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Some Semicontinuity Theorems for Convex Polytopes
and Cell-complexes

H. G. EcoLEsTON, BRANKO GRUNBAUM and VicTtor KLEE!)

Introduction

In a finite-dimensional EvcLipean space E, a convex polytope P is a set which
is the convex hull of a finite set; here such a set P will simply be called a poly-
tope, or, if it is d-dimensional, a d-polytope.?) An s-face of P is an s-dimensional
set (necessarily an s-polytope) which is either P itself or is the intersection of P
with a supporting hyperplane. The number of s-faces of P will be denoted by

fs(P) and the s-measure of their union by ¢,(P). Our section headings are as
follows:

1. The functions f, for cell-complexes
A pulling process
The functions ¢, for cell-complexes
The functions {, for convex polytopes
Inequalities for the functions ¢,
Intersection properties of simplices
. Sections of simplices

Each polytope is a compact set, and thus the class of all polytopes in £ can
be metrized by the Hausporrr distance. Our principal aim in §1 is to show
that when the polytopes are topologized in this way, each of the functions f,
is lower semicontinuous; thus for each polytope P in E it is true that all poly-
topes sufficiently close to P have at least as many s-faces as P. In connection
with various extremal problems, this result can be used to restrict attention to
polytopes whose vertices are in general position, but for that purpose the
pulling process described in §2 is more advantageous.

Lower semicontinuity of the functions ¢, is established in §§3-4.3) The
reasoning of §3, like that of §1, applies not only to convex polytopes but also

N e T e

') This paper was written at the University of Washington (Seattle, Washington, U. S. A.)
while Professors EcoLEsToN and GRUNBAUM were visiting there, on leave respectively from
Bedford College, London and The Hebrew University, Jerusalem. EGGLESTON’s work was sup-
borted by a fellowship from the National Science Foundation (U.S. A.), GrRUNBAUM's and
Krer’s by an N. 8. F. grant (NSF-GP-378).

?) As basic references, we mention WEYL [20] for convex polytopes, ALEXANDROFF and Horr
[2] for cell-complexes, HurEwicz and WALLMAN [12] for HAUSDORFF s-measure, and HADWIGER
[11] for isoperimetric problems,

*) It is well-known (e. g. [11]) that for d-polytopes P, the functions &4(P) and §4z_,(P) are
¢ontinuous; they represent the volume and the surface area of P.
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to a rather general class of cell-complexes?); however, it is based on a supple-
mentary hypothesis that is removed in §4 for the case of convex polytopes. As
is shown in §5, the lower semicontinuity of the functions f, and {, can be
used to establish the existence of solutions to various isoperimetric problems.
Also in §5 is a proof that if P is a d-polytope and a and b are positive integers
whose sum is at most d, then (., ,(P) < {,(P){,(P). From this and some
related results we conclude that if 1 <r <s<d and if r divides s or
8=d —1 or s =d, then there exists a finite constant y(d, r, s) such that
C,(PRE) L (PR < y(d, r,s) for all d-polytopes P. We do not determine the
best values for these constants, nor even their existence except when r and s
are as indicated.

From the lower semicontinuity of f, it follows that if a decreasing sequence
of d-simplices has a d-dimensional intersection S, then § is also a simplex.
However, this was conjectured by KoLmocorov and proved by Borovikov [3]?)
without the assumption that S is d-dimensional; that is, the intersection of
a decreasing sequence of simplices is always a simplex. §6 contains a new proof
that applies also to infinite-dimensional simplices; it is based on a characteri-
zation of simplices due to CHOQUET [5] and to RoGERS and SHEPHARD [19].
In §7 a third approach is indicated, related to the fact (BrRaNDS and LAaMaN [4],
EccLEsToN [8], CrOFT [7]) that some 2-face of a tetrahedron has an area not
exceeded by that of any plane section®); in particular, an n-dimensional
generalization of this fact is established. Borovikov’s proof of his theorem is
shorter than either of ours, but our supplementary facts seem interesting in
themselves. ;

1. The functions f, for cell-complexes

Recall that the set K of all faces of a polytope forms a cell-complex [2];
that is, K is a finite family of polytopes in E such that each face of a member
of K is itself a member of K, and such that the intersection of any two members
of K is a face of both. The s-dimensional members of a cell-complex K will be
called its s-faces, and the number of s-faces will be denoted by f,(K). Hence-
forth, the terms complex and cell-complex will be used interchangeably. For a
polytope P or a complex K, o,P or ¢,K will denote the union of all s-faces.

When.C is a convex subset of £ and aff C is the smallest flat containing C,
the interior of C relative to aff C is called the relative interior of C; it will be
denoted here by oC, and the set C is relatively open if and only if C = ¢C.

4) We are indebted for this reference to Professors T. GaANEA and A. KOLMOGOROV. .
5) This was posed as a problem by H. GrossMaN and E. EEREART, Amer. Math. Monthly 65
(1958) 43 and 69 (1962) 63.
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For each complex K, let | K | denote the union of all members of K; K will be
said to have the property A(s) provided whenever F is a face of K, C is a
relatively open convex subset of | K|,

CnoelF+9o© and dimC >dmF =g,

khen CclkF.

This condition will appear in Theorem 1.7 below. Its relevance to polytopes
rests on the following fact.

1.1. If K is a subcomplex of the complex of all faces of a polytope P, then
every relatively open convex subset C of | K | is contained in the relative interior of
a single face of K; hence K has the property A(s) for all values of s.

Proof. We proceed by induction on the dimension d of the polytope, the
assertion being obvious when d = 1. Suppose it is known for all d < k, and
consider the case of a k-polytope P.If C c ¢P, the desired conclusion holds.
If C is not contained in ¢ P, then C includes a relative boundary point z of P
and P is properly supported at z by a hyperplane H. But then ¢ ¢ H, and
the desired conclusion follows from the inductive hypothesis as applied to the
cell-complex {@ N H:Q eK}.

Sometimes the property A(s) of a complex K can be conveniently verified in
terms of the stronger property A*(s), where K is said to have the property
A*(s). provided every relatively open s-dimensional convex subset of | K| is
contained in the relative interior of a single face of K. Although the properties
A(s) are independent for the various values of s, this is not true of A*(s).

1.2. Every cell-complex K has the property A*(0). If K has the property
A*(8) for some s > 1, then K has the property A*(t) for all ¢t > s and hence
also the property A(t) for all t > s. If K has the property A*(l) then K has
the property A(s) for all values of s.

Proof. The first assertion is obvious. For the second, let us assume that K
lacks the property A*(t). Then there is a relatively open t-dimensional convex
subset J¢ of |K| and there are faces F and G of K such that J* intersects
both ¢ F and pG. Choose xeJ' oF, yeJin oG, and let J* denote the
intersection of J* with an s-flat in aff J¢ that contains the segment [z, y].
Then J* is a relatively open s-dimensional convex subset of K and J* intersects
both o F and ¢ @, so K lacks the property A*(s). This takes care of the second
assertion. For the third assertion, it remains only to verify that A*(1) implies
A(0), and that is easily done.

Four lemmas are required in preparation for the main result.
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1.3. If = 1is an affine transformation of a polytope P onto a polytope Q,
then for every face G of Q there is a face F of P such that ©F = G.

Proof. It suffices to consider the case in which G is a proper face of @,
whence there is an affine functional ¢ on aff @ such that ¢G =1 and ¢ < 1
on Q~G. Then ¢t is an affine functional on aff P (where 7 carries aff P
onto aff ), and we obtain the desired face F of P by defining

F.-={xeP:¢(rx)=1}.

1.4. If P is a polytope and M is a flat in aff P that intersects P, then M
intersects a (dim P — dim M)-face of P.

Proof. We proceed by induction on the dimension m of M, the assertion
being obvious for m = 0 and also for m = 1, since the relative boundary of
P is intersected by every line in aff P that intersects P itself. Suppose the
theorem is known for all m < k, and consider the case in which m =%k > 1.
We may assume that P is a d-polytope in E¢ with 0 P and that M is a k-flat
in E? with 0eM. Let H be a (d — 1)-flat such that 0e H ¢ E? and
dim (M n H) =k — 1, and let 7 be a linear projection of E? onto H that
carries M onto M n H. Applying the inductive hypothesis to the polytope
7P and the flat M 0 H, we see that M N H must include a point z of a
(@ — k)-face G of T P. By 1.3, there is a face F of P such that vF = @. The
nature of rissuchthat d—k <dim F <d—£k + 1 and theset 7-1(z) isalinein M
that intersects F'. If dim F =d-—k, the desired conclusion holds. If dim F =
=d—k+ 1, then 7-!(z) c aff F and it follows from the inductive hypothesis
that 7-1(z) intersects a (d — k)-face of F'. But then of course M intersects a
(d — k)-face of P, and this completes the proof.

1.5. If 7 is an affine transformation of a polytope P onto an s-polytope @,
then t(o,P) =@Q.

Proof. Let d = dim P and consider an arbitrary point ge@. Then
7-1(q) is a (4 — s)-flat in aff P and hence, by 1.4, 7-1(¢) must intersect an
s-face of P. The desired conclusion follows.

1.6. If an s-polytope S is the limit of a sequence of polytopes P,, then the
sequence o, P, s also convergent to S.

Proof. Let = be an affine projection of the containing space onto aff S.
We note:

(*) for each € > 0 there exists m.suchthat ||z — 72 || <€
whenever zeP; and ¢ > m,.
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From (*) and the fact that P, — §, it follows that P, - §. By 1.5,
7(0,P;) = P, and thus 7(o,P,) — 8; a second application of (*) shows
that o, P, — S.

In view of 1.1 we see that the first semicontinuity theorem stated in the

Introduction is an immediate consequence of the following more general
result.

Theorem 1.7. Suppose K, is a sequence of cell-complexes in E, K is a cell-
complex in K having the property A(s), and the sequence |K,| s convergent to
|K|. Suppose further that at least one of the following conditions is satisfied:

(1) the sequence f,(K,) s bounded;
(ii) foreacht,|K;| is covered by K.s faces of dimension > s;
(iii) for each point z in an s-face of K, there is a sequence z, converging to z such
that always z, 1s in a face of K, of dimension > s.
Then liminff (K,) > f.(K).

Proof. Since condition (iii) is implied by (ii), it suffices to consider (i) and
(iii). Suppose the desired conclusion fails. Then there exist a subsequence
D, of K, and an integer n, such that for all ¢,

fs(Dz') = ns< fs(K) .

For ¢ > s, each t-face of D, is uniquely determined by the set of its own
s-faces, and a t-face has at least (!1]) s-faces. Consequently the sequence
{:(D,) is bounded for all ¢ > s, and of course it is identically zero for ¢t >d - =
= dim £. Thus we can choose a subsequence C, of D,, non-negative integers
Mg, ..., Mg, and for each ¢ an indexing of the faces of C, such that the follo-
wing three conditions are all satisfied:

for s <t <d and for each 7, the cell-complex C; has exactly n, t-faces
P, ..., P,

for s <t<d andfor 1 <h <n,, thesequence P>* is convergent to a
compact convex set P»* of dimension d(¢, h) < ¢;

for each i, £,(C,) = m, < f,(K) .

If condition (i) holds, we may assume that the sets P%* and P“* have been
chosen for 0 <t <d.

Let @y, ...,Q, be the s-faces of K. Since each of these sets is closed and
none is covered by the others, there exist € > 0 and points z, such that for
1<k< m(= f,(K)),

Zye0Qy~ N:se(Ulgjgm, i#k Qy) ’

Vt.'here N, of a point or set will denote its open d-neighborhood. The s-dimen-
sional set N (x,) N 0@, is not the union of finitely many convex sets of
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dimension < s, and consequently there exists a point

ykE(Ne(xk) N o@x) ~ Urzs, 1<ji<ny C*'s—1PT’j.

If (i) holds, then ‘r > s’ may be replaced by ‘r > 0’. Hence if either (i) or
(iii) is satisfied we have 4, € o PHineti)

with ) = 9,1 < (k) < mugmy, AR, e(b) > s
Since y,ep@Q,, it follows from the property A(s) of K that
e P! 0@, (1 <k <m),

whence d(t(k), e(k)) = s.

Recalling that P!*»¢®) jg the limit of the sequence P!*)»¢®*) e see from
1.6 that the sequence o, P:*)¢® g also convergent to P**»¢*)  Hence there
exists n such that for each ¢>n there is an s-face F,; of P;*»¢® for
which F,; c N.(@,) and F,, intersects N.(y,). But then F,, intersects
N,e(x;), and because of our special choice of ¢ this implies that F; ; is
not contained in the e-neighborhood of any set @, with j % k. Thus (for
t > n) the association of the F, /s with the @,’s is biunique and we have
fs(C;) > f,(K), a contradiction completing the proof.

It would be interesting to find a simple characterization of those cell-complexes
K for which 1.7 is valid. Certainly the property A(s) is not necessary, for with
arbitrary £ and s the plane complex A below has the stated property even
though A lacks the property A(1). However, the property fails for B below
(E arbitrary, s = 1) and also for C(dim £ > 3, s = 1).

A B Cc

A suitable 2-complex in E? shows that condition (ii) cannot be replaced by the
requirement that each vertex of K, liesin a face of dimension > s.

2. A pulling process

We know by 1.7 that for all s, every polytope @ sufficiently close to a given
polytope P has at least as many s-faces as P ; however, except for this restric-
tion the facial structure of Q may be radically different from that of P. In
various circumstances, it is convenient to be able to choose @ so that its facial
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structure is well-behaved in some specific way (for example, so that all of @’s
proper faces are simplices) and at the same time is closely related to the facial
structure of P. This may be accomplished with the aid of the ‘pushing process’
of [14] or the ‘pulling process’ described below. For some purposes [10, 14, 15]
these are interchangeable; for others [16, 17], the pulling process is preferable
because its effect on facial structure is more easily described. Let us denote the
convex hull of a set X by con X, and the set of all vertices or extreme points of
a polytope P by ex P. When X is the set of all vertices of a d-polytope con X
in B, and q is one of these vertices, we say that X’ is obtained from X by
pulling (resp. pushing) q to q¢' provided X' = (X ~ {q}) U {¢'}, where ¢’ is a
point of K2 such that the half-open segment ]g,q'] does not intersect any
hyperplane determined by points of X and such that ¢ eint con X' (resp.
¢’ eint con X). It is clear that such a pulling and pushing are always possible,
and that ex (con X') = (X ~{q}) U{¢'}. The following result may be
compared with 2.4 of [14].

Theorem 2.1. Swuppose X is the set of all vertices of a d-polytope con X in E?,
and X' is obtained from X by pulling q to q¢'. For 0 <s <d — 1, the s-faces of
con X' are exactly the sets F* and the sets con (G*-1 U {q'}), where F* is an s-face
of con X such that q¢ F* and G*-! is an (s — 1)-face of a (d — 1)-face Ké-1
of con X such that qe K¢~ G*-1,

Proof. We recall that if S is a proper subset of the set 7' of all vertices of a
polytope P = con T, then the following three assertions are equivalent:
S is the set of all vertices of some face of P; aff Sncon (7' ~8)=@; T
admits a supporting hyperplane H for which 7' H = S. These characteri-
zations will be used without further explicit reference.

Note that in the statement of 2.1, F* may be described alternatively as an
s-face of a (d — 1)-face J%-1 of con X such that g¢J?-1. Clearly ¢ lies in an
open halfspace @ determined by the hyperplane aff J¢-1, and from the defini-
tion of pulling it follows that also ¢'e Q. Now if F* were not a face of con X',
then aff ¢ would intersect the set con (X’ ~ex F*) and hence (since
aff F* c aff J2-1 and ¢'€Q)aff F* would intersect con (X ~ ex F*), con-
tradicting the fact that F* is a face of con X. It follows that F* is a face of
con X'; and from the fact that ¢ eint con X’ we deduce easily that every
face of con X’ that is not incident to ¢’ must also be a face of con X.

Next, consider G*-! and K9-! as described, and let G9-% be a (d — 2)-
face of Kd4-1 guch that qeK%! ~ G4¢-2. By the preceding paragraph,
G2 is a (d — 2)-face of both con X and con X', and hence is incident to
exactly two (d — 1)-faces of each of these d-polytopes. Since one of the former
two faces (K2-1) includes ¢, one of the latter must include ¢'. That is, the set
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G?-% U {¢'} lies in a supporting hyperplane H of X’'. By the definition of
pulling, Hn (X ~G%2) =@, and consequently the set con (G?-2U {¢'})
isa (d — 1)-face of con X'. But then con (G°-1 U {¢'}) is an s-face of con X',

To complete the proof we must show that if F is an s-face of con X’ that
is incident to ¢, then F§ = con (F*-1 U {q¢'}) where F¢-1 is an (s — 1)-face
of a (d — 1)-face K41 of con X such that g eK%-! ~ F*-1, Let F¢' be a
(d — 1)-face of con X' that contains Fi; let W -=exF; ~{¢'} and
Z -=exFi' ~(¢'}. If aff W is s-dimensional, then ¢’ eaff W and this
contradicts the definition of pulling; thus aff W is (s — 1)-dimensional and
the set F*-! . = con W is an (s — 1)-face of con X', whence also of con X.
Similarly, conZ is a (d —2)-face of conX’' and of conX. Let H .=
= aff (Z U {q}), a hyperplanein E?. Then H supports X, for otherwise some
point of X would lie on the ¢’ side of H, whence ]q,q¢']n aff (Z U {z}) # @
and the definition of pulling is contradicted. With H supporting X, we see

that the set (aff (W U {g})) ) con X

is a face of con X ; denoting by K?¢-! any (d — 1)-face of con X containing it,
we see that F*-1 is a face of K?-1. This completes the proof.

3. The functions ¢, for cell-complexes

In the present section, u, will denote an arbitrary positive-valued real func-
tion subject to the following four conditions:

(a) the domain of u, is the family U, of all nonempty subsets of £ that can be
expressed as the union of finitely many s-polytopes;

(b)if U eU, and P,,..., P, are s-polytopes in E such that U c U}_,P,,
then u,(U) < Z7_ 1, (P);

(e)if P,, ..., P, are distinct s-faces of a complexin &, then u,(U?_,P,) =
= 2’?=1M3(Pi);

(d) if a sequence P, of s-polytopes in E is convergent to an s-polytope P,
then u (P) <lim inf u (P,).

For each complex K, {,(K) - = u,(0,K), the s-measure of the s-skeleton
ag,K.

Obviously conditions (b) and (c) are satisfied by the s-dimensional HAUS-
DORFF measure?) based on a EvcrLipean metric for E. To see that condition (d)
is also satisfied, we denote by 7 the orthogonal projection of E onto the flat
aff P, whence =P, is convergent to P and hence u,(P) = lim pu,(zP,) by @
well-known result [11] on the continuity of volume. On the other hand,

us(wP;) < u,(P;) because the transformation = is a metric contraction.
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A complex K will be said to have the property A, (s) provided there is no
s-dimensional face F' of K whose relative interior g /' intersects a relatively open
convex subset C of |K| of dimension > s; this amounts to replacing the
condition ‘C — F’ in the definition of A(s) by the condition that ‘dim C <
< dim F’. Thus A*(s)= A(s)=> A, (s). The three complexes pictured
in § 1 all have the property A, (1) but not the property A(l).

Theorem 3.1. Suppose K, is a sequence of cell-complexes in K, K s a cell-
complex in K, and the sequence | K, | is convergent to | K |. Suppose further that

the sequence f,(K,) s bounded, and that K has the property A, (s) or lim inf
oK, D o, K.
Then lim inf { (P,) > C(P).

Proof. Suppose the desired conclusion fails. Then as in 1.7, there exist a
subsequence C, of K,, a number  €]0,1[, integers n,,...,n;, and for

each ¢ an indexing of the faces of C, such that the following three conditions
are all satisfied:

for 0 <t <d and for each 7, the cell-complex C,; has exactly =, t-
faces P, ..., Pim;

for 0 <t <d and for 1 <h <n,, the sequence P"* is convergent to a
polytope P%”* of dimension d(t, k) <t;

lim inf 11,(0,C) < Op1(0,K) - (1)

Now suppose first that liminfo,K, D o,K, whence of course lim inf
0,Cy D o,K. Since f,(C,) is bounded, it follows with the aid of 1.6 that

O'SK C U,‘SJPS’,. 3 (2)

where J is the set of all indices j such that 1 <j <=, and d(s, j) = s. Since
the sequence P/ converges to P*i, it follows from (d) that for all sufficiently

1 ) j
a:rge 7 wWe haVe /,l,s (P:,y) > 6/1'3 (PS,7) (all ?'e J) . (3)

Then from (b) and (¢) in conjunction with (2) and (3) we see that

1 |
:us(GsK) ..<_ ZjeJ /‘Ls(Ps’y) < —3— ZjeJ lus(Pi’?) S ”5— Ms(asci) ’

contradicting (1) and completing the proof.
Finally, suppose K has the property A,(s) and consider an arbitrary

s-face Q of K. Let )
Q* - = QQ ~ Urzo, 1gj_gn,-°'s~1Pr’7 .

Then Q* is covered by the sets o,P"’ with ¢ > s, whence (since K has the
Property A, (s)) @* is covered by the sets P/ for which d(r,j) =s. But
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then @ is also covered by these sets, we are led again to (2) above and the proof
proceeds as before.

Note that if u, is one of the (equivalent) standard 1-measures related to the
EvucLipean metric for £, and if each of the complexes K, is connected, then
the validity of 3.1 for s = 1 does not require boundedness of the sequence
fo(K,). For even without the boundedness, ¢;,K, is a sequence of continua in E
and it is known (NOBELING [18]) that u, (M) < lim inf 4, (0,K,) for every
continuum M c lim inf ¢; K. In the next section is proved that for arbitrary
8, the boundedness of f,(K,) may be abandoned when we are concerned only
with the faces of convex polytopes rather than more general cell-complexes.

4. The functions ¢, for convex polytopes

The proof to be presented here employs more properties of the s-measure
than were required in the previous section; for the sake of simplicity we shall
assume that E is equipped with a EucLipean metric and y, is the s-dimensional
HAUSDORFF measure based on that metric. For a polytope P, {,(P) - = u,(0,P).

Theorem 4.1. If P, is a sequence of convex polytopes in E converging to a
polytope P, then lim inf {,(P,) > C,(P).

Proof. We may assume that all of the polytopes P, and P are of the same
dimension d as ¥, and hence have nonempty interior in £. For let £’ denote
the smallest flat containing P and let = denote the orthogonal projection of £
onto E'. Then the sequence n P, isconvergent to P.Further, {(nP,) < {(P)),
for n is a metric contraction and from 1.3 and 1.5 it follows that no, P, > o,nP;.
Thus the desired conclusion for the sequence P, — P is implied by that for
the sequence nP, — P, and we assume henceforth that the sets £, P, and P;
are all d-dimensional.

We may assume that P, > P. For let z be an interior point of P and note
that for each €¢€[0,1] it is true that

24+ (1—e(P—2)c P,cz+4+ (1 4+ €(P —2)

for almost all ¢. Thus for almost all 7 there exists a smallest positive number
B; such that Pc P, .= x + B,(P — ). It is evident that g, -1 and
hence u(P.)/ u(P,) — 1, so the desired conclusion for the sequence P, — P
is implied by that for the sequence P, — P. We assume henceforth that
P, o P foralls.

Let Q,,...,Q, bethes-faces of P, where m = f,(P). Thesets o, (1 <j<m)
are pairwise disjoint, so each point z of their union is in a unique set @; -
We shall denote by F(x) the (d — s)-dimensional flat in E that is orthogonal
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to @, and intersects @, only at x.Then F(x) intersects the interior of P
and hence the intersection P N F(x) is a (¢ — s)-polytope, to be denoted here
by P(x). Similarly, we define the (d — s)-polytopes P,;(x) -= P;n F(x).
It is evident that x is a vertex of P(x) and that P,(x) D P(z); it is easily
verified that P, (z) — P(x).

For ze U7 ;0Q; and for ¢ =1,2,..., let d;(x) denote the minimum
distance from z to a vertex of the polytope P,(x); that is,

di(x) -=1inf {|| x —v || :veex P,(x)}.

We claim that d,(x) — 0. Indeed, let z be a relatively interior point of P (x)
and for each ¢ let y, be the largest positive number such that

P(x):)P:(x) =2+ y:;(Pi(z) —2) .

Then y, — 1, P,(z) — P(x), and for the desired conclusion it suffices to
show that as 7 — oo, the minimum distance from z to a vertex of P; ()
converges to 0. Since z is a vertex of P (z), every neighborhood U of z relative
to P(x) contains the closure of J N P(z) for some open halfspace J> x.
Since P*(x) — P(x), it is true for almost all ¢+ that P} (x) intersects J,
and then since J is a halfspace it must include a vertex u of P,(x). But then
u eU and the desired conclusion follows.

Now consider an arbitrary e€> 0. We want to show that £, (P;) > {,(P) — 2¢
for almost all 7. Note first that if

Qli = Qk -~ NzS(U1gjgm, j;éij) ’ (1)
then u,(Q%) - p,(Q.) as 6 — 0. Thus we can choose 7> 0 so that
2?':1#3(@;) > Z;r-‘_-.l/"'s(Qi) — €= Ca(P) — €.

The set @} will be denoted henceforth by @,. For each positive integer &, G, (h)
will denote the set of all points z of G, such that for all ¢ > %, the set N _(G,)
includes at least one vertex of P;(x). Obviously G,(1) c &;(2) c ..., and
by the previous paragraph the union of these sets is @, itself. Hence
ts(G(x)) — u,(G;), and there exists an integer h, such that

Z7 (G5 (B) > EPap, (@) —e for all h>hy.

Now consider an arbitrary integer % >h,, and for ze@,(h) (with
_1 <j<m) let W,(x) = N,(G,)n exP,(x); since each point of W,(z)
18 a vertex of the polytope P,(x)= P,n F(x), it follows that W,(z) c ¢,P,.

Defin
° Tjn = Uszegin Wa(2).

We claim that the sets T; »(1 <j < m) are pairwise disjoint, are G5, sets
and hence u,-measurable, and that always ps(T; 2) = ps(G;(h)). When we
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have established these claims we can conclude that
$e(Py) = Ius(asPh) = 2;";1:“’3(172',}&) = Z]'”::hu's(aj(h))
> 27 u(Gy) —e= 27 ug(F)) — 2e = {,(P) — 2e

and the proof will be complete.

Note that T; ,c N (G;) = N,(€;). From the definition (1) it follows
that N _ (@) N N,(@:) = @ when j #% k, and consequently the sets
T; (1 <j <m) are pairwise disjoint.

If z is a point of the set G, (k), then the (4 — s)-flat F (z) is orthogonal to the
s-flat aff ; and the two flats intersect only at «. Since @ AW, (z) c P,(x) c F(x),
we see that the orthogonal projection of £ onto aff ), is a metric contraction
that carries T, , onto G;(h). Thus surely u (T; ,) > u,(G;(h)), and it
remains only to show that the set 7T'; , is s-measurable.

Note that for each ¢, the set-valued function P,(x)| xep@Q; is continuous,
whence the function ex P,(x) | x €@, is lower semicontinuous. By using this
semicontinuity in conjunction with the definition of @, , and the fact that
N.(G,) is open, one verifies that G;(h) is a G5 set relative to the closed set
G, and hence G,(k) is a Gy set in F,; further, the set-valued function
W,(x)| xeG;(h) is lower semicontinuous. For each n, let C, denote the set
of all points x €G,(h) for which the set W ,(x) consists of exactly n points.
From the lower semicontinuity it follows that each function W ,(x)| xeC, is
continuous, and that each set C, is the difference of two relatively closed
subsets of G,(h). But then C, isa G5 setin aff F';, and the set U,y F (¥)
isa (5 setin B. The continuity of W, on C, guarantees that the set U .., W, (%)
is closed relative to the set U, F(x) and hence is a G5 set in E. But of

course ©
Ta',h - Un=1 UxeCnWh(x) ’

so T, , is a G;, set and the proof is complete.
It seems probable that the convexity assumption in 3.1 can be considerably
weakened, although we have no satisfactory result in that direction. Suppose

X is a subset of E and ¢,, ¢;, @s, . . . is a sequence of homeomorphisms of X
into E such that ¢, converges uniformly to ¢,. Suppose that for ¢ =0, 1,
2,..., K, is a complex such that |K,| = ¢;X, and suppose that K, has

the property A, (s). Is it then necessarily true that lim inf ¢,(K) > ,(Ko)®
An affirmative answer would provide a generalization of 4. 1. It is clear that for
8 > 2, some sort of regularity condition must be imposed on the convergence
of | K,| to |K,|, even when the individual complexes are well-behaved. For
example, if Z, is a sequence of polygonal arcs in K3, converging to the bound-
ary B of a simplex, we may surround each set Z, by a polyhedral 2-sphere S;
in such a way that S, — B but u,(S,) - 0.
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b. Inequalities for the funetion £,
In preparation for our next main result, we require three lemmas.

5.1. For each a-face F* of an (a + b)-polytope P, there is a b-face F® of P
such that the polytope con (Fe U F?) is (a + b)-dimensional.

Proof. We may assume that the containing space X is of dimension a + b.
Let G be a b-flat orthogonal to aff ¢ in & and let = denote the orthogonal
projection of E onto (. It suffices to choose F'® so that = F? is b-dimensional,
and the existence of such an F? follows from 1.5.

5.2. Suppose P is a d-polytope, 1 <a <d, y tsa point of an (a — 1)-face
of P, and C s the smallest convex cone which has vertex y and contains every
a-face of P that includes y. Then C contains P.

Proof. Let F be the lowest-dimensional face that includes y, whence
yepk. It suffices to consider the case in which the containing space E is of
dimension d,y = 0, and dim F = a — 1, so that aff F' isan (¢ — 1)-dimen-
sional linear subspace of £. Let = denote the orthogonal projection of £ onto
the orthogonal supplement M of aff F, and let K denote the cone from y
over P (that is, K -= U,.p[0, co[p). Since aff F c O K, it is easy

¢ :
o verify that C=aff F+ 720 and K —affF + 2K,

so to show that C' o P it suffices to provethat zC > xK. Now z K =Kn M,
a polyhedral convex cone that is pointed and hence is the convex hull of its

extreme rays. For each extreme ray J of K N M there is a linear functional f
on M such that

KNMc{ueM:f(u)>0} and J={ueKn M:f(u)=0}.
Then fx is a linear functional ¢ on E such that
Kc{vell:gw)>0} and (aff F) +J = {ve K :g(v) = 0}.

'_fhe intersection (aff ¥ + J) N P is an a-face of P that contains F and whose
Image under x includes a point of J ~ {0}. Thus nC contains every extreme
ray of K, whence #C o mK and the proof is complete.

5.3. Suppose P is a d-polytope, 0 <a <d,xeP,y is a point of o,P
nearest to x, and F is an a-face of P that includes y. Then y is relatively interior to
F and the segment [z, y] is orthogonal to the flat aff F.

Proof. Let B denote the EucrLipean ball of center z and radius ly —=x||, H
the hyperplane through y orthogonal to [z, y], and @ the closed halfspace that
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is bounded by H and misses the interior of B. Clearly ¢,P does not intersect
the interior of B. Since H is tangent to B, the set o,P cannot contain any
line segment ]y, 2[ for which z2¢ £ ~ ¢, and consequently @ contains every
a-face of P that includes y. But this implies that yeoF (whence F c H
and [z, y] is orthogonal to aff F), for otherwise y would lie in an (@ — 1)-
face of P and 5.2 would lead to the impossible conclusion that P c Q.

Theorem b.4. If Ksa cell-complex in E and a and b are nonnegative integers
then
Cars (K) < La(K) 0o (K) -

Proof. We assume that a > 0 < b, for the remaining cases are trivial. For
each s, let the s-faces of K be Fi,..., F} ,,, where of course n(s) - = f,(K).
Let A denote the set of all ordered triples (¢, 7, k) of positive integers that
satisfy the following three conditions:

) 1<:1<n@),1<j<nb),l1<k<n-+b);

(ii) F? and FY are both faces of F¢+?;

(iii) the set con (F{ U F%) is of dimension a + b, and hence intersects
o Fi*.

Note that if (7,5, k)ed and (¢, 7, k') eA, then k = k', for different faces
of K have no relative interior points in common.

With (i,7,k)eA, let m;, denote the transformation which projects
aff F2** orthogonally onto a b-flat G (i, j, k) that is orthogonal to aff F§
in aff F§*?. According to 1.5, the set m(; ; ,, F¢° is not merely the projection
of F4*® but is the projection of ¢,F2+?, and except possibly for a set of

zero b-measure each point of n; ; ) Fat® lies in the projection of a b-face
Fb of F&+® such that (i, m, k)e A. It follows that

Pats(Fi @ T(i,5,k) Fz+b) & :u’a(F?)Z(i,m,k)eAMb(Frbn) ) (1)

where it is convenient to let ‘@’ denote vector addition with respect to an
origin at the intersection of aff F{ with G(s, 7, k).

For each k, let I(k) denote the set of all 7 for which F{ is a face of Fo+,
and for each ieI(k) let j(i) be such that (i, j(i), k) e A. The existence of
j (¢) follows from 5.1. Then with the above interpretation of @, it is true that

Fi*® c Uiern (FF @ s, F2 ) (2)

To see this, we consider an arbitrary point zepF2+® and let y be a point of
0, F2t® nearest to 2. By 5.3, there is a unique ¢ such that ye F¢ and [«,Y]
is orthogonal to the flat aff 7, and then we have

b
r=y D n(i,!(z’),k)(x)e F; ® ”(i,i(i),k)Fz+ .
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From (1) and (2) it follows that
/‘a+b(Fz+b) S ZieI(k):uaH)(Fg @ %(i,m),k)FZ*b) <
< Liern [Ma (F7) & (1,m, k)eA/“b(an)] <

< Z(i i,k)eA#a(Fg)Hb(F?') .
But then

Ca+b(K) = Z;?Si.’ﬁ”’um(l"z‘é“’) < 225_5’1*"’ Z(i,I,k)EAlua(Fg):ub(F?) ’

and since no pair (¢,7) can be associated in 4 with more than one value of k
it follows that

Caro(K) < (TP pa(F9)) (27815 (F7)) = LalK) o (K) -

Corollary 5.5. Suppose that r and s are positive integers and r is a divisor of .
Then £, (K)Ye

(R =
for every cell-complex K in a EvucLiDean space.
Proof. Suppose s = mr. From 5.4 it follows that
L(K) < L (K) Eor(K) < G (KPP oo (K) < .00 < G (K™,

whence (¢,(K)/Z,(K)™)'# <1 and this is the desired inequality.

When r << s but r is not a divisor of s, we are unable to determine whether
the quotient ¢,(K)!/2/,(K)'r is uniformly bounded as K ranges over all cell-
complexes in EucLipean spaces. However, we are primarily interested in con-
vex polytopes, and there a little more information is available.

Theorem 5.6. Suppose 1 <r<s<d, and s=d or s=d—1 orr
s a divisor of s. Then there is a smallest finite constant y(d,r,s) such that
C(PY L (P < y(d, 7, s) for all EUCLIDEAN d-polytopes P.

Proof. When r divides s, we merely apply 5.5. Note that for all d, r and s,
the existence of y(d, r, s) is equivalent to the condition:
I'(d, r, s): For each family of d-polytopes P such that (,(P) is uniformly

bounded, {,(P) is also uniformly bounded.

Obviously I'(d,r, s) is implied by the existence of y(d, r, s). Conversely,
I'(d, r, s) implies the existence of a finite constant that bounds the quotients
§(P) - = £, (P)is|¢(P)tIr for d-polytopes P such that {,(P)= 1, and since
§(AP) = £(P) for all 1> 0, this is in fact a general bound.

Now we recall the classical isoperimetric inequality ([11], p.195) and
Cavcrmy’s formula for surface area ([11], p- 208), both applying to n-polytopes



180 H. G. EGGLESTON, BRANKO GRUNBAUM AND VicTor KLEE
and asserting respectively that

(L) (P <t

1
nwn/"
1

Wy

Cpg (PYHR1)

and

(Co) Lpa(P) = §lna(m, P) du,

where w, is the n-measure of the unit ball in £", n, denotes the orthogonal
projection of E* onto a hyperplane orthogonal to the line Ru, and u ranges
over the unit sphere in E*. Let A4, denote the assertion that I'(d, r, s) is
valid whenever 1 <r <se{d —1,d}. Then A4, is trivial and 4, is an
immediate consequence of I,. Suppose 4, , is known and consider a family
of d-polytopes P in E¢ for which (,(P) is uniformly bounded. Since
Co(m, P) < L, (P) (use 1.5 and a basic property of HAUSDORFF measure),
¢y (m,P) is also uniformly bounded (for all » and for all P in the family)
whence (,; ;(n,P) is uniformly bounded by the inductive hypothesis,
£ 4-1(P) is uniformly bounded by (C,), and {,(P) is uniformly bounded by
(I ;). This completes the proof.

We have not determined the existence of y(d, r, s) except in the cases
covered by 5.6; even in those cases we know the values of the constants only
when r =d — 1 and s = d. A theorem of ABERTH [1] implies that y(3, 1, 2)
<(6m) 2

Let C? denote the space of all convex bodies in E¢, metrized by the
Hausporrr distance, and let P? denote the dense subspace consisting of all
d-polytopes in E<. Since the functions ¢, are all lower semicontinuous on P?,
they can be extended in the usual way to all of C?¢; specifically,

s(C) - = lim ianePd, p—c &s(P) (*)

for each CeC?. The extended functions (, are also lower semicontinuous,
and they provide a natural way of assigning such quantities as total edge-
length and total area of 2-faces to an arbitrary convex body C in E¢. It would
be interesting to find a simple geometric characterization of the members of
C% where this is the set of all CeC? for which {,(C) < co. Note that
C? = P?, while Ci,=Ci=0C% for 1 <s<d—2, C? properly con-
tains P? but is of the first category in C?. Note that if r, s, and d are asin
5.6 and if CeC?%, then ( (C)4/¢, (CYFr <y(d,r,s).

Many problems of isoperimetric type are of interest not only for the class
Pé of all d-polytopes in E¢, but also for certain subclasses Q, such as the class
Pa:v (resp. P%/> of all members of P? that have exactly d edges incident to
each vertex (resp. d (d — 2)-faces incident to each (d — 1)-face). (The letters
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v and f are to suggest regularity of behavior at vertices and maximal faces
respectively.) In connection with isoperimetric problems for Q, it may be
useful to extend (, in a different way:

CS(Q’ 0) = lim ianeQ, Q—>C Cs(Q)

for each body C in the closure of . The functions ,(Q,-) are also lower semi-
continuous, are defined on all of C?¢ when Q is dense in P¢, and of course they
agree with £, on Q itself. However, the functions {,(Q,-) may fail to agree
with , on the set P?~ Q; this is true in particular when Q = P%v and
when Q = P%/. Various relationships among the functions ¢, as restricted to
Q yield the corresponding relationships among the extended functions {,(Q,-).
In particular, it can be proved that when 1 <r <s <d the quotient
C,(P)5[¢,(P)Y" is uniformly bounded as P ranges over P%? and conse-
quently ¢, (P%v, C)A[L.(P%Y, CY/ is uniformly bounded as C ranges over
C¢ We do not know whether the same statement is valid with P%? replaced
by P%f, though of course its validity is guaranteed by 5.6 when s =d or
s =d —1 or ris a divisor of s.

In the rest of this section, we shall regard the functions f, and {, as defined
on all of C? by means of the natural lower semicontinuous extension (as in (*)
above) from P2. This will simplify certain statements, and seems to be of
genuine interest for the functions {, when 0 < s. On the other hand, f,(C)= oo
whenever s <d and C eC?~ P?, and of course the same is true of {,(=/,).

Theorems 1.7, 3.1 and 5.6 lead to the existence of solutions for a wide
variety of isoperimetric problems, involving polytopes, analogous to those
discussed in [9] and [11]. A few of these are described below. We shall not
actually determine the solutions, but merely prove their existence.

Proposition 5.7. Suppose B and C are convex bodies in E?, with B c C,
and s is an integer with 0 < s < d. Among all the convex bodies P for which
B c P c C, thereis one (or more) for which f(P) is a minimum and there is one
(or more) for which C,(P) is a minimum.

Proof. BrascHKE’s selection theorem implies the compactness of the class
of all convex bodies P for which B < P c (. Then apply the lower semi-
continuity of f, and £,.

In preparation for the next proposition, a lemma is required.

5.8. Suppose 0 <t <d, 1< oo, and B is a convex body in E?. Then
t.here exists a convex body C in E? such that P c C whenever P is a convex body
wm B with Bc P and C,(P) <.

13 CMH vol. 39
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Proof. Theassertionis obviouswhen ¢t = d andalsowhen d < 2. To handle
the general case, we proceed by induction on d. If the lemma is false for some
d > 2 and some 7 and B, there is a sequence C, of convex bodies in E? such

that BcC L)<t (=1,2,..)

and lim, _,oup {|| 2 || : 2 €0} = co.

Assuming for notational convenience that 0 e B, we employ the definition of
{; and a straightforward compactness argument to produce a sequence P,
of polytopes, a ray [0, co[z, emanating from 0 (where z,¢ E ~ {0}), and a
sequence of real numbers g, — oo such that

[0,8]z,c P, (i=1,2,...).

Now let E?-! be a hyperplane in E? such that [0, co[x, c E¢-1, and let =
be the transformation that projects E¢ orthogonally onto E?-!. Then of

course aBUI0,B]a, c aP, (1=1,2,...),

and from 1.5 in conjunction with the basic property of HAUSDORFF measure
that we have used several times earlier, it follows that

Li(mP) < L(P) <7 (1=1,2,...).
This shows that the lemma fails in E?-! if it fails in E?.

Theorem 5.9. Suppose B is a convex body in E2, r, s, t and k are integers,
and © 18 a real number. Suppose 0 <r <d,0<s<d,0<t < d, and there
exists a polytope P in E? such that B c P, {,(P) <k, and ¢,(P) < 7t. Then
among all such polytopes P, there is one for which (,(P) is a mintmum, and if
8=d or 8 =d — 1 there is also one for which ¢,(P) is a maximum.

Proof. Use 5.8, BLASCHKE’Ss selection theorem, the lower semicontinuity of
fs» Cs» and ,, and the continuity of {, when s =d or s =d — 1.

Theorem 5.10. Supposer,s,d and k areintegerswith 1 <r<d,0 <s<d,
and k> (21]). Then among the convex bodies C of unit volume in E?, there
are those for which (,(C) is equal to its minimum value 1/y(d, r, d)r. And
among the d-polytopes P of unit volume for which f,(P) < k, there are those for

which (,(P) is a minimum.

Proof. We discuss only the first assertion, for the second is similar. Since
y(d,r,d) is the largest constant subject to the requirement that ¢,(C)"" =
> £ (01 2]y, r, d) for all convex bodies C' in E¢, it follows from the de-
finition of {,, the semicontinuity of ¢, and the continuity of ¢, that there is &
sequence P, of polytopes in E¢such that u,(P,) -1 and ¢, (P,) — 1/y(d,r,d) -
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In view of the translation-invariance of x4, and {,, we may assume that each
polytope P; includes the origin. Now suppose for the moment that the se-
quence {width of P } is bounded from 0. Then, since x,;(P,) -1, the sequence
diam (P,) is bounded from oo and with 0 eP,; the sequence P, has a subse-
quence that converges to a convex body C, in E?¢; C, is of unit volume and
& (Co) = 1/y(d, r, d).

It remains only to show that the sequence {width of P } is bounded away
from 0. Suppose the contrary, whence there exists a subsequence @, of P, and
a sequence H, of hyperplanes in £9 such that the width of @, in the direction
orthogonal to H; converges to zero as 1 —> co. Let =), denote the orthogonal
projection of @, onto H,. Since u,(@,) — 1 itisevident that u, ,(nQ,) = oo
and it then follows from 5.6 that {,(n@,) — oo. But then with the aid of 1.5
we see that (,(Q,) — oo, and this is a contradiction completing the proof.

In the first assertion of 5.10, we do not know whether the minimum value
of {, is actually attained by a polytope. We are also unable to decide whether
5.10 remains valid when the condition of unit volume is replaced by that of
unit surface area, though this can be established without difficulty when » = 1.

6. Intersection properties of simplices

By definition, a d-simplex (in a real linear space L) is a set that is the convex
hull of d 4 1 affinely independent points, its vertices. It was apparently
CrOQUET [5] who first noticed that among the finite-dimensional compact con-
vex sets, the simplices are exactly those sets S that have the following property :

() whenever the intersection of two homothets of S s at least one-dimensional,
then the intersection s itself a homothet of S.

(Here a homothet of S is a set of the form z + «S for x eL and « > 0.)

CHOQUET then used the condition (X) to define the notion of a simplex in the
infinite-dimensional case, and established the equivalence of (X) to various
other conditions (see CHOQUET and MEYER [6] and KENDALL [13]). Independ-
ently of CHOQUET but a bit later, RocERs and SHEPHARD [19] showed that the
simplices are characterized by the following property, obviously implied by (Z) :

(") whenever the intersection of two translates of S is at least one-dimensional,
then the intersection is a homothet of S.

(Actually, the conditions (X') and (Z’) are known to be equivalent, but that
fact will not be used here.)

With the aid of these characterizations, it is a simple matter to prove the
theorem of Kormogorov and Borovikov [3] stated in the Introduction, and
to free it from the assumption of finite-dimensionality.
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Theorem 6.1. Suppose that S is a family of compact sets in a HAUSDORFF
linear space L, that each set Se S has the property (X) <{resp. (X')>, and that the
tntersection of any two members of S contains a member of S. Then the set NS
also has the property (X) {resp. (2')>.

Proof. An equivalent formulation of condition (X) <resp. (X)) is that
whenever the intersection of two homothets {resp. translates) of § is nonempty,
then it has the form = + «S for some x ¢£ and «e[0,1]. Nowlet K -=nS
and consider points y, eL and numbers f; > 0 such that the intersection
(71 + B K) N (y: + P K) is nonempty; when considering (), we assume
further that §, = 8, = 1. For each 8§ €S,

68N e+ BeS) D (1 + /1K) N (v + oK) # 9,
so by hypothesis there exist zse L and «gse[0,1] such that

(¥ + BiS) N (Y2 + B28) = xs + asS. (1)

Choose 8'€¢S, define J =1y, + ;S —[0,1]8’, and note that xzgseJ
whenever § — §’. Since the set J X [0,1] is compact, some point (z,, )
of J x [0,1] is a cluster point of the net (zs, as)| S €S. From (1) we see that

v+ BEK)N Yo+ BoK) C s + asS forall SeS§, (2)
(1 + B1S)N (¥ + B.S) D s + as K forall SeS, (3)

whence with the aid of compactness it follows in a straightforward manner

f 2) that
rom () Bhat 4 BK) N (e + AoK) C 7 + a0K
and from (3) that

(+ 5 K)N (U + B K) D 2y + K .

Corollary 6.2. The intersection of a decreasing sequence of simplices is itself
a simplex.

In CrHOQUET’S approach, some measure theory and the notion of a vector
lattice are involved in showing that the simplices are characterized by ().
In the RoGERS and SHEPHARD proof [19] that the simplices are characterized
by (Z’), the most difficult and lengthy part is the demonstration that if a
d-polytope S in a d-dimensional EucrLipean space E has the property (2'),
then S is a simplex. We shall now indicate an alternative proof of this fact,
proceeding by induction on the dimension d. The statement is obvious for
d < 1. Assuming d > 1 we note that if a (d — 1)-face F of § is contained in
the supporting hyperplane H, then

(4) F has property (2’) and hence is a (d—1)-simplex by the inductive
hypothesis;
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(5) 8 is intersected in a single point v by its supporting hyperplane H' that
is parallel to H but different from H.

For (4) we may assume that 0e¢# and denote by ¢ the halfspace that
contains S and is bounded by H. With «, ye H, we are interested in the inter-
section (z + F)N (y + F), assumed to be nonempty. From (ZX') and the
nonemptiness of (x + S)N (y + S) we have

(x+8Nwy+8S) =2+ aS with zeE, xe[0,1].
But then zex + S < @ and since

Ho(@x+F)ny+Flcz4+aScz4@,
it follows that ze¢ H. Hence

@+Fn@+F=@E+SnHny+SnH)=(+8)ny+9HnH=
=@+aS) N H=24oa(SN H) =24 oF,
and (4) is established.

For (5) we note that if S H' should contain a segment parallel to the
segment [0, x], then for a sufficiently small €> 0 theset SN (ex + §)
would have both H and H' as supporting hyperplanes, whence this set, being
a homothet of § by (2’), would actually be a translate of §; this is impossible,
for the width of S (ex 4+ 8) in the direction z is less than that of S.

Now let F and v be as in (4) and (5), let w be the centroid of F', and let
Sg = f(v—w) 4 8. For g <1 sufficiently near to 1, the only face of Sp
intersecting S is f(v —w) + F and the only vertex of S contained in Sg
is the vertex v. Thus the set Sg S is a pyramid with apex v and base con-
tained in f(v —w) 4+ F. By (2'), the set Sgn S is homothetic to S and
thus its base is homothetic to F. Since F is a (d — 1)-simplex, SgN S must
be a d-simplex and hence 8 is a d-simplex as claimed.

7. Sections of simplices

It was recently proved (BrRanDs and LamaN [4], EceLESTON [8], CROFT [7])
that among all the plane sections of a tetrahedron in Euclidean 3-space E3,
some 2-face has the greatest area. This suggests the following questions.

(1) If S is a d-simplex in E? and P is an r-polytope in S, must S have an
r-face whose r-measure s at least that of P?

(2) If 8 is a d-simplex in E? and P is an r-polytope in S having at most r + 2
vertices, must S have an r-face whose r-measure 1s at least that of P?

An affirmative answer to (1) implies one to (2). The answer to (1) is clearly
affirmative if » = 0, r = 1, or 7 = d, and by the result quoted above it is
affirmative if d < 3. In 7.1 below, we establish an affirmative answer to (2)
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when r =d — 1. The relevance to 6.2 lies in the fact that an affirmative
answer to (2) (for a given d and r) can be used to show that if an r-dimensional
set S is the intersection of a decreasing sequence 8, o S; o ... of d-simplices,
then § is an r-simplex. For suppose S is not a simplex. Then § contains an 7-
polytope P that has r 4 2 vertices and has greater r-measure than the largest
r-simplex in §. For¢ =1, 2,..., 8, has an r-face F, whose r-measure is at
least that of P, and the sequence F, admits a subsequence F,,, that con-
verges to an r-simplex 7' in S. But then

,u,(T) = lim Iur(Fn(a)) = ﬂr(P) > /ur(T) ’
a contradiction completing the proof.

Theorem 7.1. Suppose S is a d-simplex in E? and P is a (d — 1)-polytope
in S that has at most d 4 1 vertices. If P is not a (d — 1)-face of S, then some
(@ — 1)-face of S has greater (d — 1)-measure than P.

Proof. For each hyperplane H in E?¢ whose intersection with S is (d — 1)-
dimensional, let P (H) be a (d — 1)-polytope of maximum (d — 1)-measure
among those (d — 1)-polytopes that are the convex hull of d + 1 or fewer
vertices of the (d — 1)-polytope S H. By compactness, there is a hyper-
plane H, such that u, (P N H) is a maximum when H = H,, and of course
this maximum value is positive. Let v,,..., v, denote the vertices of S that
are in Hy and let u,.,,..., u,;,; denote the remaining vertices of S.

Clearly the points v, are vertices of S N H,, and in fact they are vertices of
P(H,). For suppose v, is in H, but not in P(H,) and let F, denote the (d — 1)-
face of § that is opposite to v;. Since 8§ N H, is the convex hull of the union
(F.n H,) U {v;}, F, includes all the vertices of S H, other than »; and
consequently F, o P(H,). But then P(H,) lies in the (d — 2)-flat F,n H,
and p,,(P(H,)) = 0, a contradiction showing that, indeed, each v, is a
vertex of P(H,), or S n H,is F; and the result is proved.

We want to show that P(H,) is a (d — 1)-face of S, and for this it suffices
to show that P(H,) includes at least d vertices of S. We suppose, on the con-
trary, that k<d, and let w,,,..., w, denote the remaining vertices of
P(H,), wherel=d or I =d + 1. In each case we shall produce a hyperplane
H, for which u, (P (H,)) > uq1(P(H,)), acontradiction completing the proof.

First cagse: ! = d. In this case the (d — 1)-polytope S H, has exactly d
vertices and hence is identical with P(H,), for otherwise, by adding to the
vertices of P (H,) a new vertex from those of § n H, notin P(H,), we could
generate a (¢ — 1)-polytope in S N H, that has at most d + 1 vertices and
that properly contains P (H,), contradicting the definition of P(H,). Let

K .-=con{vy,...,0,Wiyy,..., Wg_1}
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andlet M .= aff K, a (d — 2)-flat in 2. Let M+ be a 2-flat orthogonal to M
in B4, intersecting M at a point ¢, and let n denote the transformation that
projects E¢ orthogonally onto M.

With k< d, w, isa vertex of P(H,) but not of . Hence w, is a point of an
open segment Z in S, and Z is not parallel to M, for if it were then Z would lie
in H, and hencein SN H, = P(H,). For each zeZ, let

Hz =aﬁ'(M U {2}),

a hyperplane in E¢, and let K, - = con (K U {z}). Then K, is a (d — 1)-poly-
topein SN H, and K, has d vertices. Since nK = {q}, the altitude of the
pyramid 1K . isequal to || #(z) —¢q||, and consequently

paa(PUH) > poy () =12y iy

Since Z is not parallel to M, nZ is an open segment in M+ and it is pos-
sible to choose zeZ such that ||n(z) —q|| > || =(wy) —¢q]||. But then
paa(P(H,) > nqe(P(H,)), a contradiction completing the discussion of the
first case.

Second case: ! =d + 1. Note that every point of § lies on a segment
joining a point of the simplex 7" -=con {v;,...,v,} to a point of the
simplex 7" .= con {#,,;,...,Usp}. Since 7T’ c H,, every vertex of
SN H, that is not in 7" must be in 7"’. In particular,

T' D Q - -=-con{w,...,Wap} -

But P(H,) = con (T" U @), and since the sets 7" and @ lie respectively in the
skew flats aff 7' and aff 7' it follows that

dim P(H)) = dim 7" + dim@ + 1,
dm@Q =d—k—1.

Since Q has d — k + 1 vertices, there must be two vertices of @ that are
separated in affQ by a (d —k — 2)-flat F which is determined by the
remaining d —k — 1 vertices of @. Indeed, it suffices to choose d —k
vertices of K that form a simplex and to note that the remaining vertex of @
must lie outside one of the closed halfspaces (in aff @) that contain the simplex
and have bounding hyperplane determined by a face of the simplex.

We may assume that

whence

F = aff {wk+1’ % 0% ':wd—l} ’
Separating w, from w,,, in aff @, whence the (d — 2)-flat
M .= a»ff{”n coay Uy, Wy EE BRI wd-l}

Separates w, from w,,, in H,. Let K, M+, q, n,Z, and H, be as in the
Preceding case, and let Z’ be an open segment in S that includes w,,, and is
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not parallel to M. Since M separates w, from w,,, in H,, since aM = {q},
and since nH, is a line in M+, the point ¢ must lie in the open segment
Jr(wgy), m(wy,)[. Since Z and Z' are not parallel to M, the sets #Z and =Z’
are open segments in M+, and it is possible to choose z ¢eZ and z'e¢Z' such that
ge]n(z),nm(z')[ and

| 7(2) —2(2) || > || #(wa) —7(wap) [] -

But then 2'e¢H,, and since the set K, -= con (K U {z,2'}) has d 41
vertices and is a double pyramid over K, we have

paa(PU) = oy (K = 1O, ey

> 2l 2 2®anl Ly 8 = wep @y

a contradiction completing the proof.
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