Thus we can choose t &gt; 0 so that

The set Q^ will be denoted henceforth by G3. For each positive integer h, G3 {h)
will dénote the set of ail points x of O} such that for ail i&gt;h, the set JVT(G3)
includes at least one vertex of Pt{x). Obviously Q9(l) c G}(2) c and
by the previous paragraph the union of thèse sets is Gj itself. Hence
Vs(@3(oc)) -&gt; jus(G3), and there exists an integer h0 such that

Z?~iHs{G,(h))&gt;Zr=^AG,)-e for ail h &gt; h0.

Now consider an arbitrary integer h&gt; hQ, and for x € G3 (h) (with
1 &lt; j &lt; m) let Wh(x) • iVrT((?i) n ex P^(a;) ; since each point of Wh(x)
i a vertex of the polytope Ph(x) Phf)F(x) it foUows that Wh(x) c asPh.

claim that the sets 2^(1 &lt; ?* &lt; m) are pairwise disjoint, are G§a sets
hence ^s-measurable, and that always ju,s(T3th) &gt; fJts(G3(h)). When we
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have established thèse elaims we can eonelude that

&gt; Z?-if*.(Q,) - * &gt; ZUt*AF,) -2e Ç.{P) - 2e

and the proof will be complète.
Note that Tuh&lt;z NT(G3) NT(Q]) From the définition (1) it follows

that N7{Q)) fl NriOl) 0 when j ^ le, and consequently the sets

TJth(l &lt;j &lt;m) are pairwise disjoint.
If x is a point of the set G3(h), then the (d — s)-fiât F (x) is orthogonal to the

5-flat a,ïïQj andthetwoflatsinterseetonlyatx. Since 0 yéWh(x) c Ph(x) c F(x),
we see that the orthogonal projection of E onto aff Q3 is a metric contraction
that carries T3th onto G3(h). Thus surely ^s(T3h) &gt; f*s(G}(h)), and it
remains only to show that the set Tuh is «s-measurable.

Note that for each i, the set-valued function Pt(x) | X€qQ3 is continuous,
whence the function ex Pt{x) \ X€qQ3 is lower semicontinuous. By using this
semicontinuity in conjunction with the définition of Gjh and the fact that
Nr(G3) is open, one vérifies that G3(h) is a G8 set relative to the closed set

G3 and hence G3 (h) is a (?§ set in F3 ; further, the set-valued function
Wh(x) | xcG^h) is lower semicontinuous. For each n, let Cn dénote the set

of ail points x eG3(h) for which the set Wh(x) consists of exactly n points.
From the lower semicontinuity it follows that each function Wh(x) \ xeCn is

continuous, and that each set Cn is the différence of two relatively closed

subsets of G3(h). But then Cn is a C?§ set in affjP^ and the set Ux€CnF(x)
is a 6?§ set in E, The continuity of Wh on Cn guarantees that the set Ux€CnWh (x)
is closed relative to the set Uh€CnF(x) and hence is a 6?s set in E. But of
COUrSe T - l J00 11 W (t)I3th— Un==1 Ux€CnW h(X)

so T3fh is a G$a set and the proof is complète.
It seems probable that the convexity assumption in 3.1 can be considerably

weakened, although we have no satisfactory resuit in that direction. Suppose

X is a subset of E and cpQ, (px, ç&gt;2, is a séquence of homeomorphisms of X
into E such that &lt;pa converges uniformly to &lt;p0. Suppose that for i 0, 1,

2, Kt is a complex such that \Kt\ (ptX, and suppose that Ko nas

the property A*(s). Is it then necessarily true that lim inf ÇS(K) &gt; Cs(^o) •

An affirmative answer would provide a generalization of 4.1. It is clear that for

s &gt; 2, some sort of regularity condition must be imposed on the convergence
of | Ka | to | Ko |, even when the individual complexes are well-behaved. For

example, if Za is a séquence of polygonal arcs in Ez, converging to the bound-

ary B of a simplex, we may surround each set Zt by a polyhedral 2-sphere 8t

in such a way that Sa-^ B but ju2 ($a) -» 0.
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5. Inequalities for the function fs

In préparation for our next main resuit, we require three lemmas.

5.1. For each a-face Fa of an (a + b)-polytope P, there is a b-face Fb of P
such that the polytope con (Fa U Fb) is (a -f b)-dimensional.

Proof. We may assume that the containing space E is of dimension a + b.
Let G be a 6-flat orthogonal to aff jFa in E and let n dénote the orthogonal
projection of E onto G. It suffices to choose Fb so that nFb is 6-dimensional,
and the existence of such an Fb foliows from 1.5.

5.2. Suppose P is a d-polytope, 1 &lt; a &lt; d, y is a point of an (a — l)-face
of P, and G is the smallest convex cône which has vertex y and contains every
a-face of P that includes y. Then G contains P.

Prooî. Let F be the lowest-dimensional face that includes y, whence

yeqF. It suffices to consider the case in which the containing space E is of
dimension d, y 0, and dim F a — 1, so that aff F is an (a — l)-dimen-
sional linear subspace of E. Let n dénote the orthogonal projection of E onto
the orthogonal supplément M of aff .F, and let K dénote the cône from y
over P (that is, K • Uv€p[0, oo[p). Since &amp;iïF c G Ç\ K, it is easy
toverifythat C aSF + nC and K bSF + nK
so to show that C 3 P it suffices to prove that nC 3 nK. Now nK K f] M,
a polyhedral convex cône that is pointed and hence is the convex hull of its
extrême rays. For each extrême ray J of K f] M there is a linear functional /
on M such that

Kf] M c {ueM:f(u) &gt; 0} and J {ueKç\ M:f{u) 0}.
Then fn is a linear functional g on E such that

K c {veE: g(v) &gt; 0} and (aff F) + J {veK: g(v) 0}

The intersection (aff F + J) f] P is an a-face of P that contains F and whose
image under n includes a point of J ~ {0}. Thus nC contains every extrême
ray of nK, whence nC 3 nK and the proof is complète.

5.3. Suppose P is a d-polytope, 0 &lt;a &lt;d, xeP, y is a point of aaP
nearest to x, and F is an a-face of P that includes y. Then y is relatively interior to
F and the segment [x, y] is orthogonal to the flat aff F.

Prooî. Let B dénote the EucLiDean bail of center x and radius \\ y — x \\, H
the hyperplane through y orthogonal to [x,y], and Q the closed halfspace that
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is bounded by H and misses the interior of B. Clearly aaP does not intersect
the interior of B. Since H is tangent to B, the set aaP cannot contain any
Une segment ]y, z[ for which zcE~Q, and consequently Q contains every
a-face of P that includes y. But this implies that ycgF (whence F a H
and [x, y] is orthogonal to aff F), for otherwise y would lie in an (a — 1)-
face of P and 5.2 would lead to the impossible conclusion that P c Q.

Theorem 5.4. If Kisa cell-complex in E and a and b are nonnegative integers

Proof. We assume that a &gt; 0 &lt; b, for the remaining cases are trivial. For
each s, let the «s-faees of K be F{,..., F8n(s), where of course n(s) • fs(K).
Let A dénote the set of ail ordered triples (i, j, k) of positive integers that
satisfy the following three conditions :

(i) 1 &lt;i &lt;n(a), 1 &lt;j &lt;n(b), 1 &lt; k &lt; n(a + b);
(ii) Ff and F) are both faces of Fak+b\

(iii) the set con (F* U Fty is of dimension a + b, and hence intersects

Note that if (i,j9k)çA and (i, j, kf) eA, then k — k&apos;, for différent faces

of K hâve no relative interior points in common.
With (i,j,k)eA, let n(tj1c) dénote the transformation which projects

a,ïïFî+b orthogonally onto a6-flat G(i, j, k) that is orthogonal to aff F*
in Sb&amp;Fl+b. According to 1.5, the set 7t{tjk)Fl+b is not merely the projection
of Fl+b but is the projection of obFl+b, and except possibly for a set of

zéro 6-measure each point of nUtjtk)F%+b lies in the projection of a 6-face

Fbm of Fak+b such that (i,m, k)eÂ. It follows that

where it is convenient to let (@9 dénote vector addition with respect to an

origin at the intersection of affjF^ with G{i,j,k).
For each k, let I(k) dénote the set of ail i for which F* is a face of Fl^

and for each iel(k) let j(i) be such that (i, j(i), k) cA. The existence of

j(i) follows from 5.1. Then with the above interprétation of ©, it is true that

n u

To see this, we consider an arbitrary point xegFl+b and let y be a point of

aaFki+b nearest to x. By 5.3, there is a unique i such that yeF* and [x,y]
is orthogonal to the flat aff F*, and then we hâve

* y 0 n{itHt)th)(x)€FÏ 0 n(tMt)tk)Fak+b.
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From (1) and (2) it foliows that

But then

and since no pair (i, j) can be associated in A with more than one value of k
it follows that

Ca+6(K) &lt; {Z:Lalna(Fa{))(Z;^b(Fbt)) Ça(K)Çb(K).

Corollary 5.5. Suppose that r and s are positive integers and ris a divisor of s.
Then

UK)V,
UK)1/r -

for every cell-complex K in a EucLiDetm space.

Prooî. Suppose s mr. From 5.4 it follows that

whence (Çs(K)IÇr(K)m)1/8 &lt; 1 and this is the desired inequality.
When r &lt; s but r is not a divisor of s, we are unable to détermine whether

the quotient Ç8(K)1/8ICr(K)1/r is uniformly bounded as K ranges over ail eell-
complexes in EuCLiDean spaces. However, we are primarily interested in eon-
vex polytopes, and there a little more information is available.

Theorem 5.6. Suppose 1 &lt; r &lt; s &lt; d, and s d or s d — 1 or r
is a divisor of s. Then there is a smallest finite constant y(d,r,s) such that
Ç8(P)ll8IÇr{P)llr &lt;y(d,rys) for ail Euclidean d-polytopes P.

Proof. When r divides s, we merely apply 5.5. Note that for ail d, r and s,
the existence of y(d, r, s) is équivalent to the condition:
r(dt r, s): For each family of d-polytopes P such that Cr(iP) is uniformly

bounded, ÇS(P) is also uniformly bounded.
Obviously F(d9 r, s) is impHed by the existence of y(d, r, s). Conversely,
F(d, r, s) implies the existence of a finite constant that bounds the quotients
£(P) C8(P)1/8ICr{P)1/r for d-polytopes P such that Çr(P) 1, and since
f (AP) |(P) for ail X &gt; 0, this is in fact a gênerai bound.

Now we recall the classical isoperimetric inequality ([11], p. 195) and
Catjchy&apos;s formula for surface area ([11], p. 208), both applying to n-polytopes
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and asserting respectively that

n
and

1

(CB) Cn_x (P) —— f CM_! (nuP) du,

where cow is the w-measure of the unit bail in En, nu dénotes the orthogonal
projection of En onto a hyperplane orthogonal to the line Ru, and u ranges
over the unit sphère in En. Let Ad dénote the assertion that F{d, r, s) is

valid whenever 1 &lt; r &lt; s e {d — l, d}. Then Ax is trivial and A2 is an
immédiate conséquence of I2. Suppose A d_x is known and consider a family
of d-polytopes P in Ed for which Cr(P) is uniformly bounded. Since

Çr(jiuP) &lt; Cr{P) (us® l-5 and a basic property of Hausdorff measure),
Cr(7tuP) is also uniformly bounded (for ail u and for ail P in the family)
whence Ca-i(nuP) is uniformly bounded by the inductive hypothesis,
Cd_i(P) is uniformly bounded by (Cd), and Çd(P) is uniformly bounded by
(Id). This complètes the proof.

We hâve not determined the existence of y(d, r, s) except in the cases

covered by 5.6; even in those cases we know the values of the constants only
when r d — 1 and s d. A theorem of Aberth [1] implies that y(3, 1, 2)

Let Cd dénote the space of ail convex bodies in Ed, metrized by the

Hausdorff distance, and let Pd dénote the dense subspace consisting of ail
d-polytopes in Ed. Since the functions Çs are ail lower semicontinuous on Pd,

they can be extended in the usual way to ail of Cd ; specifîcally,

Cs (C) lim infPePcf, p^c C8 (P) (*)

for each CeCd. The extended functions Çs are also lower semicontinuous,
and they provide a natural way of assigning such quantities as total edge-

length and total area of 2-faces to an arbitrary convex body C in Ed. It would
be interesting to fînd a simple géométrie characterization of the members of
Cd8, where this is the set of ail CeCd for which CS(C)&lt; oo. Note that
Cd0 Pd, while Cdd^ Cdd Cd\ for l &lt; s &lt; d — 2, Cd properly con-

tains Pd but is of the first category in Cd. Note that if r, s, and d are as in

5.6 and if CeCd, then Cs(C)1/8ICr(C)1/r &lt; y(d, r, s)

Many problems of isoperimetric type are of interest not only for the class

Pd of ail d-polytopes in Ed, but also for certain subclasses Q, such as the class

pd,v &lt;resp. pd*fy of ail members of Pd that hâve exactly d edges incident to
each vertex &lt;resp. d (d — 2)-faces incident to each (d — l)-face&gt;. (The letters
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v and / are to suggest regularity of behavior at vertices and maximal faces

respectively.) In connection with isoperimetric problems for Q, it may be
useful to extend £s in a différent way :

f.(0, C) • lim infQ6Q&gt; Q_+c Çt(Q)

for each body C in the closure of Q. The functions fs(Q, • are also lower semi-
continuous, are defined on ail of Cd when Q is dense in Pd, and of course they
agrée with Çs on Q itself. However, the functions £8(Q&gt;#) may fail to agrée
with Cs on ^ne se^ Pd~ Q) this is true in particular when Q Pd&gt;v and
when Q Pd&gt;f. Various relationships among the functions Çs as restricted to
Q yield the corresponding relationships among the extended functions ÇS(Q, •

In particular, it can be proved that when 1 &lt; r &lt; s &lt; d the quotient
£s(P)1/8/£r(P)1/f is uniformly bounded as P ranges over Pd&gt;v and conse-
quently Çs(Pd&gt;v, C)1/sjÇr(Pd&gt;v, C)ljr is uniformly bounded as G ranges over
Cd. We do not know whether the same statement is valid with Pd&gt;v replaced
by pd,fy though of course its validity is guaranteed by 5.6 when s d or
s d — 1 orrisa divisor of s.

In the rest of this section, we shall regard the functions fs and Çs as defined
on ail of Cd by means of the natural lower semicontinuous extension (as in (*)
above) from Pd. This will simplify certain statements, and seems to be of
genuine interest for the functions fs when 0 &lt; s. On the other hand, /s (C) oo
whenever s &lt; d and C eCd ~ Pd, and of course the same is true of £0( /0).

Theorems 1.7, 3.1 and 5.6 lead to the existence of solutions for a wide
variety of isoperimetric problems, involving polytopes, analogous to those
discussed in [9] and [11]. A few of thèse are described below. We shall not
actually détermine the solutions, but merely prove their existence.

Proposition 5.7. Suppose B and C are convex bodies in Ed, with B c C,
and s is an integer with 0 &lt; s &lt; d. Among ail the convex bodies P for which
B c P c (7, there is one (or more) for which fs(P) is a minimum and there is one
(or more) for which CS(P) is a minimum.

Proof. Blaschke&apos;s sélection theorem implies the compactness of the class
of ail convex bodies P for which B c P c C. Then apply the lower
semicontinuity of fs and Ç8.

In préparation for the next proposition, a lemma is required.

5.8. Suppose 0 &lt;t &lt;d, r &lt; oo, and B is a convex body in Ed. Then
there exists a convex body C in Ed such that P c C whenever P is a convex body
in Ed with B c P and Çt(P) &lt; r.

13 CMH vol. 39
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Proof. The assertion is obvious when t d andalsowhen d &lt; 2. To handle
the gênerai case, we proceed by induction on d. If the lemma is false for some
d &gt; 2 and some r and B, there is a séquence Ca of convex bodies in Ed such

2*cC,,C1(C.)&lt;t (» 1,2,...)
and

x || : x eCt} oo

Assuming for notational convenience that OeB, we employ the définition of
Çt and a straightforward compactness argument to produce a séquence Pa
of polytopes, a ray [0, oo[#0 emanating from 0 (where xoe E ~ {0}), and a

séquence of real numbers /?a -&gt; oo such that

Now let JE?**-1 be a hyperplane in i?d such that [0, oo[x0 c JS^-1, and let n
be the transformation that projects Ed orthogonally onto Ed~1. Then of
COUr8e *5 U[0,/?,]**, c*P, (i l,2,...),
and from 1.5 in conjunction with the basic property of Hausdoeff measure
that we hâve used several times earlier, it follows that

&lt; Ct(Pt) &lt; r (i= 1, 2, .)•

This shows that the lemma fails in Ed~1 if it fails in Ed.

Theorem 5.9. Suppose B is a convex body in Ed, r, s, t and k are integers,
and r is a real number. Suppose 0&lt;r&lt;d,0&lt;s&lt;d,0&lt;t &lt; d, and there

exists a polytope P in Ed such that B c P, fs(P) &lt; k, and Çt(P) &lt; r. Then

among ail such polytopes P, there is one for which Ç8(P) is a minimum, and if
s d or s d — 1 there is also one for which Çr (P) is a maximum.

Prooî. Use 5.8, Blaschke&apos;s sélection theorem, the lower semicontinuity of
fs, £*, and fs, and the continuity of Çs when s d or s d — 1.

Theorem 5.10. Supposer, s, d and k are integers with 1 &lt;r &lt; d,0 &lt; s &lt;d,

and k&gt; (^+î). Then among the convex bodies C of unit volume in Ed, there

are those for which Çr(C) is equal to its minimum value l/y(d, r, d)r. And

among the d-polytopes P of unit volume for which f8(P) &lt; k, there are those for
which Çr(P) is a minimum.

Proof. We discuss only the first assertion, for the second is similar. Since

y(d, r, d) is the largest constant subject to the requirement that £r(O)1/f &gt;

&gt; Çd(C)lldly(d&gt; r&gt; d) for aU convex bodies C in Ed, it follows from the de-

finition of Çr, the semicontinuity of Çr and the continuity of Çd that there is a

séquence Paofpolytopes in Ed such that /^(Pa)-&gt;1 and Cr(Pa) &quot;^ Ily{d&gt;,r,d)r •
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In view of the translation-invariance of fid and £r, we may assume that each

polytope Pt includes the origin. Now suppose for the moment that the
séquence {width of Pa} is bounded from 0. Then, since ^d(Pa) -&gt; 1, the séquence
diam (Pa) is bounded from oo and with 0 ePt the séquence Pa has a subse-

quence that converges to a convex body Co in Ed ; Co is of unit volume and

It remains only to show that the séquence {width of Pa} is bounded away
from 0. Suppose the contrary, whence there exists a subsequence Qa of Pa and
a séquence Ha of hyperplanes in Ed such that the width of Qt in the direction
orthogonal to Ht converges to zéro as i -&gt; oo. Let nQt dénote the orthogonal
projection of Qt onto Ht. Since jud(Qa) -&gt; 1 it is évident that /*d_i(^Qa)-&gt;oo
and it then follows from 5.6 that Çr (tzQ^) -&gt; oo. But then with the aid of 1.5
we see that fr (Qa) -&gt; oo, and this is a contradiction completing the proof.

In the first assertion of 5.10, we do not know whether the minimum value
of Cr is actually attained by a polytope. We are also unable to décide whether
5.10 remains valid when the condition of unit volume is replaced by that of
unit surface area, though this can be established without difficulty when r 1.

6. Intersection properties of simplices

By définition, a d-simplex (in a real linear space L) is a set that is the convex
hull of d + 1 affinely independent points, its vertices. It was apparently
Choquet [5] who first noticed that among the finite-dimensional compact convex

sets, the simplices are exactly those sets S that hâve the following property :

(2*) whenever the intersection of two homoihets of S is at least one-dimensional,
then the intersection is itself a homothet of S.

(Hère a homothet of S is a set of the form x + oc S for x eL and oc &gt; 0.)
Choquet then used the condition (27) to define the notion of a simplex in the

infinite-dimensional case, and established the équivalence of (2) to various
other conditions (see Choquet and Meyer [6] and Kendall [13]). Independ-
ently of Choquet but a bit latet, Rogers and Shephard [19] showed that the
simplices are characterized by the following property, obviously implied by (Z) :

(£&apos;) whenever the intersection of two translates of S is at least one-dimensional,
then the intersection is a homothet of 8,

(Actually, the conditions (27) and (27&apos;) are known to be équivalent, but that
fact will not be used hère.)

With the aid of thèse characterizations, it is a simple matter to prove the
theorem of Kolmogorov and Borovikov [3] stated in the Introduction, and
to free it from the assumption of finite-dimensionality.
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Theorem 6.1. Suppose that S is a family of compact sets in a Hausdorff
linear space L, that each set S e S has the property (27) (resp. (£&apos;)}, and ihat the

intersection of any two members of S contains a member of S. Then the set n S

also has the property (Z) (resp.

Proof. An équivalent formulation of condition (27) &lt;resp. (27 )&gt; is that
whenever the intersection of two homothets &lt;resp. translates) of S is nonempty,
then it has the form x -{- ocS forsome x eE and oce [0,1]. Nowlet K • n S

and consider points yt eL and numbers /3t &gt; 0 such that the intersection
(2/i + Pi&amp;) H (2/2 +/?2^0 is nonempty; when considering (Z)r, we assume
further that &amp; &amp;=].. For each S eS,

(vi + M) n (y* + M) 3 {yi + PiK) n (y2 + h&amp;) # 0,
so by hypothesis there exist xseL and otse [0,1] such that

(2/1 + M) n (2/2 + A5) xs + ocsS. (i)
Choose S&apos;eS, define J • yx + ft/S7 — [0,l]/S;, and note that xs*J
whenever Se S&apos;. Since the set J X [0,1] is compact, some point (x0, ocq)

of J X [0,1] is a cluster point of the net (xs, ocs) \ 8 cS. From (1) we see that

(&amp; + PlK)n (y, + fcK) œ xs + otsS for ail 5 e S (2)

(2/i + M) n (2/2 + 0,8) =&gt; «s + «5^ for ail 5 e S (3)

whence with the aid of compaetness it follows in a straightforward manner
from (2) that ^
and from (3) that

+ SJf fl

Corollary 6.2. The intersection of a decreasing séquence of simplices is itself

a simplex.
In Choquet&apos;s approach, some measure theory and the notion of a vector

lattice are involved in showing that the simplices are characterized by (21).

In the Rogers and Shephard proof [19] that the simplices are characterized

by {£&apos;), the most difficult and lengthy part is the démonstration that if a

d-polytope 8 in a d-dimensional EucLiDean space E has the property (£&apos;),

then S is a simplex. We shall now indicate an alternative proof of this fact,

proceeding by induction on the dimension d. The statement is obvious for
d &lt; 1. Assuming d &gt; 1 we note that if a (d — l)-face F of S is contained in
the supporting hyperplane H, then

(4) F has property (27) and hence is a (d—l)-simplex by the inductive

hypothesis;
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(5) S is intersected in a single point v by its supporting hyperplane Hf that
is parallel to H but différent from H.

For (4) we may assume that OeF and dénote by Q the halfspace that
contains S and is bounded by H. With x, y e H, we are interested in the
intersection (x + F) PI (y + F), assumed to be nonempty. From (Er) and the
nonemptiness of (x + S) Ç] (y + 8) we hâve

(x + S)n (y + S) z + aS with z€E «€[0,1]

But then z e x + $ c Q and since

it foliows that zeH. Hence

(x + F)n (y + F) (x + sn H)n (y + #n H) (^ + s) n (y + s) n h

and (4) is established.
For (5) we note that if S Ç\ H1 should contain a segment parallel to the

segment [0, x], then for a suffieiently small €&gt; 0 the set 8 f) ex + /S)

would hâve both H and iT as supporting hyperplanes, whence this set, being
a homothet of S by {E&apos;), would actually be a translate of $ ; this is impossible,
for the width of S f| €# + S in the direction x is less than that of S.

Now let F and v be as in (4) and (5), let w be the centroid of F, and let
Sp - fi{v — w) + 8. For p &lt; 1 suffieiently near to 1, the only face of Sp

intersecting S is fi(v —w) -\- F and the only vertex of S contained in Sp
is the vertex v. Thus the set Sp f] S is a pyramid with apex v and base
contained in p(v —w) + F. By (E&apos;), the set Spf] 8 is homothetic to S and
thus its base is homothetic to F. Since J7 is a (d — l)-simplex, Spf) 8 must
be a ci-simplex and hence S is a rf-simplex as claimed.

7. Sections oî simplices

It was recently proved (Brands and Laman [4], Eggleston [8], Croft [7])
that among ail the plane sections of a tetrahedron in Euclidean 3-space E3,
some 2-face has the greatest area. This suggests the following questions.

(1) // 8 is a d-simplex in Ed and P is an r-polytope in S, must S hâve an
r-face whose r-measure is at least that of P?

(2) If 8 is a d-simplex in Ed and P is an r-polytope in 8 having at most r -\- 2

vertices, must 8 hâve an r-face whose r-measure is at least that of P?
An affirmative answer to (1) implies one to (2). The answer to (1) is clearly

affirmative if r o, r 1, or r d, and by the resuit quoted above it is
affirmative if d &lt; 3. In 7.1 below, we establish an affirmative answer to (2)
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when r d — 1. The relevance to 6.2 lies in the faet that an affirmative
answer to (2) (for a given d and r) can be used to show that if an r-dimensional
set S is the intersection of a decreasing séquence 8X 3 82 3 ofd-simplices,
then S is an r-simplex. For suppose 8 is not a simplex. Then 8 contains an r-
polytope P that has r + 2 vertices and has greater r-measure than the largest
r-simplex in S. For i 1, 2, 8t has an r-face Ft whose r-measure is at
least that of P, and the séquence Fa admits a subsequence Fn{a) that
converges to an r-simplex T in S. But then

fXr{T) lim MFnia)) &gt; MP) &gt; Vr(T)

a contradiction completing the proof.

Theorem 7.1. Suppose 8 is a d-simplex in Ed and P is a (d — lypolytope
in 8 that has at most d -\- l vertices. If P is not a (d — l)-face of 8, then some

(d — lyface of 8 has greater (d — \)-measure than P.

Prooî. For each hyperplane H in Ed whose intersection with S is (d — 1)-

dimensional, let P(H) be a (d — l)-polytope of maximum (d — l)-measure
among those (d — l)-polytopes that are the convex hull of d -f 1 or fewer
vertices of the (d — l)-polytope S f] H. By compactness, there is a hyperplane

Ho such that //d_i(P fi H) is a maximum when H Ho, and of course
this maximum value is positive. Let %,..., vk dénote the vertices of S that
are in Ho and let uk+1, ud+1 dénote the remaining vertices of S.

Clearly the points vt are vertices of 8 f] Ho, and in fact they are vertices of
P(H0). For suppose vt is in Ho but not in P(H0) and let Ft dénote the (d — 1)-

face of S that is opposite to vi. Since 8 f) Ho is the convex hull of the union

(Ft fl #o) U {vt}, Ft includes ail the vertices of 8 f] Ho other than vt and

consequently Ft z&gt; P(H0). But then P(H0) lies in the (d — 2)-flat Ft f| #o
and fjLd_1{P(Hçs)) 0, a contradiction showing that, indeed, each vt is a

vertex of P (HQ), or 8 n H0 is Ft and the resuit is proved.
We want to show that P(HQ) is a (d — l)-face of 8, and for this it suffices

to show that P(H0) includes at least d vertices of 8. We suppose, on the con-

trary, that h &lt;d, and let wk+l9 wx dénote the remaining vertices of
P (Ho), where l d or Z d -j- 1. In each case we shall produce a hyperplane
Hz for which [id_t (P (Hz)) &gt; jll d_t (P (Ho)), a contradiction completing the proof.

First case: l d. In this case the (d — l)-polytope S f) Ho has exactly d

vertices and hence is identical with P(H0), for otherwise, by adding to the

vertices of P (Ho) a new vertex from those of 8 f| H0 not in P (Ho), we could

generate a (d — l)-polytope in 8 f| Ho tliat has at most d + 1 vertices and

that properly contains P (Ho), contradicting the définition of P(H0). Let

K • con {vl9.. .,vk9 wk+l9. wd^}
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and let M aff K, a (d — 2)-flat in Ed. Let M1- be a 2-flat orthogonal to M
in Ed, intersecting M at a point q, and let n dénote the transformation that
projects Ed orthogonally onto M1-.

With k &lt;d, wd is a vertex of P(Ho) but not of S. Hence wd is a point of an
open segment Z in S, and Z is not parallel to M, for if it were then Z would lie
in Ho and hence in S f] Ho P(H0). For each ze Z, let

Hz aff(Jf [){z})9
a hyperplane in Ed, and let ifz • con (K U {z}). Then HT, is a (d — l)-poly-
tope in S p\ Hz and Kz has d vertiees. Sinee nK {q}, the altitude of the
pyramid Kz is equal to || n(z) — q\\, and consequently

Since Z is not parallel to M, nZ is an open segment in ikf-1- and it is
possible to choose zzZ such that || n(z) —q \\ &gt; \\ n(wd) —q\\. But then
j^d-i(P(Hz) &gt; ^d_x(P(jE?0)) a contradiction completing the discussion of the
first case.

Second case : l d + 1. Note that every point of S lies on a segment
joining a point of the simplex T&apos; • con {vlf vk} to a point of the
simplex T&quot; • con {uk+1, ud+1}. Since Tf a Ho, every vertex of
$ fi #o that is not in T&apos; must be in T&quot;. In particular,

T&quot; Z) Q con {wfc+1, wd+1}

But P(H0) con (T; (J Q), and since the sets T&apos; and Q lie respectively in the
skewflats aff 2&quot; and affï7&quot; it follows that

dim P(#o) dim T&apos; + dim Q + 1

whence
dim Q — d — fc — 1

Since Q has d — k -\- \ vertiees, there must be two vertiees of Q that are
separated in affQ by a (d—k — 2)-flat F which is determined by the
remaining d — k — 1 vertiees of Q. Indeed, it suffices to choose d — k
vertiees of K that form a simplex and to note that the remaining vertex of Q

must lie outside one of the closed halfspaces (in aff Q) that contain the simplex
and hâve bounding hyperplane determined by a face of the simplex.

We may assume that „ _,J?1 aff{w;fc+1,...,^_1},
separating wd from wd+1 in affQ, whence the (d — 2)-flat

M aff {%,... ,vkiwk+1,.. wd_x}

séparâtes wd from wd+1 in Ho. Let K, M1-, q, n, Z, and Hz be as in the
preceding case, and let Z1 be an open segment in 8 that includes wd+1 and is
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not parallel to M. Since M séparâtes wd from wd+1 in H09 since nM {g},
and since Tri^ is a line in Jfx, the point q must lie in the open segment
]n(wd), 7t(wd+1)[. Since Z and Z&apos; are not parallel to M, the sets jrZ and rcZ&apos;

are open segments inl1, and it is possible to choose zeZ and z&apos; eZ1 such that
q€]n(z),n(zf)[a,nd

\\7z(z)-7z(z&apos;)\\&gt;\\7l(wd)-Jl(wd+1)\\.

But then zreHz, and since the set Kz • con (K U {z,zr}) has d + 1

vertices and is a double pyramid over K, we hâve

^ A*d-i(A«; — rf — 1 Pd

a contradiction completing the proof.
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