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On the Automorphism Group of a G-striicture1)

by Ernst Alfred Ruh, Brown University Providence, R. L, USA

Herrn Professor Dr. Heinz Hopf zum 70. Geburtstag

in Dankbarkeit gewidmet

1. Introduction

Throughout this paper M dénotes a paracompact differentiable manifold of
dimension n. Let G be a Lie subgroup of GL(n,R). The group of diffeomor-
phisms of M which leave a C?-structure invariant is often a Lie group. We shall
give a condition on the Lie algebra g of G under which the group of auto-
morphisms of a ^-structure is a Lie group. (Cf. Définitions 5 and 6 in Section 3.)
The main resuit is stated as Theorems A and B in Section 5, and examples are
given in Sections 8 and 9. To simplify the présentation, cdifferentiable&apos; always
means * differentiable of class C00&apos;. It is to be remarked that for every spécifie
(?-structure however, differentiability of a suitable degree will be sufficient.

H. Cartan [3] proved in 1935 that the group of ail complex analytic
transformations of a bounded domain in Cn is a Lie group. S. Bochner and D.
Montgomery [1] proved in 1946 that the group of ail complex analytic
transformations of a compact complex manifold is a Lie group. This resuit was
extended in 1963 by W. M. Boothby, S. Kobayashi and H. C. Wang [2] to the
effect that the automorphism group of an almost complex structure on a

compact manifold is a Lie group. By introducing a Bergman metric on a
bounded domain in Cn, H. Cartan&apos;s resuit is shown to be a spécial case of a
theorem proved by S. B. Myers and N. Steenrod [9] in 1939. Their theorem
states that the group of isometries of a RiEMANNian manifold, i. e. the
automorphism group of an O (n)-structure, is a Lie group. In view of the fact that a
RiEMANNian manifold has a unique torsion free connection, this resuit is
included in a theorem proved by K. Nomiztj [10], J. Hano and A. Morimoto
[6], Their theorem states that the automorphism group of an affinely connected
manifold is a Lie group. It will be shown in Section 8 that our main theorem
includes ail the examples mentioned. Some additional examples will be given
in Section 9.

l) I wish to thank Professor K. Nomizu, my thesis advisor, and Dr. H. Ozeki for the
encouragement and help I received while workmg on the présent paper.

This work was done while the author was partially supported by the National Science Foundation

Grant 24026.
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We now give an outline of the présent paper. In Section 3 we construct a

séquence of (?{i)-struetures induced by a Cr-structure on a differentiable mani-
fold M. An automorphism &lt;p of a (^-structure will be lifted to automorphisms
(pt of the induced (?(i)-structures. This construction gives rise to a System of
linear partial differential équations for infinitésimal automorphisms of a
6?-structure (Section 7). The type of the System will dépend on the Lie algebra
g of G. We impose conditions on the Lie algebra g so that the vector space of
solutions will be finite-dimensional (Section 5). A theorem of R. S. Palais [11]
shows that if the space of infinitésimal automorphisms is of finite dimension,
then the group of automorphisms can be given a Lie group structure.

2. Prolongations of a Lie algebra

Let g be a Lie algebra of endomorphisms of a real n-dimensional vector
space F. g may be regarded as a subspace of the tensor product F &lt;g) F *,
where F* dénotes the dual space of F. The first prolongation g(1) of g is defined
to be g(1&gt; g ® F* - F ® £2(F*) c F ® F* (g&gt; F*, where S*(V*)
dénotes the space of symmetric tensors of degree two over F*. With respect
to a basis in V ® V* ® V* an élément acg(1) will be given by a matrix
ia),k)- Since g ® F* Hom (F, g), an élément ae Hom (F, g) is in g(1)

if and only if
au(v) av(u) for ail v, ueV

For each acg(1) we define an automorphism a of g 0 F(© dénotes direct sum)
as follows. — -a(x) x for xeQ, a(u) au + u for ucV

Définition 1. G{1) (â \ acga)} G{1) is a commutative Lie group of
automorphisms of the vector space g ® F.

Définition 2. The k-th prolongation Qik) of g is defined to be

g(Jfc) g&lt;*-l) (g) 7* ^ g(*-2) (g) ^f2(^*) g®F*®...®F*^F(8) S*+1(F*)

where F* ®... ® F* dénotes the i-fold tensor product. (Note that g(0)

g, a(-&quot; y-)

Définition 3. A Lie algebra g is of finite type if g(fc) 0 for some Je.

To Q{k) will correspond a commutative Lie group 0{k) of automorphisms
of the vector space F © g © g(1) ©... © g(fc~1), defined as follows. To

aeg(fc) define ^eG{k) by setting

â(x) x for X€Q ©... © Q{k~1},

a(u) u + au for ue V
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Définition 4. The annihilator fyk) of Qik) is defined by:

$&lt;*&gt; {h | h* F* &lt;g&gt; Sk^(V) &lt;Jh g} O for aU 0eg&lt;*&gt;}

The annihilator tyk) will be needed in order to state Theorem B.

3. G-structure, torsion tensor

Let M be a difFerentiable manifold of dimension n. A linear frame u at a

point #eif is an ordered basis X1,...,Xn of the tangent space TX(M). Let
L M be the set of ail linear frames at ail points of M. Let n be the mapping of
L(M) onto M which maps a linear frame u at x into x, L(M) is a principal
fiber bundle with structure group OL(n, B). A linear frame u at x can also
be defined to be a vector space isomorphism u : F -&gt; TX(M). The two
définitions are related in the foliowing way : Let ex,.. en be a basis in F.
^: F -+TX(M) is defined by w(et) Xt. The action of GL(n, R) on

L(M) is given by % -&gt;t6-a, where wa: F—*F—?î7JC(Jf). In the sequel
we will think of u as the isomorphism u : F -&gt; Tx (M). The notation vr1
therefore makes sensé.

Définition 5, A G-structure on a differentiable manifold M is a réduction of
the structure group GL(n, R) of the bundle of linear frames L (M) to the subgroup G.

The reduced bundle, a subbundle of L (M), will be denoted by P (M, 6?) :

P(M, G) —^&gt; L(M)

n 7c

M &gt; M
identity

A diffeomorphism q&gt; of M can be lifted to an automorphism 0 of the bundle
L(M).

Définition 6. A diffeomorphism y of M is called an automorphism of the G-
structure P(M,G) if $ maps P(M,G) onto itself. The restriction of 0 to
P(M, G) will be denoted by &lt;px. (For référence see S. Kobayashi and K.
Nomizu [7].)

We now turn to the construction of the torsion tensors associated with a G-

structure (cf. S. Sternberg [12]). On L(M) define the canonical form # to be
the F-valued 1-form

â{X) «-1** (X), where XeTu(L(M))
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The restriction of ê to P(M, G) will still be denoted by &amp;. An 7i-dimensional
subspace H c Tu (P(M, G)) is called a horizontal subspace if ê : H -&gt; F is an
isomorphism. The exterior derivative dâ of # evaluated at ueP(M, G) is a
bilinear mapping (dê)u : A 2TU(P(M, -&gt; F. In view of the isomorphism

&amp; : H-+V, de restricted to H^H defines a map FaF -&gt; F, i.e. an
élément c(u,H) c F &lt;g&gt; F* /\ F*.

Définition 7, c(u, H) is called the torsion tensor corresponding to a pair
(u,H).

In the sequel, the dependence of c(u, H) on H will be discussed. The action
of G on P, where P stands for P (M, G), induces a homomorphism a of the
Lie algebra g of G into the Lie algebra X(P) of vector fields on P. For A eg,
aA is called the fundamental vector field corresponding to A. Since G acts

freely on P, the mapping a{u) defined by A -&gt; (oA)u )M — évaluation at u)
is an isomorphism of the space g onto the tangent space at u of the fiber Gu

through u. Given a horizontal subspace H c Tu (P), we define n vectors Zt
such that ZteH and #(£J et, i 1, 2,. w, where et is the i-th
élément of a basis in F. For another H&apos; we define Z[ in the same fashion. For
each i there is a unique ^4zeg such that a(u)At Z[ — Zt Yt

Définition 8. S (H, H!) is defined to be the map of F into g which sends

et into At.
Let Yt be a vector field in a neighborhood of u in P, such that the evalu-

/\ vN. /S.

ation of Y\ at u is equal to Ft i.e. (Yt)u Yt. Likewise find Zx such that

(Zt)u Zt. The torsion tensor c(u, H) is a map F/\F -&gt; F, given by

c(te,ff)(ct,c,) c»(Zt,ZJ) - i{Zt*(Z,)-Z,#(ZJ -#([Zt,Z,])}, where

[, ] dénotes the Lie bracket (cf. S. Kobayashi and K. Nomizu [7], p. 36).

Likewise we define c(u,Hf). Hence

(c(u, H&apos;)-c{u, H))(et, e3) d&amp;(Z&apos;%9 Z\) -d»(Zt9 Z3)

d&amp;(Zl} Y,) -dê(Z,, Yt) + d&amp;(Yt, Y3).

Since d&amp;(Yt, Y3) is equal to zéro (cf. [7], p. 120), we hâve

(c(u, H&apos;)—c(u9 H))(et9 e,) HW{Y,) - Y3ê(Zt) - (Z,ê(Yt) - Y ,&amp;(%))

-(&amp;(&amp;, 93])-&amp;([Z3, FJ))}.
Hère we note that Ztê(Y3) 0 and Z3ïï{Yt) 0 because ïï maps the vectors

tangent to the fiber into zéro. Now we choose the vector fields Z% and Y\ sucn

that the brackets [Zt9 Y3] and [Zj9 FJ vanish, for example, as follows. Let
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U be a neighborhood of n(u)eM ; write n^^U) U x G by choosing a

cross section U -&gt; P through u tangent to Zx,.. Zn. Let x1,.. xn be a
coordinate System in U and let y1,... ym be a coordinate System in a
neighborhood of the identity in G such that

=z&gt; and

^ d \ ^ I d \
Set Z, U;—, 0 and Y, 0, -— With this choice we hâve:

ic(u,H&apos;)-c(u,H)){el,e,) i\Yt#{Zi) - Y,é{Z,)\

We shall prove now that: YJû(Zl) —A}et, where A3eQ is defined by
5. We hâve

ê(Zt)ua

Using the définition of the fundamental vector field g A we get

Y,(cr*et) (^ exp (-tA
Hence we hâve

Proposition 1. (c(u, H) —c(u, H))(et, e3) j\A}et —Aze3\ where A3

S(H, H&apos;)e, (cf. Définition 7).

Proposition 2. c(u, H&apos;) — c(u, H)ttx(Q 0 F*) c F ® F* /\ F*, where
a dénotes the alternation in the two covariant factors.

Note that the kernel of oc is equal to the first prolongation g(1) of g.

4. Induced G{i)-structures

The purpose of this section is to define a séquence of G{i)-structures and to
show that an automorphism of a G-structure can be lifted to automorphisms of the
successive G{i)-structures.

Let P(M, G) be a (?-structure on M (see Définition 5). Let g be the Lie al-
gebra of G. We shall choose once and for ail a linear subspace C c F &lt;g) F* ^ F*
such that F (g) F* ^ F* C ®oc(q ® F*). In gênerai there will be no
natural way of choosing C. The torsion tensor provides a map of P(M, G)
into F ® F* xs F* C © oc(q ® F*) (see Définition 7).

Définition 9. The image of c(u9H) in &lt;x(g ® F*) will be denoted by
k(u,H), where c(u,H) is given in Définition 7.
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To a horizontal subspace H at ucP we assign a frame

z (Zl9. ,.9Zn9Zn+l9. ..,Zn+m)

at u in the following manner. For i 1, 2,.. ,,n, Zt is defined by Zt€JH
and #0Zt) et, .where et is the i-th élément of a basis in F. For
; n + 1,..., n + m&gt; ^ is defined by Z3 a{u)Aj_n, where At,..., Am
is a basis in g.

Définition 10. Px (P, (?(1)) is the set offrantes z (Zl9..., Zn, Zn+1,..., Zn+m)

corresponding to horizontal subsjxices H c TU(P) sueh that wcP and

ifc(^,iï) 0.

Proposition3. AG-structure P(M9G) on Jif gives rise to a uniquely defined
-structure PX{P,G™) on P P(M,G).

Proof. For a eGL(n + m, R) and zePx P^P, (?&lt;*&gt;) c L(P),z-a isde-

fined by 2- a : V © g —&gt; F © g —&gt; TU(P). Proposition 2, Section 3, shows

that z&gt; a is in Px if and only if ae(?(1). (See Définition 2 and note that g(1)

is the kernel of the map oc : g ® F* -&gt; F ® F* A F*.) The following lemma
will eonclude the proof of Proposition 3.

Lemma. P1(P,G(1)) is locally, in fact globally, trivial.

Prooî. We shall construct a distribution of horizontal subspaees §, in fact
a connection, on P such that k(u,H) for ueP and #e§, is zéro. Since M
is paracompact, the bundle P(M, G) has a connection §&apos; giving rise to a

differentiable map
i( ,Hf):P(M,G) -»*(g ® F*).

Since g ® F* is isomorphic to kernel a ®oc(q ® F*), we may choose a

monomorphism #:&lt;%(g ® F*) -&gt; g ® F*. The composition goi( ,i?)
maps P(M,G) into g ® F*. Let § be the distribution defined by the vector
fields

Zt Z[ - a(u) o Jc(u, H))et) ,i=l,2 n.

(For définitions of Z\ and a see Section 3.) Since Je (u, H) (eti e3)

(i(w,F)~(x(goA(îi, #;))) (ct, c,) 0, by virtue of Proposition 1, we

obtain a global cross section (Zl9..., Zn9 Zn+1, Zn+m) of P^P.G^)
over P(M,G).

Proposition 4. An automorphism &lt;p of the 6?-struGture P(M,G) can be

lifted to an automorphism cpx of the Cr(1)-structure PX(P9 G{1)).
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Proof. Let &lt;px be the map introduced in Définition 6, Section 3. The funda-
mental 1-form ê is invariant by cp1 and hence d&amp;ty^Z^ (px*Zj) dê(Zt, Z0)i,

j=l,2,...,n, where z (Zx,..., Zn, Zn+l9..., Z^JeP^P, G&lt;«). This
together with the fact that (px leaves the fundamental vector fields invariant,
proves Proposition 4.

Propositions. An automorphism q? cp0 of the G-structure P(M,G) can
be lifted to automorphisms yx, q&gt;2,... of the bundles Px, P2,... respeetively.

Proof. The bundles and automorphisms are defined inductively by applying
Propositions 3 and 4 to Pt and ç&gt;t,i=l,2,..., instead of applying them to
M Po and cp &lt;p0.

5. Main Theorems

Let G be a (not necessarily elosed) Lie subgroup of GL(n, R) and let M be a
differentiable manifold of dimension n.

Our main results are

Theorem A1). // the Lie algebra g of G is of finite type then the automorphism
group of a G-structure P{M,G) on M is a Lie group.

Remark 1. Theorem A applies also to the case where the séquence of
bundles starts at the ï-th stage. In the case i 1 the theorem reads as
follows.

Let G{1) be a Lie subgroup of GL(n, B){1) (first prolongation). If the Lie
algebra g(1) of G{1) is of finite type, then the group of diffeomorphisms of M
whose lifts to L(M) are automorphisms of a 6r(1)-structure on L{M) is a Lie
group.

Theorem B. Let M be a compact differentiable manifold of dimension n.
// there is an integer N and n éléments th, l 1, 2,..., n, in the annihilator

°f QiN) sm;A that the déterminant of the matrix

lht~ 2 xh%

is nonvanishing for every £ (fl5..., |w) ^ 0, ÇeR71, then the automorphism
group of a G-structure P(M ,G) is a Lie group.

Corollary to Theorem B. Let if be a compact differentiable manifold of
dimension n. If there is a q (qjk)€S2(V) such that UqjkS}ik is positive

definite and F* ® q c ï)(1) c F* ®$2(F), then the automorphism group
of a (?-structure P(M,G) is a Lie group.

*) Added in proof: This theorem is already known. (Cf. S. Sternbbrg, Lectures on Differential
Geometry. Prentice Hall, 1964.)
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Remark 2. If a Lie subgroup G of GL(n, R) satisfies the requirements
of Theorem A or B, then so does every Lie subgroup of G.

6. Two Lemmas on Partial Diîferential Equations

In this section, we prépare two lemmas which will be needed in the proof
of Theorems A and B.

Consider a System of linear partial differential équations

^- 2a%(&amp;,...,af)u* &lt;r, A =1,2,...,«,? l,2,...,r, (1)

for s functions ua ^{x1,..., xr) with initial conditions

u°(0) ua0. (2)

Lemma 1. The system (1) with initial conditions (2) has at most one solution.

Prooî. Assume it has two solutions (ua) and (v°) such that for x{ a1 we
hâve the following inequality u^fa1,..., ar) ^ v°(a1,. ar). By setting
x1 a{t and ua ua(t), a System of ordinary differential équations

dua du
-dT f-d*r-dr &quot;

with initial conditions ^a(0) uaQ is obtained. The uniqueness theorem on

ordinary differential équations implies ua{\) va(l), i.e. u°{ax,. ar)

va(a1,. ar). This contradiction proves Lemma 1.

In the proof of Theorem A the following system of differential équations will
occur.

dxn...dxu+i XP f^,.,,+1,(^ D)X«, (1*)

(7)
7) \

-^-y,... &gt;-^ir)

of degree smaller than or equal to d with variable coefficients.
dk

Introducing new variables Yvix iJc —^ —^ Xp, le 0,1,.. d, we

obtain a system of differential équations of first order. By adding the initial
conditions YPiltiJc(0) YPit ik0, we obtain a system (1), (2). According
to Lemma 1, this system has at most one solution.

Let M be a differentiable manifold and let X be a vector space of infinitésimal
transformations on M such that every point of M has a coordinate neigh-

borhood with a system (1*) of differential équations which is satisfied by ail
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infinitésimal transformations X in 3£. Let r be the number of linearly inde-
pendent initial conditions {Y%1 .îjfc(0)) at an arbitrary point OeM.

Lemma A. The dimension of the vector space X is smaller than or equal to r.
Prooî. Locally use Lemma 1 and note that the continuation of a solution

along a curve in M is unique if it exists at ail.
In order to prove Theorem B, a lemma on elliptic partial differential équations

will be needed (cf. A. Douglis and L. Nirenberg [4]). Let

Z lt,X&gt; 0
7=1

(3)

be a System of linear partial differential équations in n independent variables
x1,.. xn and n functions X1,..., Xn. The IJs are linear differential oper-
ators which may be expressed as polynomials, lli(xiD)i in the differential
operators D : (d/dx1,. djdxn) with variable coefficients, atJ9 Q. Let
lfi:f(x, D) represent the sum of the terms in ltJ{x, D) which are of order S,
where S dénotes the order of the System (3). For arbitrary scalars f (| t,. fn

the characteristic matrix of (3) is defined to be the nxn matrix l[7(x, |).
The déterminant, L(x, |), is a homogeneous polynomial in | of degree n- 8.
The system is called elliptic if L(x, |) is nonvanishing for every £ ^ 0.

Lemma 2. Assume that
(i) L(x,£) &gt;K-\Ç\n-s forsome K&gt;0;

(ii) There exists a constant Lx such that

&lt;LX for fc 0, 1, 2;dxlK .3 a**

(iii) X (X1,. Xn) is a solution of (3) in a domain D and there exists a

constant L2 such that

&lt; L2 for &amp; O,1,...,/S+1.
T%e?i /or any compact subset F c D there exists a constant C depending only
on Ll9 L2, and K such that

&lt;C-\P-Q\,

where P and Q are arbitrary points in F.
Let Xf {(XP)} be a family of functions subject to the conditions in
mma 2. The family of functions Xr and their partial derivatives through the
+ 1-st order is bounded and equicontinuous in F. By Arzela&apos;s theorem

14 CMH vol 39
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every séquence in X1, if restricted to F, has a subsequence which is convergent
with respect to the topology of uniform convergence of functions together with
their partial derivatives through the S + 1-st order.

Let M be a compact differentiable manifold and let X be a vector space of
infinitésimal transformations on M such that every point of M has a coordinate
neighborhood with a System (3) of partial differential équations which is
satisfied by ail infinitésimal transformations X in X. In addition, X is subject
to the assumptions in Lemma 2. In local coordinates XeX is given by

n d
X E Xp p By choosing an arbitrary RiEMANNian metric we define

||Z|| max \X\ + max | V54&quot;1^! ,&lt;

PeM PeM

where V dénotes the covariant derivative defined by this metric and | |

dénotes the norm obtained by extending the RiEMANNian metric.
The norm || || makes X into a Banach space. Since convergence in this

norm is équivalent to uniform convergence of functions together with their
partial derivatives through the S + 1-st order, and since M is compact,
the foliowing lemma is obtained.

Lemma B. The Banach space X is locally compact and hence finite-dimen-
sional.

7. Proof of the Main Theorems

The proof consists of the foliowing steps. First a System of linear partial
differential équations for infinitésimal automorphisms of a (?-structure is

established. Under the assumptions of Theorems A and B we shall prove that
the space of solutions is finite-dimensional. Then a theorem of R. S. Palais [11]
shows that in this case the group of automorphisms is a Lie group.

Let the vector fields {Z3- ,j=l,2,...,n-\-m} be a cross section of the
bundle PX(P,G{1)). By Proposition 4, Section 4, an automorphism &lt;p of

P{M, can be lifted to an automorphism cpx of PX(P, G{1)). Hence, for

ueP(M,G), {(pi*((Zj)u), ?&quot; 1, 2, n + m} will be an élément of

Px (P, Ga)) at &lt;pt (u). Recalling the proof of Proposition 3, Section 4, we hâve

Proposition 6. Foreach ueP thereisan acg(1) such that

&lt;P,*((Z«D (Z4)m in* + o(&lt;pAu))(ae4) for 1 1,2 ».
Note that o&gt;(ç?1(^))(aei) is the fundamental vector field, evaluated at

&lt;p1{u)i which corresponds to ae^Q. Let (x1,..., xn) be a coordinate System

in U a M. With respect to the coordinates («*, x)) m. U X GL(n,B)&gt;
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(r) r) \
zei{u) 1^ &apos;z c&lt;*(M) &quot;âF&quot;) * For

u= (xl,x]), &lt;pi(u) is expressed by {&lt;pl(x), S— • xqÀ. Proposition 6

yields
V * &apos;

-\J c&gt;{u ^j4^ (1)

As in Section 2, an élément aeg{1) is given by a matrix a= («f)7). For

^ (^, 6)){ô) Kronecker delta) we get a(u)(ae3) Zaf 7——. Sinee
pi

&apos; dxï
this is true for u (xl, ô)) only, we evaluate the above équation at

• Thus we have

The components in the fiber direction of équation (1) yield

where the af/s dépend on 9()
In order to obtain a System of differential équations, satisfied by ail auto-

morphisms 9?, we let an élément h (A^)el)(1) operate on équation (2).
(For I)(1) see Définition 4.) Thus we get

^yl^O. (3)

Let X be a vector field on M. In a coordinate neighborhood U write

X E Xp ——. X générâtes a local 1-parameter group of local transformations

&lt;p:
U&apos; x IB-&gt;TJ&apos;, where U&apos; is an open subset of U and Ie is an open

neighborhood of zéro in R. X is called an infinitésimal automorphism of the
G-structure P(M,G) if for tele (p{x,t) is an isomorphism of P(U&apos;,O) onto
pi&lt;Pt{U&apos;),G).

In this case, &lt;p(x, t) for Ê€/e is a solution of équation (3). By taking the
derivative of équation (3) with respect to t for t 0, and noting that
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we get

ijlp

where c)(x),h7p(x), and hp(x) dépend on x (x1,..., xn) only, while
h% is a constant. Thus we see that every élément h (/i^)eï)(1) gives rise to
an équation (4). By lifting an automorphism &lt;p to a (?(d)-structure, we see that
an élément h (A^1&apos; •*«*+*) €fy«*&gt; gives rise to a linear partial differential
équation of order rf+ 1. The highest order term will be

If the Lie algebra g of G is of finite type, then there is an integer d such that
g(d) 0, i. e. tyd) equals F* ® 8d+1(V). This yields the System of linear
partial differential équations:

(For a définition of D see équation [1*] in Section 6.) By Lemma A, Section 6,

the vector space of ail infinitésimal automorphisms of a C?~structure P (M, G)

is of finite dimension. An upper bound of this dimension is given by the follow-
ing: n + dim g + dini g(1) + + dim Q{d).

The condition on the Lie algebra g of G in Theorem B is to insure that
condition (i) of Lemma 2, Section 6 is fulfilled. Note that it is possible to choose

a coordinate System such that c] (0) è). Condition (ii) can be satisfied by
restricting the vector field X to a smaller neighborhood if necessary. Lemma B
therefore shows that under the assumptions in Theorem B the vector space of
infinitésimal automorphisms of a C?-structure P (M, G) is of finite dimension.

An application of the following theorem of R. S. Palais [11] concludes the

proof of Theorems A and B. Let ffbea group of differentiable transformations
acting on a differentiable manifold M. Let fy be the set of ail vector fields on M
which generate a global 1-parameter group of transformations belonging to H.
Let ï) be the subalgebra generated by ï); in the Lie algebra X(M) of ail
differentiable vector fields on M.

Theorem. If I) is finite-dimensional, then H admits a Lie group structure

(such that the map H X M -&gt; M is differentiable), and I) ï)&apos;. The Lie
algebra of H is naturally isomorphic to I).

Now let H be the group of ail automorphisms of a 6?-structure P (M, G).

Then ï); and ï) are contained in the Lie algebra of infinitésimal automorphisms
of P (M, G). This Lie algebra has been proved to be of finite dimension under

the assumptions of Theorems A and B respectively.
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8. Examples Mentioned in the Introduction

1. BiEMANNian manifold.
Let O(n) dénote the group which leaves a given nondegenerate symmetric

bilinear form on F (of arbitrary signature) invariant. A RiEMANNian
structure is an 0 (n)-structure on M. We will show that the Lie algebra o(n) of
O(n) is of finite type, in fact, o(n)(1) 0. Thus Theorem A will apply. The

maximal dimension of the automorphism group is n -f- dim o (n) ——-—- The

following eomputation is taken from V. W. Guillemin and S. Sternberg [5].
A linear transformation a of F is in o(n) if and only if (au, v) ~\- (u, av) 0 ;

for ail u,veV. For any aeo(w)(1) and any u,v,weV we hâve

(awv, u) (avw, u) — (avu, w) — (auv, w) (auw, v)

(awu, v) — (awv, u).

Thus (awu, v) 0, which implies a 0 because is nonsingular.

2. Conformai structure on a manifold of dimension n &gt; 3

Let be as in Example 1. co(w) dénotes its conformai algebra.

aeto(n) if and only if (au, v) + (u, av) X- (u, v) for ail u,veV,
where X is a scalar depending on a. V. W. Gullemin and S. Sternberg [5]
show that c 0 (n){1) is of dimension n by establishing a vector space isomorphism
co(n){1) -&gt; F*. For aeto(n){2) and u,v,x,y in F we get

(auvx, y) + (x, auvy) (Auv)(x, y)

where A is an élément of F* ® F* which dépends on a. By a eomputation
similar to that used in Example 1, A is shown to be zéro (cf. [5]). This implies
that a 0 because in this case aeo(n)(2) 0. Hence co(w)(2) 0, the
conformai structure is of finite type and Theorem A applies.

3. Manifold with an affine connection.
An affine connection is a (?(1)-structure on the bundle of frames L(M),

where O{1) consists of the identity in GL(n,R){1) alone, i.e., g(1) 0 (cf.
Remark 1, Section 5). Theorem A applies; hence, the maximal dimension of the
automorphism group of an affine connection will be

N n + dim §\(n, R) n -\- n2.

4. Almost complex structure
Let M be a compact differentiable manifold of dimension n 2m, and let

G,C) c GL{2m,B).
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« K)«s if and onlyif a\ 4îm&gt; &lt;+i —

t,/= 1, 2,...,m; p, q 1, 2,..., 2m.

Computation of g(1) (cf. Section 2) :

aj+m,k+m •

Since a\j~\- af+m;+m 0, we obtain

h {hf) (ap • ôql) c ty» (cf. Définition 4).

The Kbonecker Delta, ôql, is a unit matrix and hence, positive definite;
therefore, the corollary to Theorem B applies. The automorphism group of an
almost complex structure on a compact differentiable manifold is a Lie group.

9. Further Examples

1. Tensor product structure on a manifold M
Let M be a manifold of dimension p • q where p, q ;&gt; 2. Let be the Lie

subgroup of GL(p • q, R) whose Lie algebra is given by the tensor product
représentation of gr © g2 on V1 ® F2. The action of g on F Vx ® F2 is

(a, 6)(^i ® v2) a^ ®v2 + vi® ftî;2 »

where a (a^cgx and 6 (6f)€g2.
F has a basis e(ijfc) et ® /ft, where (ej and (/fc) are bases in Fx and F2

respectively.
An élément in g is denoted by A (A[$)) (a)ôf + dffi). This gives

rise to the foliowing four équations :

For i^j, k^l, A$*] 0; (1)

For i # j, A%$ A^% ; A%% A%$ ; (2)

Weshowthat g&lt;2&gt; 0. Let A (A[^]tUtJb)t{kt0)) be an élément in g(2).

It is easy to show that unless ail index pairs coincide, the corresponding

component of A vanishes as the following computation illustrâtes. Assume

A(i,l) __ AihD __ aUJ) __. A0,k)^(i)(i0(0~ J±()(D(iJ)~~ ^dJU^iiJ) &quot; ii&lt;i*)
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This is true because of équations (1) and (2). If ail index pairs coincide,
équation (3) or (4) is used to reduce this case to the previously solved case.
The group of automorphisms of a tensor product structure is therefore, by
Theorem A, a Lie group.

2. ^-structures for which the Lie algebra g of G acts irreducibly on F.
Let g be an irreducible Lie algebra of endomorphisms of a real vector space F

of dimension n. There are six classes of Lie algebras which are of infinité type
(see Y. Matsushima [8]):

g Ql(n, R) Lie algebra of ail endomorphisms of F ; (1)

g sl(n, R) Lie algebra of ail endomorphisms of F of trace zéro; (2)

g $p (2m, R) n 2m, g is the Lie algebra of endomorphisms of F which
leave the following skew symmetric bilinear form of maximal rank, Q(x,y),
invariant. -.,Q{x,y) xxy2 — x2yx +....+ xn_xyn — xnyn_x\ (3)

g sp(2m, R) + Z, where Z center of gl(2m, R); (4)

g ôl(m, C) + U c g 1(2m, R), where U is a certain real subspace of the
center of gl(m, C); (5)

g sp(2m, C) + U c gl(4m, R), where U is a certain real subspace of the
center of gl(2ra,C). (6)

Let M be a compact manifold of dimension n &gt; 2, and let P(M, G) be
a ^-structure on M. If the Lie algebra g of G is one of the Lie algebras in (5)
or (6), it follows immediately from Example 4, Section 8, that the automorphism

group of P(M, G) is a Lie group. If the Lie algebra g of 6? is one of the
Lie algebras in (1), (2), (3), and (4), the group of automorphisms of a G-

structure P(M, G) is not in gênerai a Lie group.

Counterexample. Ail groups corresponding to (1), (2), (3), and (4) contain
SL(2,R) X Jn_2 as a Lie subgroup. SL(2,R) dénotes the spécial linear
group acting on the space spanned by the first two éléments of a basis in F ; /n_2
is the identity on the space spanned by the last n — 2 éléments of the same
basis. Let T be the torus obtained from R? by identifying the points (x, y) and

(x + p, y + q), where p and q are integers. The frame field (-^—, -^—I
2 \ox oyI

defines a SL(2, R) structure on T. The vector field f(y)-jr-, where f(p)
o x

P&gt; q integers, is an infinitésimal automorphism of this SL(2,R)
structure. The vector space of infinitésimal automorphisms is of infinité
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dimension. The automorphism group is therefore not a Lie group. (Since T is

compact, every infinitésimal automorphism générâtes a 1-parameter group of
automorphisms.

Additional applications of Theorem B can be obtained by considering non-
irreducible Lie algebras.

Let M be a compact differentiable manifold of dimension n 2 m and let g
be a commutative Lie algebra of endomorphisms on a 2ra-dimensional vector
space V such that for any élément a (a^)eg the foliowing équations hold:

Let G dénote the Lie subgroup of GL(n, R) whose Lie algebra is equal to g.
Computation of g(1) :

®j,k ^j+m,k ®k, 7+ m ®k+m, j+m ®&gt;j+m,k+m &gt;

and
r,i+m _ „% __ % __ ni + m ___ ni + m

^k^+m ^k+Myi+m ^j+m^k+m*
For every a (ap)eF*3 h (ap- ôql)el){1). The corollary to Theorem B ap-
plies. The automorphism group of a G-structure is a .£/# group.
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