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Degeneracy of Orbits of Actions of Rm on a Manifold1)

Richard Sacksteder

(Columbia University and the City University of New York)

1. Introduction

Let V be a compact manifold (possibly with boundary) and let cp: Rmx F-> F be

an action of Euclidean ra-space (considered as an abelian group) on F. This means
that cp (0,p)=p and q> (x+y,p) (p(x,(p(y,p)) for any x, y in Rm and p in F. If p is

a point of F, the orbit of p, denoted by O (p) {(p (x,p) : x e Rm} is a submanifold of
F of dimension af (p). If /(/?) {x e Rm : ç> (*,/?):=;?} is the isotropy subgroup at p,
I (p) is closed in Rm and O (p) is diffeomorphic to Rm/I (/?), which is the product of
Euclidean space by a torus. The larger / (/?), the more degenerate is the orbit O (p).
Our purpose hère is to investigate some conditions on F or cp which force an orbit to
be degenerate.

Let m {(p) dénote the minimum value of d (p). We say that cp is locally free if
m m ((p) d(p) and that cp is foliating if d(p) m (cp). The maximum possible values

of m (cp) for, respectively, locally free, foliating, and arbitrary actions are called the
rank, super rank, and total rank of V and they are denoted by R (F), S (F), and T(V).
It is obvious that

n. (1.1)

In this terminology, some of the known results in the subject are :

1. (H. Hopf [2]). The Euler characteristic of V is zéro if and only if R (F)>0.
2. (Lima [3]). 7?(S3) 1.

3. (Rosenberg [7]). R (S1 x S2) 1.

4. (Sacksteder [8]). If (p is a foliating action with m ((p) n—\, every non-dense

orbit is properly imbedded in V.

5. (Sacksteder[8],cf. Reeb[6], p. 110).Eitherthereisacoveringmap5'1 xRn~i-+V,
or every foliating action (p on V with m ((p) n — l has a compact orbit.

6. (Lima and Rosenberg [5]). Suppose that there is no covering map S1 x R"'1-* V
and the fundamental group of V does not contain an {n— l)-fold direct sum of the

integers. Then R{V)<n-\. (This contains 2. and 3. above).
7. (Lima [4]). If « 2, R(V) S(V) T(V).
8. (Trivial). If T(V) n, then R (V) S(V) T(V) n and Fis the n-torus.

x) This work has been partially supported by the National Science Foundation under Grant
NSF GP-3433.
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Our results are most closely related to Lima's Theorem 7. Theorem 1 asserts

roughly that there is no need to consider actions of Rm with m>n for purposes of
investigating degeneracy of orbits because there is always an action of Rn with the
same orbits as cp : Rm x V-+ V in this case. Theorem 2 and its corollary give conditions
under which it is possible to find a locally free action with the same orbits as a given
foliating action. Theorems 3, 4, and 5 are our main results. Theorem 5 asserts that the
conclusion of the Theorem of Lima and Rosenberg cited in 6. can be strengthened to :

"ThenT(K)<« —1." Ittherefore implies Lima's Theorem cited in 7. (under différent
differentiability assumptions) and strengthens 2. and 3.

Various regularity assumptions are required for the proofs of our results and
those cited above. Thèse will be made explicit at the appropriate place. The most
natural condition for our methods is described by the following définition. An action
cp : Rm x F-» V is said to be a piecewise Ck action if V is the union of a countable set

of compact submanifolds (with boundary) Vl9 V2,... such that each point of V is

contained in only finitely many J^.'s and the restriction of cp to Rn x Vt defines a Ck

action on Vi for * 1, 2,... The results cited in 4., 5., and 6. are valid for piecewise C2

actions, although in some cases they were originally stated for C2 actions. No essential

changes in the proofs are required for the extension to the piecewise C2 case.

2. Preliminaries

Hère we collect some results which will be needed later. Most of them are well-
known and easy to prove. Let cp : G x K-> F be a piecewise C2 action of a connected
Lie group G on a compact «-manifold V. Let A dénote the Lie algebra of G. It is easy

to see that to each élément jc of A there corresponds a vector field <p'x on V. For let

{g(/):0^/^1}beaC1 curve in G such that g (0) is the identity and g' (0) corresponds
to x. For any point p of V consider the curve h{t) — (p (g (/), p). Then cp'x (p) is by
définition the tangent vector at p determined by hf(0). Each élément g of G induces

a map g* which sends a tangent vector at p to one at cp (g,p). When G is abelian it is

easily seen that the vector fields cp'x are invariant under the maps g*. Therefore we

hâve:

Lemma 2.1. Let cp: Rmx V-+ Vbe a piecewise C2 action. Let x be in Rm {considered

as the Lie algebra of Rm) and let cp'x be the corresponding Rm invariant vector field.
Then, if<prx(p) 09 <p'x(q) 0for ail q in O (p).

Under the conditions of Lemma 2.1, the subspace B(p) {x e Rm : (px(p) fy
will be called the isotropy subspace at p. Note that B(p)cl(p) and Lemma 2.1

asserts that B(p) B (q) if q is in O (p).
In ail of the lemmas below cp is a piecewise Ck(k^2) action of Rm on F and in the

ûrstpup2, is a séquence in F such that/? lim/?f.
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Lemma 2 2 The isoiropy subgroups and subspaces are upper semi-continuous in the

sensé îhat B(p)^> lim sup B{pl) and I (/?)=> lim sup /(/?,)
The proof of this lemma îs straightforward The following one is well-known

Lemma 2 3 Let x and y be in Rm Then the vectorfields <p'x and cpry commute, that is
[cpx, cpy] 0 Cornersely, ifXx, Xm are piecew ise Ck vectorfields on V which commute,
there is a piecenise Ck action cp Rmx F-»F and a basis et, em of Rm such that
Xt if)xif

'

x ex {Hère, if V is a manifold w ith boundary Xu Xm are required to be

tangent to the boundary

3. Actions with the Same Orbits

It is possible for two distinct actions on F to hâve the same orbits In this case

the actions are équivalent for most of the purposes of this paper In this and the

following section we investigate this phenomenon Let (p Rm x F-» F be a piecewise
Ck action on a connected (not necessanly compact) «-manifold, where k g: 2

Theorem 1 Ifm>n, almost ail (m — \)~dimenswnal subspaces K of Rm are such

that the orbits ofcp restucted to K are the same as the orbits ofcp Therefore, there is a

piecew ise Ck action xjj R" x F-> V vi ith the same orbits as cp

Proof Define B (p) as in section 2 and note that B(p) has dimension m — d{p)
We say that a subspace F of Rm is effective at p if Rm is spanned by F u B (p), and

otherwiseFiscalled/«^f<?c7/veat/? Fis effective at pifand on\y \fO(p) {cp(x,p) xeF}
Moreover, if F is of dimension m — 1, F is îneffective if and only if F contains B (p)
Lemma 2 1 shows that if F is effective at /?, F is effective at every point in O (p)

The theorem will be proved by showing that the (m — l)-dimensional subspaces
which are ineffective at some p m V form a subset of the Grassman manifold Mm m_j
of dimension not greater than n — \<m— 1 dim Mm m_ x It suffices to prove this for
ail points q where d(q) d(p) c/ina small neighborhood of an arbitrary point p of F,

since countably many such sets cover F
First suppose that F has a Riemannian metnc and let G{q) be the non-negative

definite quadratic form on Rm which assigns to a vector x in jRm the length of (p'x(q)

in the Riemannian metnc on F Note that a vector is of length zéro in this metnc if
and only if it is in B(q) Let C(q) dénote the subspace of Rm spanned by the eigen-
vectors belonging to the m — d smallest eigenvalue of G(q) with respect to a fixed

positive definite metnc on Rm Note that near q, C(q) dépends (k-\) times difTeren-

tiably on q Moreover, C(q) B(q) if d(q) d
Let S be the (rf— l)-dimensional unit sphère in a subspace H of Rm which is

complementary to C(p) Let T be an (n — d)-dimensional submamfold through p
which intersects the orbits transversally and is small enough so that C(q) varies
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differentiably and îs transversal to H for every q in T If (q, s) îs in Jx S, let F(q9 s)
dénote the (n — l)-dimensional subspace of Rm which contains C (q) and whose
intersection with H îs perpendicular to s in the positive definite metric on Rm If d (q) d,

B(q) C(q), hence F(q, s) îs ineffective by the remark at the beginning of the proof
Conversely, every ineffective (m — l)-dimensional subspace at q is of this type Therefore
the set of (m — l)-subspaces which are ineffective for some q m T such that d (q) dis
containedintherangeofF Sincedimrx S=n — d+d— l=n — 1 <m— 1 =dimMm m_x,
Sard's Theorem implies that almost ail (m — l)-subspaces are effective at every q m T
such that d(q) d Since B (q)=C (q) is constant along orbits if d(q) d, this shows

that almost ail (m — l)-subspaces are effective for every q near p such that d(q) d
This proves Theorem 1

4. Foliating and Locally Free Actions

If <p is a piecewise Ck action (k^2) of Rm on a the «-manifold F, F/<p will dénote
the quotient space obtained by identifying points on the same orbit and / F-» V/cp

the projection map Now assume that cp is a foliating action with d(p) — d and define

B(p) as in section 2 Let v4(/?) be the orthogonal compliment of B{p) relative to some

metnc on Rm, so that A (p) is always a point of the Grassman manifold Mm d Moreover,
A(p) is constant on the orbits of cp so that there is a map h V/(p->Mm d, which sends

O(p) to A(p) Let Vm d be the Stiefel manifold of orthogonal c/-frames in Rm and let

7i Vmtd->Mmd be the usual projection

Theorem 2 Under the conditions descnbed above, there exists a piecewise Ck~l

locallyfree action \j/ Rd x V-+ V whose orbits agrée with those ofcp if there is a piecewise
C*"1 map g V/cp->Vm d such that h ng

Note Hère g is said to be a piecewise C*"1 map if gfis Ck~x on Vv i 1, 2,

where each Vx is a compact w-dimensional manifold, V— u F,, and every point of F
is in only finitely many F/s

Proof For typographical convemence we modify the notation <p'x(p) established

in Section 2 by wnting ç'(x,p) instead Let el9 em be a basis for /?m and define

vector fîelds Xl9 Xd by Xl(p) (p'(gl(p),p), where &(/>) is the /'th vector in the

frame g(O(p)) If gl{p) Y!j ^aiÀP)ep eacn au wl^ ^e constant along orbits Then if
Yj(p) (p'(ej,p), Xl(p)=YJ7=iav(P) Yj(p) and Yk<*v (the directional denvative of atJ

m the direction Yk will be zéro for ail /r=l, ,m Now Lemma 2 3 implies that

[F,, y,] 0, hence YkatJ 0 implies that [Zp A;] 0 The vector fîelds Xu Xd are

hnearly independent because gi(p), gd(p) span A(p) The conclusion now follows

from Lemma 2 3

Corollary 4 1 Let ç Rm x F-» F &e as z/z Theorem 2 with m d+l and 2d>n
Then there is a piecewise Ck~1 locally free action ^ Rd x F*-> F* where either V*=V
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or c: V*-+ V is a two sheeted covering. In thefirst case, the orbits of and (p agrée and in
the second c maps each \j/ orbit homeomorphically onto a q> orbit.

Proof. The assumption that m d+1 implies that Mmd= Pd projective rf-space
hère. Therefore A/: V-*Pd. Let b:Sd-*Pd be the two sheeted covering and construct
c: V*-+ Fin such a way that there is a map (A/)* : V*->Sd such that b(hf)* (hf)c.
The covering c can turn out to be either the identity map or a two-sheeted covering.
The action (p can be lifted to an action (p* on F* and one has the following commu-
tative diagram in which the existence of g* will be proved later

In the diagram, the map n* sends an m-frame in Rm to the mth vector in it and a sends

an m-frame to the (m — l)-frame obtained by removing the last vector. The piecewise
C*"1 map g* is constructed as foliows: First observe that the image of (A/)*=image
A*/* image h* is a zéro set in Sd, because (A/)* is of rank not greater than n — d<d.
Therefore the image is contractible in Sd and the existence of g* follows from the fact
that the fibration n* is trivial above the complément of a point of Sd. Now the
existence of {// follows by an application of Theorem 2 in which F*, cp*, bh*, and (xg*

replace F, <p, A, and g, respectively. The remaining assertions of Corollary 4.1 are

simple conséquences of the commutativity of the above diagram.
An example : Let Fbe the Klein bottle which we represent as the square \x\ ^ 1, |j>| ^ 1

with the identifications (x, — l) (x, 1) and (1, y) (— 1, — y). Define the action
q>:R2x F~> F by <p ((m, v), (x, y)) (x, y + (u cos x n/2) + (v sin x n/2)). It is easy to check

that the action is compatible with the identifications and has as orbits the sets x
const., hence cp is a foliating action. However, there is no locally free action with the

same orbits as (p. In this example, m=n 2 and rf=l; however one can obtain

examples where 2d>n and m=d+l from this one, e.g. on VxS1. Such examples
show that the introduction of the covering space F* is essential in Corollary 4.1.

5. The Main Theorems

Hère, <p:Rmx F-»Fis a piecewise Ck action (k ^2) on a compact «-manifold F.
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Theorem 3. Supposethat every orbit of cp is of dimension n or n~\. Then there is a

piecewise Ck foliating action \l/:Rnx V-*V such that ail orbits are of dimension n — 1.

In view of Corollary 4.1, Theorem 3 and 8 ofSection 1 imply the following theorem.

Theorem 4. Under the conditions of Theorem 3 there is a piecewise Ck~l locally
free action of R"'1 on V*, where either V*=V or V* is a 2-fold covering of V. There-

fore if T(V)^n~l, T(V) S(V) R(V*), where T, S are defined with respect to

piecewise Ck actions and R is defined with respect to piecewise Ck~l actions.
This theorem, together with the theorem of Lima and Rosenberg [5] (cf. 6)

Section 1 above) implies

Theorem 5. Suppose that the compact connected n-manifold V is such that there is

no covering map S1 x Rn~ï-+V and the fundamental group of V does not contain an

(n — i)~fold direct sum of the integers. Then T{V)<n — \.
Spécial cases of the conclusion of Theorem 5 are T(Sn)<n-1 and T(S* x Sn)<n.

6. Lemmas

Lemma 6.1. Let Vo be a (not necessarily compact) manifold with a foliated structure

of co-dimension onef cf. [1, 6]. Let F be a compact leafof the foliation. Then there is a
tubular neighborhood B of F such that any component J of B—F satisfies either (i)

every leaf which intersects J contains F in its closure, or (ii) there are compact leaves in

J arbitrarily close to F. This lemma is essentially the same as a theorem of Reeb

([6], p. 139). We therefore omit the proof.
The rest of the lemmas employ the hypothèses of Theorem 3. Moreover, it will

always be assumed that m=n, which does not represent a loss of generality in view of
Theorem 1. The symbol £ will mean "diffeomorphic to" and Tn~x will dénote the

n — \ torus.

Lemma 6.2. Let p be any point of V. Then the closure of O(p) contains a compact
orbit unless cp is already a foliating action.

Proof Assume that q> is not a foliating action. It can be assumed that d (p) n — 1,

because if d(p)=n, p can be replaced by any point in the boundary of O(p). Let
Rn~1c:Rn be a subspace which is effective at p (cf. Section 3). Then there is an open
neighborhood Vo of O(p) such that (p restricted to Rn~l x Vo defines a locally free

action on Vo by Lemma 2.1. Applying Theorem 8 of [8] and [6, p. 103] to this action,

one sees that 0{p) contains a compact leaf in its closure.

Lemma 6.3. Let p be a point of V such that there is a séquence Pi,p2, ofpoints

of V with O(pi)^ T"'1 andp= lim^. Then O(p)^ Tn'\
Proof Since d(pi)=n-l, Lemma 2.2 implies that d(p) n-l because of
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m(<p) n — l. Let q be a point in the closure of O(p) such that #(#)= T""1. Such a

g (possibly #=/?) exists by Lemma 6.2. Let R"'1 c:Rn be effective at #, and let Fo be a

neighborhood of O(^r) such that the restriction of cpto Rn~l xV0 defines a locally free
action on Vo. Apply Lemma 6.1 to the foliation defined by this action, taking F=O{q).
There must be points of O(p) in some component J oî B—O{q) arbitrarily close to
0{q) if O(p) îs not compact. Thus the alternative (ii) of the conclusion of Lemma 6.1

could not hold in this case because the compact orbits separate /. Therefore (i) holds.
However, this is also impossible because O(pl) must intersect J for large /, but such
O (/?,), being compact, cannot contain O(q) in their closure. This shows that O(p)
must be compact. This proves Lemma 6.3.

Now we define W to be the set of points p of V such that p — lim/^, where

O(pl)^Tn~1 and p^pv W is clearly closed, hence compact, and if p is in W,

£(/?) T"-\by Lemma 6.3.

Lemma 6.4. There exist a finite number of compact n-dimensional submanifolds of
V, Ku ...,Krsuch that

(i) PFcinterioruK,
fn) The restriction of (p to Rmx Kt defines an action on Kt ;

(ni) Ifi¥"j\ KtnKj is either empty or consists ofat most two compact orbits;
(iv) Kt is a fiber space over Tn "l withfiber I. Moreover, there is a map nt : Tn " * -» Tn ~1

defined by nt(t\ /""1) (r1(l +JII),...,/"~1(1+4I~1))> {where (t\...,tn~l) are real
numbers mod 1 which can be taken as coordinates ofTn~l and A{ 0 or 1 such that the

putlback ofKt by nt is Tn~l x /, (/= [0,1]).
Proof Let p be a point of W with p= \impo etc. as above. Let Rn~ic:Rn be

effective at/?, hence define a locally free action on a neighborhood Vo of 0{p), by
restricting q> to R"'1 x Vo.

In view of Lemma 6.3, Lemma 6.1 can be applied to F= 0{p). Let/be a component
of B—O(p) such that O(pt) intersects / for infinitely many i. Then for some large i,
0{pt) must separate J. Let K be the closure of the component of J—O{p) which
contains points near 0{p). It is clear that K satisfies (ii) above with Kt replaced by K.
To see that (îv) can be satisfied, let A =(J1, An) be an orientation cocycle for the

normal bundle of 0{p) in V. That is, if 0{p) Tn~x has coordinates (z1, f1) as

in (iv), JJ is defined to be one or zéro according as the orientation of the normal fiber is

reversed or remains the same along the path /'= const. ij^j and 0^/J^l. It is clear
then that the map n: Tn-1^Tn'1 O{p) defined by n{t\ fw~x)=(r1 (1 +^d1),

tn~1{l + An~1), has the required properties. This shows that K satisfies (iv). A finite
number of such K cover W, hence (i) can be satisfied. Obvious modification of a set

of K'$ which cover W can be made to assure that (iii) holds. This proves Lemma 6.4.

Lemma 6.5. Let K=Kt be one of the sets with the properties described in the
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conclusion ofLemma 6.4. Suppose that a Ck action \j/ of Rn is defined on the boundary

of Ksuch that each component ofthe boundary is an orbit o/ifr. Then xJj can be extended

to a Ck action on ail of K.

Proof. Let 71 7^: Tn~l-*Tn~l be as in Lemma 6.4. Then the action \j/ lifts to an
action \j/Q on the boundary of T""1 x / by the pullback map. Each component of the

boundary will be an orbit.
Let 71""*1 x /hâve coordinates t=(t19 tn) where tJ is defined mod 1 and 0^ tnS 1-

Let R" hâve coordinates x (x1, x") and define the action y:Rn x Tn~l x I^T""1 x /
by yJ(x9t) — xJ + tJ mod 1 ifj<n and yn(x,t) f. Then there are linear maps Ll:i?n->1T
(i=0, 1) such that on T"'1 x {/}, il/0(xj) y(Lix9 t). It is possible to choose Lo and

Lt in such a way that there is a Ck homotopy L{i) (0^ t^ 1) such that L(i) Li(i=0,1)
and for every t, L(t) is a linear map of Rn whose range is of dimension (n — 1) and
transversal to the x" axis. (This assertion amounts to saying that the Stiefel manifold

Vn,n-i *s arcwise connected.) Therefore one can define \l/0(x,t) y(L(tn)x, t). This
defines an extension of ij/0 to an action on Tn~x x /. The bundle map b: T"'1 x I-^K
defines the desired action on Kby the formula il/(x,p) b(\l/0(x, b~1(p))), where b'1
is any local inverse of b defined near p. This définition easily seen to be independent
of the choice of b"1 and to give an action with the desired properties.

7. ProofofTheorem3

Let jKj be as in Lemma 6.4 and let M be the closure of V—K^-'-vK,. M is a

manifold with boundary. From définition of W and Wcz interior u Kt it follows that

M contains, at most, finitely many compact orbits of the action (p. Let i?""1 c jRn be a

subspace which is effective on each of thèse orbits. Then R""1 is also effective at every
point p of M such that d(p)=n — 1. This follows from Lemmas 6.2, and 2.2 and the

fact that M is closed and invariant under q>. Let P:Rn-+Rn~~1 be the orthogonal
projection with respect to some metric on jRn. Then \l/(x9p)=(p(Px9p) defines a

foliating action in M with ail of its orbits of dimension « — 1. In fact, the (w —1)-

dimensional orbits of cp will be orbits of ^ also.

It remains to define ^ on Ki9 Kr. This is done by induction. Suppose that \j/

is defined on Mu^u-u^O^/^rin such a way that \]/ defines a piecewise Ck

foliating action on MuKt u ••• uKt with orbits of dimension n — 1, then Lemma 6.5

enables one to extend the action toMuKiv--<<uKi+1, retaining the desired properties.
In the application of the Lemma, ij/ can be defined arbitrarily on any components of
the boundary of Ki+1 which are not contained in Mu^u-u^. This complètes
the proof of Theorem 3.

8. Comments

Theorem 3 can be proved in a somewhat différent way, which is longer than the
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one given hère, but which has the advantage of revealing more about the orbits of (p.

The alternate proof shows that ail n-dimensional orbits of cp hâve either one or two
components in their boundary. If one of the components consists of a single leaf the
orbit is diffeomorphic to^xT"1 and its closure is either Tn~l x / or ail of F. The
leaf in the component is, of course, compact.

No examples of compact manifolds F are known where R(V), S(V), and T(V)
are unequal. It would be interesting to known if they can differ. There is some reason
to hope that thèse numbers are related to the multiplicity of — 1 as a root of the
Poincaré polynomial of F, over some field. If, for example, one defines Z(V) to be

this multiplicity over the rationals, an interesting question is whether R(V)^Z (F)
always holds. R(V)^Z(V) holds if F is a Lie group. Finally, if V^V^ x F2 is a

product, R(V)^R(Vi) + R(V2) and similarly for S and T, but no examples are known
where equality fails to hold.
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