
Actions of Rn on manifolds.

Autor(en): Rosenberg, Harold

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 41 (1966-1967)

Persistenter Link: https://doi.org/10.5169/seals-31377

PDF erstellt am: 28.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-31377


Actions of Rn on manifolds

by Harold Rosenberg

We shall be concernée! with smooth manifolds F", compact and without boundary,
and actions of R"'1 on F ail of whose orbits are « — 1 dimensional. The rank of F is

the largest k such that there is an action of Rk on F with k dimensional orbits; this is

the same as the maximal number of linearly independent vector fields on F which
pairwise commute. Elon Lima has proved the rank of S3 is one [1], and the author
proved the rank of S2 x S1 is one [4]. One of our results is a generalization of Lima's
theorem: the rank of a simply connected closed n manifold is less than n — 1. Un-
fortunately, the author knows of no n-dimensional sphère whose rank is greater than
one.

We also consider M x S1 where M is a closed two-dimensional manifold of genus
greater than one. Our results are not complète; we do not know the rank of this space.
We do prove, however, that if there is a locally free action of R2 on MxS1, then
it must hâve a torus orbit, embedded in a nontrivial way.1)

Définitions and Notation

An action <P of a Lie Group G on F is a differentiable map <P : G x V-+ V such that
(i) $(gh9 x)=<P(g, <P(h, x))for allg, AeGand jceF, and(ii) <P(e, x)=xfot xeV, ethe
identity of (7. Given xeV, the isotropy subgroup of x is Hx {geG/<Pg(x) x}9 it is

a closed subgroup of F. The orbit or leaf of x is {<Pg(x)/geG}. The action $ induces a

1 — 1 continuous map of G/Hx onto Lx< the orbit of x.
If Jf!,..., Xk are vector fields on F, we say they pairwise commute if [Xh ^1=0

for ail i andy. Let Fbe a closed manifold and £*,..., £* the intégral curves of Xu..., Xk

respectively. We know [Xb Xj]=0 is équivalent to £Î£/=£/££ for ail real numbers

s and t.
When G=RK, an action of G on Fis équivalent to ^commuting vector field (we

assume F is closed); the relation is

*fcx) (#•£¦•.••&)(*), t (tu...,tk)eRk.
We call # a locally free action if ail the orbits are ^-dimensional.

Suppose w 3 and k=2. The orbits of x are classified by their isotropy subgroups

Hx and we hâve the following possibilities. If the dimension of Hx is two, then

Hx=R2 and Lx=X. When Hx has dimension one we hâve Hx=L+nv,L& Une through
the origin and veR2, n=0, ±1, ±2,... Lx is then a line or circle (i.e., 1-1 continuous

Conversations withElon LimaandAndré Haefligerwere very useful in the préparation of this paper.
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image of) depending on the direction of v. The case dimension Hx=0 gives three
possible orbits. When HX ZU, Z the group of integers, ueR2, we hâve LX R2 or a
cylinder depending on whether w 0 or w#0. If Hx Zu + Zv with u and v inde-
pendent, then Hx is a torus.

1. The Existence of Compact Leaves

Theorem 1.1. (Reeb [2]). Let V be a closed Riemannian manifold and œ a closed

oneform on V satisfying ||û>|| 1. Let F be thefoliation of V defined by œ 0. Then the
leaves ofF are homeomorphic and ifL is one leaf there is a covering map p:Rx L-+ V.

Proof Since ||co|| l, the foliation is oriented, and we may choose a unit vector
field on V orthogonal to the foliation.

The orthogonal trajectories to a leafFare geodesics [3]. Let Ws(x) be a parametriza-
tion by arc length of the orthogonal trajectory through x. For each x, there is a

neighborhood U of x, where we may define a smooth function s (y) by s (y) the
distance of the point y from the leaf containing x. Our assumptions imply co ds

locally.
If L is a leaf of F and s a real number, œ vanishes on WS(L). Thus Ws carries

leaves into leaves. The set {*Fs(L)\seR} is open and closed in V, hence ail of V. This

proves the first assertion.
Let x0 g F, and H be the subgroup of n t F, x0) of homotopy classes representable

by closed curves h at x0 such that

h

Hère we use the hypothesis dœ 0.

Let W be the connected covering space of V over H. On W we hâve the one form
co*=/?*a) and a foliation Fo defined by co* 0. JFinherits a Riemannian metric such

that ||û)*|| 1; œ* is never zéro, and dco* 0.

Let a be a closed curve in W based at some point in p~l(x0). Since

(JÛ

and pa represents an élément of H, we hâve

It follows easily that the intégral of a>* about any closed curve in W is zéro. Thus

eo*=4f for some smooth function/on W. The level surfaces of/are precisely the
leaves of Fo. Each orthogonal trajectory to Fo is an embedding of R in W and each
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leaf meets an orthogonal trajectory in precisely one point. Hence W is homeomor-
phic to R x Lo, where LoeFo, and for each t, txL0 corresponds to a leaf of Fo.

We observe that Lo is homeomorphic to p(L0) L, a leaf of F. There is a map
L-+Lo defined as follows: fix xoeL and jceL0 such thatpx x0. For xeL, let h be a

path in L from x0 to x. Lift A to a path a in Lo starting at x. We map L-*L0 by
sending x to a(l), the endpoint of a. This map does not dépend on the path h, since
closed paths in L lift to closed paths in LQ. Thus F may be covered by R x L.

Theorem 1.2 (Sacksteder [5]). Le* <P be a locally free action of Rn~x on a closed

n manifold F, such that no orbit is compact. There is a Riemannian metric on V and a
closed non-vanishing one form co of norm one, such that the foliation defined by co 0

is the same as the foliation defined by <f>. This foliation admits a simple closed curve as

an orthogonal trajectory.

Corollary 1.3: Let V be a closed n manifold with non-Abelian fundamental group.
Then each locally free action of Rn~x on V has a non-simply connected leaf

Proof Suppose the orbits of # are simply connected. Then theorems 1.1 and 1.2

imply Fis covered by R" and H={[a]en1(V)\$aco 0} is isomorphic to ni(Rn) hence

trivial. But H contains the commutator subgroup of F, hence n1(V)is abelian.

Corollary 1.4: Let 0 be a locally free action of R2 on MxS1 where M is a

closed 2-dimensional manifold of genus greater thon one. Then $ has a compact orbit
(a torus).

Proof Since nx(Mx S1) is not abelian we know ail the orbits of # cannot be R2.

If ^ has no compact orbit, ail of the orbits are the one to one continuous image of
RxS1, and each orbit is dense in MxS1. Let X and Y be linearly independent
commuting vector fields on MxS1 such that X and Y span the orbits of <P. Let

xQ e V= MxS1. The isotropy subgroup ofR2 at x0 is a discrète group on one generator ;

hence, we may find real numbers a, b, c, d such that the vector fields Xf aX+b Y,

Y' cX+dYeirG linearly independent and the X' orbit through x0 is a simple closed

curve y. Let £ t and rjx be the intégral curves ofX' and Y'. Because X' and Y' commute,
we hâve £>tnt=nx£t for ail / and t. Thus rjt(y) is also a simple closed curve for ail t.
Since the 4> orbit of x0 is dense in F, it follows from continuity that ail the intégral
curves of X' are simple closed curves. Moreover, the foliation of F induced by #
may be assumed oriented which implies the intégral curves ofX' hâve the same period.
Cofisider the quotient space F of F obtained by identifying each intégral curve of X'
to a point. F is a closed two-dimensional orientable manifold. By choosing a non-

zero normal vector field to the orbits of <P we obtain a non-zero vector field on Y;
hence Ymust be a two-dimensional torus. But this means MxS1 is a circle bundle

over a two torus which is easily seen to be a contradiction. Simply consider the

homotopy exact séquence of this fibre bundle. Thus some orbit of $ is compact.
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Theorem 1.4. Let 0 be a locally free action of Rn~x on a closedn manifold V and
assume $> has no compact orbits. There is a covering map p.R"'1 x S1-» F.

Proof. We may apply 1.2 to obtain a metric on F and closed non-vanishing one
form a) of norm one which defines the foliation induced by 4>. Let y :/-? F be a para-
metrization by arc length of the closed orthogonal trajectory through x0; i.e.,

j(0)=j(\) xo,j(tl)^j(t2) if tt^t2,0<tu t2<l andy(/) is orthogonal to $. It is

no loss of generality to assume this orbit has length one.
Let L be the # orbit of x0. By 1.1 we know Fis covered by R x L. IfLis not simply

connected, then L Rn~ixTi~l where T1'1 is the i —1 dimensional torus and i">1.
In this case R x L is covered by JR""1 x S1. So we may assume L is the one to one
continuous image of Rn~1 which implies each orbit of # is of the same type. We state
in [4] that thèse assumptions imply Fis covered by R"'1 x S1. Since this was stated

without proof, we give the proof hère.

Let H be the subgroup of n1(V, x0) generated by the homotopy class ofj. Let W
be the connected covering space of F over H with covering map p. We will prove W
is homeomorphic to Rn"1 xS1.

We may think of W as the quotient space of the space of paths h : /-» F starting at

x0 where ht is identified with h2 ifhi(l) h2(\) and h1h2
1

represents an élément of H.
Parametrizey* by arc length so that the distance ofj(i) to x0 is t.

DefineapathA(T) at x0 by h{x){i)=j{tx), 0<t<1. Let £/(t)=(/*(t))=équivalence
class of h{x) in W. We hâve (7(0)=£/(l) since A(l)=j, ^(0)=^ constant path at

x0, and h{\)h($)~~l=j represents an élément of H. Also U{x))^U{x2) for t^Tj,
0<t2,t2<1, since h{x1)¥'h{x2). Hence C/is a simple closed curve in FFsuchthat/?£/=j.

Let #0 be a lifting of the action 4> to an action on W; that is, ^^0 ^(1 xp),
l the identity map of .R""1. The orbits of 4>0 cover the orbits of # hence they are
also the one to one continuous image of R"'1. To complète the proof we will show

each orbit of #0 intersects the image of U is pre precisely one point.
Suppose some orbits A of <P0 meets U in two points (/i(Ti)) an<l (^(T2))- Let

\i\l-+A be a path joining (h(x^j) to (h(x2)); pfi fi is a path ft-omy'^) toy^) con"
tained in the orbit pA.
For 0 < x < 1, define ?/(t): /-> F by

Then ^(0)=/i(T1)°Ci(tl), ^(1) A(t1)°j8 so that ^/î^!) 1 is homotopic to CXQ. Let/
be the path in W9 f(x) (rj(x)). We hâve pf(x) rj(x)(l) P(x) and/(0)=(^(0))
(/?(t1)).Since pm=0 and ^(O) (A(t1)), we hâve ju=/; in particular ju(1)=/(1),

(^(^i)^) so that A^OPACia)"1 represents an élément of H. Hence
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is an integer multiple of \jw. However,

VV W — W+ U T1-T2
1

i.e., f^w=0since /Hies in one leaf. Consequently, t1 t2 or t^I, t2 0. In any case

^h(t1))=(h(x2)) and A meets U in at most one point.
Now we will show A meets U in at least one point. Let (h) be a point of A. We

shall construct a map G:/x/->F satisfying: G(l, t)=h(t)9 G(0, /)=/*(a)(f) for some
real number a9 (7(s, O) jt0 and (/(s, 1) is in the orbit through h(\) for 0<s< 1. The

map ,s~+((j(.s, is then a path in ^4 joining (h) to (/*(#)); where G(s9 means the

map G (s, )(t) G(s9 t). Since (ha) is a point of V this will complète the proof.
Observe that a curve h in F is homotopic to a curve consisting of segments such that
each segment is an arc of an orthogonal trajectory or is entirely contained in one leaf.

Therefore we may assume there exists numbers 0=to<tl<--<tk=l such that for
each /, the arc h[ti9 ti+1] is either a segment of an orthogonal trajectory or is

contained in one leaf.

Let L be a leaf of <P and xeL; C(i) a curve in L starting at x. The orthogonal
trajectories are infinitely extendable, hence for any positive number ,s0, the orthogonal
trajectories of length ,s0 along C define a map F: Ix [0, ^0]"^ ^ suc^ that for fixed /,

F(t, s) is an orthogonal trajectory with F(t, 0) C(t)9 and F(t9 s) is the point a distance

s from C(t) along the orthogonal trajectory through C(i). Moreover, the metric on V

guarantees the points F(t, s), for fixed s, are contained in the leaf through i^O, s).

Now G is defined as follows. We may assume h[t0, tt] is contained in the leaf L
through x0, and h[tl912] is an orthogonal arc. Let C be the path h[t0, /J and s0 the

length of h[tu t2], Apply the last paragraph to obtain a map Ft:/x [0, so]-*V such

that Fi(09s)=j(s% Fi(l9s)=h(tl+s) and Ft(t9 s0) is in the orbit through j(so) for

O^^l. Repeat this construction with C the curve Fi(t9s0) followed by h[t2, t3].

Induction on k yields the desired map G. This complètes the proof of 1.4.

Corollary 1.5. Let V be a closedn manifold which cannot be covered by Rn~l xSl.
Then a locally free action of R""1 on V has a compact orbit.

Lemma 1.6. Let D {(x1, x29 0,..., 0)eRn\xl + xl<l}, {^i,..,^-i} the /i-l
frame on ÔD defined as follows: ex(xi9 xl9 0,..., 0) (-x2, xi9 0,---, 0), e2=(0, 0,1, 0,

0),...,eB_1=(0, 0,...,0,1). Then {eî9...9 en_J does not extend to an«-l frame

on D.
The frame {ei9...9en^t} represents the nonzero élément of 7t1(50(/i)). This is

proved in Chevalley's book on Lie Groups.

Theorem 1.7. Let V be a simply connected closed n manifold. The rank of V is

less thon n — \.
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Proof. The case n 3 has been proved by Lima [1], and n 4 is trivial since a

simply connectée 4 manifold does not admit a foliation of codimension one; it does

not admit a nonzero vector field. So we assume n>5.
Let 4> be a locally free action of Rn~i on V. According to 1.5, 4> has a torus orbit T.

Since V is simply connected, /:1c V, induces the zéro homomorphism. Thus there is

a simple closed curve C on T which bounds an embedded two-dimensional disk D
in V such that D is transverse to T, (hère we use n>5). But this contradicts 1.6, (cf.
[1]).

2, Locally Free Actions of R2 on M x S1

(2.1) Le/ D be a two-dimensional disk with k contours in the interior of D. Let
V=D x / and S be an embedded sphère in V. Then S bounds an embedded bail.

Proof. For k 0 this is Schoenflies Theorem. We consider the case k=l. Let C
be an embedding of [0,1] in D with one endpoint on dD, the other on the contour, and
interior Ce interior D. If SnA ^4>, A CxI, then we may eut V along A to obtain a
3 bail; this is the case fc=0. Assume then, that SnA^Q and the intersection is

transverse. This is no loss of generality since S may be approximated by an embedded

sphère which is transverse to A and then there is a diffeomorphism of V sending one

sphère onto the other. Let at..., ak be the simple closed curves in SnA. Choose

aj so that aj bounds a disk E on S and Iscontainsnoo^in its interior. A is homeo-

morphic to /x/ so aj bounds a disk F on A. Consider the sphère Eu F. For our
purposes this sphère is disjoint from A, i.e., .Eu F bounds a bail B in V. Now by an

isotopy of B across A we obtain a sphère So which intersects A in the curves ax u...u
âj\j...Kjak (cf. [4] for détails). Continuing we see S is isotopic to a sphère which does

not intersect A, hence bounds a bail. The gênerai case is just as easy.

Suppose there are k contours with k>\. Let C be an embedding of /in D with both
endpoints on distinct contours and interior Ce interior D. If SnA <P, A CxI,
then by cutting V along A we reduce the problem to k — 1 contours. Otherwise we
take the intersection to be transverse and displace S off A as above.

(2.2) Let M be a closed two-dimensional orientable manifold of connectivity h>\.
Let S be a sphère embedded in MxS1. Then S bounds an embedded bail in MxS1.

Proof Let al9...9 ak9 k (h+i)/2 be simple closed curves on M as indicated in
figure 1.

^~ ~i —^
M

Fig. 1
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Dénote by Ai^aixS19 and ^=^^-^4 A séparâtes V into two connectée

components Ex and E2 ; Ex Wt x Su E2 W2 x 5ls where W^, WK2 are ^e connected

components of M—(a1Kj...Kjak). Wt and W2 are disks with k — \ contours. We may
think of Mx S1 as the quotient space of Mx I where (x, 0) is identified with (jc, 1),

and we identify M with MxOeMxS1.
Suppose S is embedded in V so that S is disjoint from M. If S is also disjoint from

A then S is contained in ^ or E2. Assume ScEv We hâve Et-Wxxl where FKt x 0

is identifiçd with Wx x 1. Since SnM=<P9 S is really contained in a subspace of V
homeomorphic to Wx x I and by (2.1), S bounds a bail in this subspace, hence in V.

Otherwise we may assume S meets A transversally. Let b be a simple closed curve
in Sr\A such that b bounds a disk E on S whose interior is disjoint from A. Since

SnM=<P9 b bounds a disk E contained in at x I for some i. Then Fu E is a spheric
contained in Wt x I or W2xl hence FkjE bounds a bail. Now by displacing E across
this bail we see that S is isotopic to a sphère having one less circle of intersection
with A. Continuing in this way, we obtain a sphère isotopic to S whose intersection
with A r\M is void hence this sphère bounds a bail and S also bounds a bail.

It remains to consider the case SnM^0. Let S meet M transversally, and b be a

simple closed curve in SnM which bounds a disk E on S whose interior is disjoint
from M. Since the inclusion of M in V induces a monomorphism of n1(M) into

nt(V), b must be null homotopic on M hence b bounds a disk F on M. The sphère

isuFis (for ail practical purposes) disjoint from M hence bounds a bail in V. Then S

may be displaced in F to a sphère having one less intersection curve with M and iter-

ating the process removes S from M entirely. This complètes the proof of 2.2.

(2.3) Let Tbe a torus embedded in the interior ofMxI where M is a closed orientable

two-dimensional manifold ofgenus greater than one. Then Tséparâtes Mxl into

two connected components. Moreover MxO and Mxl are contained in the same

connected component*
Proof. Let i be the inclusion map of T into M x I. The map /* : H2 (T)-+H2 (M x I)

is zéro since Mx/may be retracted onto MxO=M, and M has genus greater than

one so any map of T to M has degree zéro. We must compute H0(MxI—T) (ail

homology and cohomology groups are with Z2 coefficients). By Lefshetz Duality

H0(Mx/-r) is isomorphic to H*(MxI;T). Consider the exact séquence in
cohomology:

H2(Mx I)-*H2(T)->H*(MxI;T)-+H3(M x J)->ff3(T)
The first map is zéro since it is the transpose of f* and the last group is zéro. The

second and foûrth groups are Z2, hence H3(MxI;T) Z2 + Z2. This proves the

first part of 2.3.

Now we will prove MxO and Mxl are in the same component. Let ax and a2

be simple closed curves on Mx0, as in 2.2.
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Let T intersect at x I and a2 x / transversally. If T is disjoint from at x I or a2 x /
then we may find a curve from M x 0 to M x 1 not meeting T. Assume then that
fn(a1x/) fc1u...uik, Tn(a2x/) c1u...uc/, where the 6/s and c/s are pair-
wise disjoint simple closed curves.

If each bh or each cj9 is null homotopic in Mx/, then we can join ^xO to
at x 1 (or a2x0toa2x 1) by arcs in at x /— T(or a2 x I—T). So we may suppose there
is a ôj and Cj such that fcf and Cj are not homotopically trivial. Clearly bt is homotopic
to at and cy to a2. Now 6f and c,- are disjoint simple closed curves on the torus jTand
both represent generators of nt(T), hence bt and Cj are the boundary circles of a

cylinder on T. This implies at is homotopic to a2 in M which is a contradiction. Thus
MxO and Mx 1 are in the same connected component of Mxl—T.

(2.4) Le/ T be a torus embedded in MxS1 where M is a closed orientable two
manifold of genus greater than one. If Tn(Mxxo) <P for some XqeS1, then T
séparâtes MxS1 into two connected components A and B.Ifh and g are the inclusion

maps of T into A and B respectively, then h#:niL(T)-+n1(A) or g^'-Ti1{T)-^n1{S) has

a nonzero kernel,

It remains to establish the latter assertion of 2.4. First we need an algebraic fact
whose proof may be found in Kurosh, volume two.

(2.5) Let Gu G2 and H be groups such that there are subgroups Ht and H2 of
Gi9 G2 respectively each isomorphic to H. Dénote by Gt*HG2 thefreeproduct of GY

and G2 with H amalgamated. Every élément of Gx *HG2 can be written uniquely in

theform
hâiâ2...dn

where heH, n>09 a{ is a coset représentative, other than the unit élément, of a right
coset of Ht in Gif i l,2, and adjacent représentatives ah ai+u ï=l,..., n — 1, lie in
distinct G/s.

From this it follows easily that the center ofGi*HG2 is contained in H.
Proof of 2.4. Suppose that h* and g* are both monomorphisms. Let Gi nl(A)9

Hl=h*nl(T), G2 n1 (B), H2=g*nx(T) SinàH=nl(T). According to Van Kampen's
Theorem and (2.3) we hâve

x Si)=Gi*HG2.

Since n1 {S1) is contained in the center of nt{Mx S1) and the center of G1*HG2
is contained in H, we hâve n^S1) contained in n^T). But T is disjoint from Mxx0
for some XqgS1, hence no curve on T can represent a generator of n^S1). Thus h*
or g# is not a monomorphism.

(3.1) Let $ be a locallyfree action ofR2 on MxS1 with M a closed two manifold
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of genus greater than one. Then 4> has a compact orbit, and each compact orbit of <P

in tersec îs M.
This follows immediately from 1.4, 2.4 and [1].

(3.2) IfTisa compact orbit of$, then TnM contains a curve which isagenerator
ofn^T).

Proof. Assume T is transverse to M and each curve in TnM is trivial in ni(T).
Let b be such a curve. Then b bounds a disk E on Ty hence also bounds a disk F on
M and the sphère Eu F bounds a bail in Mx S1 by 2.2. Thus the intersection curve b

may be removed from m by an isotopy of Mx S1 and ail intersection curves may be

so removed. This gives rise to a new action which is locally free and has a compact
orbit disjoint from M. But 3.1. contradicts this.
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