Actions of Rn on manifolds.

Autor(en): Rosenberg, Harold
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 41 (1966-1967)

PDF erstellt am:
 28.05.2024

Persistenter Link: https://doi.org/10.5169/seals-31377

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Actions of $R^{\boldsymbol{n}}$ on manifolds

by Harold Rosenberg

We shall be concerned with smooth manifolds V^{n}, compact and without boundary, and actions of R^{n-1} on V all of whose orbits are $n-1$ dimensional. The rank of V is the largest k such that there is an action of R^{k} on V with k dimensional orbits; this is the same as the maximal number of linearly independent vector fields on V which pairwise commute. Elon Lima has proved the rank of S^{3} is one [1], and the author proved the rank of $S^{2} \times S^{1}$ is one [4]. One of our results is a generalization of Lima's theorem: the rank of a simply connected closed n manifold is less than $n-1$. Unfortunately, the author knows of no n-dimensional sphere whose rank is greater than one.

We also consider $M \times S^{1}$ where M is a closed two-dimensional manifold of genus greater than one. Our results are not complete; we do not know the rank of this space. We do prove, however, that if there is a locally free action of R^{2} on $M \times S^{1}$, then it must have a torus orbit, embedded in a nontrivial way. ${ }^{1}$)

Definitions and Notation

An action Φ of a Lie Group G on V is a differentiable map $\Phi: G \times V \rightarrow V$ such that (i) $\Phi(g h, x)=\Phi(g, \Phi(h, x))$ for all $g, h \in G$ and $x \in V$, and (ii) $\Phi(e, x)=x$ for $x \in V, e$ the identity of G. Given $x \in V$, the isotropy subgroup of x is $H_{x}=\left\{g \in G / \Phi_{g}(x)=x\right\}$, it is a closed subgroup of V. The orbit or leaf of x is $\left\{\Phi_{g}(x) / g \in G\right\}$. The action Φ induces a $1-1$ continuous map of G / H_{x} onto L_{x}, the orbit of x.

If X_{1}, \ldots, X_{k} are vector fields on V, we say they pairwise commute if $\left[X_{i}, X_{j}\right] \equiv 0$ for all i and j. Let V be a closed manifold and ξ^{1}, \ldots, ξ^{k} the integral curves of X_{1}, \ldots, X_{k} respectively. We know $\left[X_{i}, X_{j}\right] \equiv 0$ is equivalent to $\xi_{s}^{i} \xi_{t}^{j}=\xi_{t}^{j} \xi_{s}^{i}$ for all real numbers s and t.

When $G=R^{K}$, an action of G on V is equivalent to K commuting vector field (we assume V is closed); the relation is

$$
\Phi(t, x)=\left(\xi_{t_{1}}^{1} \circ \xi_{t_{2}}^{2} \circ \ldots \circ \xi_{t_{k}}^{k}\right)(x), \quad t=\left(t_{1}, \ldots, t_{k}\right) \in R^{k}
$$

We call Φ a locally free action if all the orbits are K-dimensional.
Suppose $n=3$ and $k=2$. The orbits of x are classified by their isotropy subgroups H_{x} and we have the following possibilities. If the dimension of H_{x} is two, then $H_{x}=R^{2}$ and $L_{x}=X$. When H_{x} has dimension one we have $H_{x}=L+n v, L$ a line through the origin and $v \in R^{2}, n=0, \pm 1, \pm 2, \ldots L_{x}$ is then a line or circle (i.e., $1-1$ continuous

[^0]image of) depending on the direction of v. The case dimension $H_{x}=0$ gives three possible orbits. When $H_{x}=Z_{u}, Z$ the group of integers, $u \in R^{2}$, we have $L_{x}=R^{2}$ or a cylinder depending on whether $u=0$ or $u \neq 0$. If $H_{x}=Z u+Z v$ with u and v independent, then H_{x} is a torus.

1. The Existence of Compact Leaves

Theorem 1.1. (Reeb [2]). Let V be a closed Riemannian manifold and ω a closed one form on V satisfying $\|\omega\|=1$. Let F be the foliation of V defined by $\omega=0$. Then the leaves of F are homeomorphic and if L is one leaf, there is a covering map $p: R \times L \rightarrow V$.

Proof. Since $\|\omega\|=1$, the foliation is oriented, and we may choose a unit vector field on V orthogonal to the foliation.

The orthogonal trajectories to a leaf F are geodesics [3]. Let $\Psi_{s}(x)$ be a parametrization by arc length of the orthogonal trajectory through x. For each x, there is a neighborhood U of x, where we may define a smooth function $s(y)$ by $s(y)=$ the distance of the point y from the leaf containing x. Our assumptions imply $\omega=d s$ locally.

If L is a leaf of F and s a real number, ω vanishes on $\Psi_{s}(L)$. Thus Ψ_{s} carries leaves into leaves. The set $\left\{\Psi_{s}(L) \mid s \in R\right\}$ is open and closed in V, hence all of V. This proves the first assertion.

Let $x_{0} \in V$, and H be the subgroup of $\pi_{1}\left(V, x_{0}\right)$ of homotopy classes representable by closed curves h at x_{0} such that

$$
\int_{h} \omega=0
$$

Here we use the hypothesis $d \omega=0$.
Let W be the connected covering space of V over H. On W we have the one form $\omega^{*}=p^{*} \omega$ and a foliation F_{0} defined by $\omega^{*}=0$. W inherits a Riemannian metric such that $\left\|\omega^{*}\right\|=1 ; \omega^{*}$ is never zero, and $d \omega^{*}=0$.

Let a be a closed curve in W based at some point in $p^{-1}\left(x_{0}\right)$. Since

$$
\int_{a} \omega^{*}=\int_{p a} \omega
$$

and $p a$ represents an element of H, we have

$$
\int_{a} \omega^{*}=0
$$

It follows easily that the integral of ω^{*} about any closed curve in W is zero. Thus $\omega^{*}=d f$ for some smooth function f on W. The level surfaces of f are precisely the leaves of F_{0}. Each orthogonal trajectory to F_{0} is an embedding of R in W and each
leaf meets an orthogonal trajectory in precisely one point. Hence W is homeomorphic to $R \times L_{0}$, where $L_{0} \in F_{0}$, and for each $t, t \times L_{0}$ corresponds to a leaf of F_{0}.

We observe that L_{0} is homeomorphic to $p\left(L_{0}\right)=L$, a leaf of F. There is a map $L \rightarrow L_{0}$ defined as follows: fix $x_{0} \in L$ and $\bar{x} \in L_{0}$ such that $p x=x_{0}$. For $x \in L$, let h be a path in L from x_{0} to x. Lift h to a path a in L_{0} starting at \bar{x}. We map $L \rightarrow L_{0}$ by sending x to $a(1)$, the endpoint of a. This map does not depend on the path h, since closed paths in L lift to closed paths in L_{0}. Thus V may be covered by $R \times L$.

Theorem 1.2 (Sacksteder [5]). Let Φ be a locally free action of R^{n-1} on a closed n manifold V, such that no orbit is compact. There is a Riemannian metric on V and a closed non-vanishing one form ω of norm one, such that the foliation defined by $\omega=0$ is the same as the foliation defined by Φ. This foliation admits a simple closed curve as an orthogonal trajectory.

Corollary 1.3: Let V be a closed n manifold with non-Abelian fundamental group. Then each locally free action of R^{n-1} on V has a non-simply connected leaf.

Proof. Suppose the orbits of Φ are simply connected. Then theorems 1.1 and 1.2 imply V is covered by R^{n} and $H=\left\{[a] \in \pi_{1}(V) \mid \int_{a} \omega=0\right\}$ is isomorphic to $\pi_{1}\left(R^{n}\right)$ hence trivial. But H contains the commutator subgroup of V, hence $\pi_{1}(V)$ is abelian.

Corollary 1.4: Let Φ be a locally free action of R^{2} on $M \times S^{1}$ where M is a closed 2-dimensional manifold of genus greater than one. Then Φ has a compact orbit (a torus).

Proof. Since $\pi_{1}\left(M \times S^{1}\right)$ is not abelian we know all the orbits of Φ cannot be R^{2}. If Φ has no compact orbit, all of the orbits are the one to one continuous image of $R \times S^{1}$, and each orbit is dense in $M \times S^{1}$. Let X and Y be linearly independent commuting vector fields on $M \times S^{1}$ such that X and Y span the orbits of Φ. Let $x_{0} \in V=M \times S^{1}$. The isotropy subgroup of R^{2} at x_{0} is a discrete group on one generator; hence, we may find real numbers a, b, c, d such that the vector fields $X^{\prime}=a X+b Y$, $Y^{\prime}=c X+d Y$ are linearly independent and the X^{\prime} orbit through x_{0} is a simple closed curve γ. Let ξt and η_{τ} be the integral curves of X^{\prime} and Y^{\prime}. Because X^{\prime} and Y^{\prime} commute, we have $\xi_{t} \eta_{\tau}=\eta_{\tau} \xi_{t}$ for all t and τ. Thus $\eta_{\tau}(\gamma)$ is also a simple closed curve for all τ. Since the Φ orbit of x_{0} is dense in V, it follows from continuity that all the integral curves of X^{\prime} are simple closed curves. Moreover, the foliation of V induced by Φ may be assumed oriented which implies the integral curves of X^{\prime} have the same period. Consider the quotient space Y of V obtained by identifying each integral curve of X^{\prime} to a point. Y is a closed two-dimensional orientable manifold. By choosing a nonzero normal vector field to the orbits of Φ we obtain a non-zero vector field on Y; hence Y must be a two-dimensional torus. But this means $M \times S^{1}$ is a circle bundle over a two torus which is easily seen to be a contradiction. Simply consider the homotopy exact sequence of this fibre bundle. Thus some orbit of Φ is compact.

Theorem 1.4. Let Φ be a locally free action of R^{n-1} on a closed n manifold V and assume Φ has no compact orbits. There is a covering map $p: R^{n-1} \times S^{1} \rightarrow V$.

Proof. We may apply 1.2 to obtain a metric on V and closed non-vanishing one form ω of norm one which defines the foliation induced by Φ. Let $j: I \rightarrow V$ be a parametrization by arc length of the closed orthogonal trajectory through x_{0}; i.e., $j(0)=j(1)=x_{0}, j\left(t_{1}\right) \neq j\left(t_{2}\right)$ if $t_{1} \neq t_{2}, 0<t_{1}, t_{2}<1$ and $j(I)$ is orthogonal to Φ. It is no loss of generality to assume this orbit has length one.

Let L be the Φ orbit of x_{0}. By 1.1 we know V is covered by $R \times L$. If L is not simply connected, then $L=R^{n-i} \times T^{i-1}$ where T^{i-1} is the $i-1$ dimensional torus and $i>1$. In this case $R \times L$ is covered by $R^{n-1} \times S^{1}$. So we may assume L is the one to one continuous image of R^{n-1} which implies each orbit of Φ is of the same type. We state in [4] that these assumptions imply V is covered by $R^{n-1} \times S^{1}$. Since this was stated without proof, we give the proof here.

Let H be the subgroup of $\pi_{1}\left(V, x_{0}\right)$ generated by the homotopy class of j. Let W be the connected covering space of V over H with covering map p. We will prove W is homeomorphic to $R^{n-1} \times S^{1}$.

We may think of W as the quotient space of the space of paths $h: I \rightarrow V$ starting at x_{0} where h_{1} is identified with h_{2} if $h_{1}(1)=h_{2}(1)$ and $h_{1} h_{2}^{-1}$ represents an element of H. Parametrize j by arc length so that the distance of $j(t)$ to x_{0} is t.

Define a path $h(\tau)$ at x_{0} by $h(\tau)(t)=j(t \tau), 0 \leq \tau \leq 1$. Let $U(\tau)=(h(\tau))=$ equivalence class of $h(\tau)$ in W. We have $U(0)=U(1)$ since $h(1)=j, h(0)=C_{x_{0}}=$ constant path at x_{0}, and $h(1) h(0)^{-1}=j$ represents an element of H. Also $U\left(\tau_{1}\right) \neq U\left(\tau_{2}\right)$ for $\tau_{1} \neq \tau_{2}$, $0<\tau_{2}, \tau_{2}<1$, since $h\left(\tau_{1}\right) \neq h\left(\tau_{2}\right)$. Hence U is a simple closed curve in W such that $p U=\mathrm{j}$.

Let Φ_{0} be a lifting of the action Φ to an action on W; that is, $p \Phi_{0}=\Phi(1 \times p)$, $1=$ the identity map of R^{n-1}. The orbits of Φ_{0} cover the orbits of Φ hence they are also the one to one continuous image of R^{n-1}. To complete the proof we will show each orbit of Φ_{0} intersects the image of U is pre precisely one point.

Suppose some orbits A of Φ_{0} meets U in two points $\left(h\left(\tau_{1}\right)\right)$ and $\left(h\left(\tau_{2}\right)\right)$. Let $\mu: I \rightarrow A$ be a path joining $\left(h\left(\tau_{1}\right)\right)$ to $\left(h\left(\tau_{2}\right)\right) ; p \mu=\beta$ is a path from $j\left(\tau_{1}\right)$ to $j\left(\tau_{2}\right)$ contained in the orbit $p A$.
For $0 \leq \tau \leq 1$, define $\eta(\tau): I \rightarrow V$ by

$$
\eta(\tau)(t)=\left\{\begin{array}{l}
j\left(2 t \tau_{1}\right), t \leq \frac{1}{2} \\
\beta(\tau(2 t-1)), t \geq \frac{1}{2}
\end{array}\right.
$$

Then $\eta(0)=h\left(\tau_{1}\right) \circ C_{j\left(\tau_{1}\right)}, \eta(1)=h\left(\tau_{1}\right) \circ \beta$ so that $\eta h\left(\tau_{1}\right)^{-1}$ is homotopic to $C_{x_{0}}$. Let f be the path in $W, f(\tau)=(\eta(\tau))$. We have $p f(\tau)=\eta(\tau)(1)=\beta(\tau)$ and $f(0)=(\eta(0))=$ $\left(h\left(\tau_{1}\right)\right)$. Since $p \mu=\beta$ and $\mu(0)=\left(h\left(\tau_{1}\right)\right)$, we have $\mu=f$; in particular $\mu(1)=f(1)$, $\left(h\left(\tau_{2}\right)\right)=(\eta(1))=\left(h\left(\tau_{1}\right) \beta\right)$ so that $h\left(\tau_{1}\right) \beta h\left(\tau_{2}\right)^{-1}$ represents an element of H. Hence

$$
\int_{h\left(\tau_{1}\right) \beta} w
$$

is an integer multiple of $\int_{j} w$. However,

$$
\int_{h\left(\tau_{1}\right) \beta} w=\int_{h\left(\tau_{2}\right)^{-1}} w-\int_{h\left(\tau_{1}\right)} w+\int_{\beta} w=\tau_{1}-\tau_{2}
$$

i.e., $\int_{\beta} w=0$ since β lies in one leaf. Consequently, $\tau_{1}=\tau_{2}$ or $\tau_{1}=1, \tau_{2}=0$. In any case $\left(h\left(\tau_{1}\right)\right)=\left(h\left(\tau_{2}\right)\right)$ and A meets U in at most one point.

Now we will show A meets U in at least one point. Let (h) be a point of A. We shall construct a map $G: I \times I \rightarrow V$ satisfying: $G(1, t)=h(t), G(0, t)=h(a)(t)$ for some real number $a, G(s, 0)=x_{0}$ and $G(s, 1)$ is in the orbit through $h(1)$ for $0 \leq s \leq 1$. The $\operatorname{map} s \rightarrow(G(s)$,$) is then a path in A$ joining (h) to $(h(a))$; where $G(s$,$) means the$ $\operatorname{map} G(s),(t)=G(s, t)$. Since $(h a)$ is a point of V this will complete the proof. Observe that a curve h in V is homotopic to a curve consisting of segments such that each segment is an arc of an orthogonal trajectory or is entirely contained in one leaf. Therefore we may assume there exists numbers $0=t_{0} \leq t_{1} \leq \cdots<t_{k}=1$ such that for each i, the arc $h\left[t_{i}, t_{i+1}\right]$ is either a segment of an orthogonal trajectory or is contained in one leaf.

Let L be a leaf of Φ and $x \in L ; C(t)$ a curve in L starting at x. The orthogonal trajectories are infinitely extendable, hence for any positive number s_{0}, the orthogonal trajectories of length s_{0} along C define a map $F: I \times\left[0, s_{0}\right] \rightarrow V$ such that for fixed t, $F(t, s)$ is an orthogonal trajectory with $F(t, 0)=C(t)$, and $F(t, s)$ is the point a distance s from $C(t)$ along the orthogonal trajectory through $C(t)$. Moreover, the metric on V guarantees the points $F(t, s)$, for fixed s, are contained in the leaf through $F(0, s)$.

Now G is defined as follows. We may assume $h\left[t_{0}, t_{1}\right]$ is contained in the leaf L through x_{0}, and $h\left[t_{1}, t_{2}\right]$ is an orthogonal arc. Let C be the path $h\left[t_{0}, t_{1}\right]$ and s_{0} the length of $h\left[t_{1}, t_{2}\right]$. Apply the last paragraph to obtain a map $F_{1}: I \times\left[0, s_{0}\right] \rightarrow V$ such that $F_{1}(0, s)=j(s), F_{1}(1, s)=h\left(t_{1}+s\right)$ and $F_{1}\left(t, s_{0}\right)$ is in the orbit through $j\left(s_{0}\right)$ for $0 \leq t \leq 1$. Repeat this construction with C the curve $F_{1}\left(t, s_{0}\right)$ followed by $h\left[t_{2}, t_{3}\right]$. Induction on k yields the desired map G. This completes the proof of 1.4.

Corollary 1.5. Let V be a closed n manifold which cannot be covered by $R^{n-1} \times S^{1}$. Then a locally free action of R^{n-1} on V has a compact orbit.

Lemma 1.6. Let $D=\left\{\left(x_{1}, x_{2}, 0, \ldots, 0\right) \in R^{n} \mid x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \quad\left\{e_{1}, \ldots, e_{n-1}\right\}$ the $n-1$ frame on ∂D defined as follows: $e_{1}\left(x_{1}, x_{2}, 0, \ldots, 0\right)=\left(-x_{2}, x_{1}, 0, \cdots, 0\right), e_{2}=(0,0,1,0$, $\ldots, 0), \ldots, e_{n-1}=(0,0, \ldots, 0,1)$. Then $\left\{e_{1}, \ldots, e_{n-1}\right\}$ does not extend to an $n-1$ frame on D.

The frame $\left\{e_{1}, \ldots, e_{n-1}\right\}$ represents the nonzero element of $\pi_{1}(S 0(n))$. This is proved in Chevalley's book on Lie Groups.

TheOrem 1.7. Let V be a simply connected closed n manifold. The rank of V is less than $n-1$.

Proof. The case $n=3$ has been proved by Lima [1], and $n=4$ is trivial since a simply connected 4 manifold does not admit a foliation of codimension one; it does not admit a nonzero vector field. So we assume $n \geq 5$.

Let Φ be a locally free action of R^{n-1} on V. According to $1.5, \Phi$ has a torus orbit T. Since V is simply connected, $i: T \subset V$, induces the zero homomorphism. Thus there is a simple closed curve C on T which bounds an embedded two-dimensional disk D in V such that D is transverse to T, (here we use $n \geq 5$). But this contradicts 1.6 , (cf. [1]).

2. Locally Free Actions of R^{2} on $M \times S^{1}$

(2.1) Let D be a two-dimensional disk with k contours in the interior of D. Let $V=D \times I$ and S be an embedded sphere in V. Then S bounds an embedded ball.

Proof. For $k=0$ this is Schoenflies Theorem. We consider the case $k=1$. Let C be an embedding of $[0,1]$ in D with one endpoint on ∂D, the other on the contour, and interior $C \subset$ interior D. If $S \cap A \neq \Phi, A=C \times I$, then we may cut V along A to obtain a 3 ball; this is the case $k=0$. Assume then, that $S \cap A \neq \Phi$ and the intersection is transverse. This is no loss of generality since S may be approximated by an embedded sphere which is transverse to A and then there is a diffeomorphism of V sending one sphere onto the other. Let $a_{1} \ldots, a_{k}$ be the simple closed curves in $S \cap A$. Choose a_{j} so that a_{j} bounds a disk E on S and E contains no a_{i} in its interior. A is homeomorphic to $I \times I$ so a_{j} bounds a disk F on A. Consider the sphere $E \cup F$. For our purposes this sphere is disjoint from A, i.e., $E \cup F$ bounds a ball B in V. Now by an isotopy of B across A we obtain a sphere S_{0} which intersects A in the curves $a_{1} \cup \ldots \cup$ $\hat{a}_{j} \cup \ldots \cup a_{k}$ (cf. [4] for details). Continuing we see S is isotopic to a sphere which does not intersect A, hence bounds a ball. The general case is just as easy.

Suppose there are k contours with $k>1$. Let C be an embedding of I in D with both endpoints on distinct contours and interior $C \subset$ interior D. If $S \cap A=\Phi, A=C \times I$, then by cutting V along A we reduce the problem to $k-1$ contours. Otherwise we take the intersection to be transverse and displace S off A as above.
(2.2) Let M be a closed two-dimensional orientable manifold of connectivity $h>1$. Let S be a sphere embedded in $M \times S^{1}$. Then S bounds an embedded ball in $M \times S^{1}$.

Proof. Let $a_{1}, \ldots, a_{k}, k=(h+1) / 2$ be simple closed curves on M as indicated in figure 1.

Fig. 1

Denote by $A_{i}=a_{i} \times S^{1}$, and $A=A_{1} \cup \cdots \cup A_{k}$. A separates V into two connected components E_{1} and $E_{2} ; E_{1}=W_{1} \times S_{1}, E_{2}=W_{2} \times S_{1}$, where W_{1}, W_{2} are the connected components of $M-\left(a_{1} \cup \ldots \cup a_{k}\right) . W_{1}$ and W_{2} are disks with $k-1$ contours. We may think of $M \times S^{1}$ as the quotient space of $M \times I$ where $(x, 0)$ is identified with $(x, 1)$, and we identify M with $M \times 0 \in M \times S^{1}$.

Suppose S is embedded in V so that S is disjoint from M. If S is also disjoint from A then S is contained in E_{1} or E_{2}. Assume $S \subset E_{1}$. We have $E_{1}=W_{1} \times I$ where $W_{1} \times 0$ is identified with $W_{1} \times 1$. Since $S \cap M=\Phi, S$ is really contained in a subspace of V homeomorphic to $W_{1} \times I$ and by (2.1), S bounds a ball in this subspace, hence in V. Otherwise we may assume S meets A transversally. Let b be a simple closed curve in $S \cap A$ such that b bounds a disk E on S whose interior is disjoint from A. Since $S \cap M=\Phi, b$ bounds a disk F contained in $a_{i} \times I$ for some i. Then $F \cup E$ is a spheric contained in $W_{1} \times I$ or $W_{2} \times I$ hence $F \cup E$ bounds a ball. Now by displacing E across this ball we see that S is isotopic to a sphere having one less circle of intersection with A. Continuing in this way, we obtain a sphere isotopic to S whose intersection with $A \cap M$ is void hence this sphere bounds a ball and S also bounds a ball.

It remains to consider the case $S \cap M \neq \Phi$. Let S meet M transversally, and b be a simple closed curve in $S \cap M$ which bounds a disk E on S whose interior is disjoint from M. Since the inclusion of M in V induces a monomorphism of $\pi_{1}(M)$ into $\pi_{1}(V), b$ must be null homotopic on M hence b bounds a disk F on M. The sphere $E \cup F$ is (for all practical purposes) disjoint from M hence bounds a ball in V. Then S may be displaced in V to a sphere having one less intersection curve with M and iterating the process removes S from M entirely. This completes the proof of 2.2 .
(2.3) Let T be a torus embedded in the interior of $M \times I$ where M is a closed orientable two-dimensional manifold of genus greater than one. Then T separates $M \times I$ into two connected components. Moreover $M \times 0$ and $M \times I$ are contained in the same connected component.

Proof. Let i be the inclusion map of T into $M \times I$. The map $i_{*}: H_{2}(T) \rightarrow H_{2}(M \times I)$ is zero since $M \times I$ may be retracted onto $M \times 0=M$, and M has genus greater than one so any map of T to M has degree zero. We must compute $H_{0}(M \times I-T)$ (all homology and cohomology groups are with Z_{2} coefficients). By Lefshetz Duality $H_{0}(M \times I-T)$ is isomorphic to $H^{3}(M \times I ; T)$. Consider the exact sequence in cohomology:

$$
H^{2}(M \times I) \rightarrow H^{2}(T) \rightarrow H^{3}(M \times I ; T) \rightarrow H^{3}(M \times I) \rightarrow H^{3}(T)
$$

The first map is zero since it is the transpose of $i_{\boldsymbol{*}}$ and the last group is zero. The second and foürth groups are Z_{2}, hence $H^{3}(M \times I ; T)=Z_{2}+Z_{2}$. This proves the first part of 2.3.

Now we will prove $M \times 0$ and $M \times 1$ are in the same component. Let a_{1} and a_{2} be simple closed curves on $M \times 0$, as in 2.2.

Let T intersect $a_{1} \times I$ and $a_{2} \times I$ transversally. If T is disjoint from $a_{1} \times I$ or $a_{2} \times I$ then we may find a curve from $M \times 0$ to $M \times 1$ not meeting T. Assume then that $T \cap\left(a_{1} \times I\right)=b_{1} \cup \ldots \cup b_{k}, T \cap\left(a_{2} \times I\right)=c_{1} \cup \ldots \cup c_{l}$, where the b_{i} 's and c_{j} 's are pairwise disjoint simple closed curves.

If each b_{i}, or each c_{j}, is null homotopic in $M \times I$, then we can join $a_{1} \times 0$ to $a_{1} \times 1$ (or $a_{2} \times 0$ to $a_{2} \times 1$) by arcs in $a_{1} \times I-T$ (or $a_{2} \times I-T$). So we may suppose there is a b_{i} and c_{j} such that b_{i} and c_{j} are not homotopically trivial. Clearly b_{i} is homotopic to a_{1} and c_{j} to a_{2}. Now b_{i} and c_{j} are disjoint simple closed curves on the torus T and both represent generators of $\pi_{1}(T)$, hence b_{i} and c_{j} are the boundary circles of a cylinder on T. This implies a_{1} is homotopic to a_{2} in M which is a contradiction. Thus $M \times 0$ and $M \times 1$ are in the same connected component of $M \times I-T$.
(2.4) Let T be a torus embedded in $M \times S^{1}$ where M is a closed orientable two manifold of genus greater than one. If $T \cap\left(M \times x_{0}\right)=\Phi$ for some $x_{0} \in S^{1}$, then T separates $M \times S^{1}$ into two connected components A and B. If h and g are the inclusion maps of T into A and B respectively, then $h_{*}: \pi_{1}(T) \rightarrow \pi_{1}(A)$ or $g_{*}: \pi_{1}(T) \rightarrow \pi_{1}(B)$ has a nonzero kernel.

It remains to establish the latter assertion of 2.4. First we need an algebraic fact whose proof may be found in Kurosh, volume two.
(2.5) Let G_{1}, G_{2} and H be groups such that there are subgroups H_{1} and H_{2} of G_{1}, G_{2} respectively each isomorphic to H. Denote by $G_{1}{ }^{*} H G_{2}$ the free product of G_{1} and G_{2}, with H amalgamated. Every element of $G_{1}{ }^{*} H G_{2}$ can be written uniquely in the form

$$
h \bar{a}_{1} \bar{a}_{2} \ldots \bar{a}_{n}
$$

where $h \in H, n \geq 0, \overline{a_{i}}$ is a coset representative, other than the unit element, of a right coset of H_{i} in $G_{i}, i=1,2$, and adjacent representatives $\overline{a_{i}}, \overline{a_{i+1}}, i=1, \ldots, n-1$, lie in distinct G_{i} 's.

From this it follows easily that the center of $G_{1}{ }^{*} H G_{2}$ is contained in H.
Proof of 2.4. Suppose that h_{*} and g_{*} are both monomorphisms. Let $G_{1}=\pi_{1}(A)$, $H_{1}=h_{*} \pi_{1}(T), G_{2}=\pi_{1}(B), H_{2}=g_{*} \pi_{1}(T)$ and $H=\pi_{1}(T)$. According to Van Kampen's Theorem and (2.3) we have

$$
\pi_{1}\left(M \times S^{1}\right)=G_{1}^{*} H G_{2}
$$

Since $\pi_{1}\left(S^{1}\right)$ is contained in the center of $\pi_{1}\left(M \times S^{1}\right)$ and the center of $G_{1}{ }^{*} H G_{2}$ is contained in H, we have $\pi_{1}\left(S^{1}\right)$ contained in $\pi_{1}(T)$. But T is disjoint from $M \times x_{0}$ for some $x_{0} \in S^{1}$, hence no curve on T can represent a generator of $\pi_{1}\left(S^{1}\right)$. Thus h_{*} or g_{*} is not a monomorphism.
(3.1) Let Φ be a locally free action of R^{2} on $M \times S^{1}$ with M a closed two manifold
of genus greater than one. Then Φ has a compact orbit, and each compact orbit of Φ intersects M.

This follows immediately from 1.4, 2.4 and [1].
(3.2) If T is a compact orbit of Φ, then $T \cap M$ contains a curve which is a generator of $\pi_{1}(T)$.

Proof. Assume T is transverse to M and each curve in $T \cap M$ is trivial in $\pi_{1}(T)$. Let b be such a curve. Then b bounds a disk E on T, hence also bounds a disk F on M and the sphere $E \cup F$ bounds a ball in $M \times S^{1}$ by 2.2. Thus the intersection curve b may be removed from m by an isotopy of $M \times S^{1}$ and all intersection curves may be so removed. This gives rise to a new action which is locally free and has a compact orbit disjoint from M. But 3.1. contradicts this.

REFERENCES

[1] E. Lima, Commuting Vector Fields on S^{3}, Annals Math. 81 (1965), 70-81.
[2] G. Reeb, Sur certaines proprietes topologiques des varietes feuilletes, (Paris 1952).
[3] B. Reinhart, Foliated manifolds with bundle-like-metrics, Annals Math. 69 (1959), 119-131.
[4] H. Rosenberg, The rank of $S^{2} \times S^{1}$, American J. of Math. 87 (1965), 11-24.
[5] R. Sacksteder, Foliations and pseudogroups, American J. of Math. 87 (1965), 79-102.
Received December 18, 1965

[^0]: ${ }^{1}$) Conversations with Elon Lima and Andre Haefligerwere very useful in the preparation of this paper.

