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On the Isoperimetric Problem in a Riemann Space

To Professor Heinz Hopf on his 7Oth birthday

By Yoshie Katsurada, Sapporo

Introduction

As well-known, the isoperimetric problem in an Euclidean space of two dimensions
is to find the shortest simple closed curve enclosing a fixed area. The solution is a

circle. The analogous problem in an Euclidean space of three dimensions is to find the

simple closed surface with minimum area enclosing a fixed volume. Hère again the
classical answer is the sphère.

One knows (see, for instance, [1, 2]) that the closed surfaces with constant mean
curvature are closely related to the isoperimetric problem, because of the following.

Theorem. Let S be a simple closed surface, then S has constant mean curvature H
if and only if S is stationary with respect to the isoperimetric problem ([1], p. 75).

In previous papers ([3, 4]), the author has investigated some properties of a closed

orientable hypersurface with the first mean curvature Hx— constant in an (m+1)-
dimensional Riemann space Rm+l.

It is the aim of the présent paper to generalize the above Theorem to hypersurfaces
in Rm+l and to investigate the connection with the isoperimetric problem in i?m+1.

In § 1 some intégral formulas for a closed orientable hypersurface which is the boundary
of a domain in Rm+l are derived; §2 gives a variational interprétation for thèse

formulas and for a formula (I) of Minkowski type in Rm+l ([3], p. 288). In §3 the main

theorem is proved.

§ 1. Some intégral formulas

We consider a Riemann space Rm+i(m + l^z3) of class Cv(v^3) which admits a

one-parameter continuous group G of transformations generated by an infinitésimal
transformation

xi xi + ^i(x)ôx (1.1)

(where xl are local coordinates in Rm+1 and £' are the components of a contravariant

vector £). We suppose that the paths of thèse transformations cover Rm+ l simply and

that £ is everywhere continuous and ^0. If <J is a Killing vector, a homothetic Killing
vector, a conformai Killing vector, etc. ([5], p. 32), then the group G is called isometric,

homothetic, conformai, etc. respectively.
We now consider a domain D in Rm+i such that its boundary is a closed hyper-
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surface Vm of class C3 imbedded in Rm + \ locally given by

x'= *>"); (1.2)

hère and henceforth, Latin indices run from 1 to m+1 and Greek indices from 1 to m.
Let us consider a differential form of degree m at a point P of the domain D,

defined by

J dx9 dx) (1.3)

where </** is a displacement in the domain D and g dénotes the déterminant of the
metric tensor gu of Rm+1. Then the exterior differential of the differential form (1.3)
divided by m\ becomes as follows

— d(&dx9 .•.,dx)) -iglJ^giJdV (1.4)
m «s

where ^ giy is the Lie derivative of the tensor gtJ with respect to the infinitésimal
point transformation (1.1), and dV means the volume élément of D.

ïntegrating both members of (1.4) over the whole domain Z>, and applying Stokes'

theorem, we hâve

'J#glJdV 1J- jd((Ç, dx, dx)) ^-J-J((4. dx, -, dx))

D D ym (1.5)

Vm being the boundary of D. On the other hand, we can easily see the following
relation ((Ç,dx,...,dx)) Çlntm\dA, where dxk means a displacement along the hyper-
surface Fm, Le., dxk (dxk/dua)du'x, and nx is a unit normal covariant vector at a point
P of the hypersurface Vm and dA dénotes the area élément of Vm. Thus we obtain the

intégral formula

JnldA (a).
D V*»

Let the group G be conformai, that is, Ç satisfy the équation

s*

(cf. [5], p. 32), where the symbol "; " always means the covariant derivative, then (a)
becomes
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Let G be homothetic, that is, $ C=constant, then

ntdA (oc)h

Kbeing the total volume ofD. Especially, ifour space Rm** is an Euchdean space Em+1

and if we take a point of D as origin of the euclidean coordinates jc1 and attach to each

point x the vector £' with the components Ç xl (i.e., the position vector of x), then the
transformations (1.1) are homothetic, that is, C= 1, thus the formula (<x)h becomes the

following well-known formula

- f-.- [xlntdA.
ym

In the case m + l 3, we hâve 3V= — J...fK2xI/ilrfy4 (cf. [2], p. 18).

Furthermore in the Riemann space Rm+i, let G be isometric, that is, C=0, then

we hâve

(a),.
Vm

By making use of the formula (a)c and the formula (I)c of the previous paper
([4], p. 3), we hâve the following

Theorem 1.1. If D is a domain in Rm+1 admitting a conformai Killing vector £

(i.e., <!;,.;+ £/;l 2$gi7) and if Us boundary Vm is a closed hypersurface with H\
constant, then itfollows that

f... (<j)dV= f--. [fdA (1.6)

Vm

where Hl means thefirst mean curvature of Vm.

Proof Multiplying the formula (a)c by H1(=const.), we obtain

Ï)HX f... [^dV^Hx f - [gn^A.

By making use of the formula (I)c of the previous paper Hx J... JKW ÇntdA= —\...\
(cf. [4], p. 3), we see that (m + l)H1f...fD<l> </F=J...JKm<£ dA.

Corollary. If D is a domain in i*w+1 admitting a homothetic Killing vector Ç

(i.e., {J; j+ ^., 2C gtJ) and ifUs boundary Vm is a closed hypersurface with Ht const.,

then we hâve

K«—^—— (1.7)
m + 1 if

where A is the total area of Vm.
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Proof. Substituting <j) C const.) into both members of (1.6), we obtain easily
(1.7).

Especially, if our space Rm*i is an Euclidean space Em+1 and if Vm îs a hypersphere
with radius y, then the formula (1.7) bccomes V yA/m + l.

§ 2. On variational problems of intégral formulas

In this section, we shall discuss the preceding intégral formulas and the intégral
formulas of the previous paper ([4], p. 3) from the point of view of the calculus of
variations.

We now consider a variation of a geometncal object in Rm+l, defined by

jcl x' + £'(x)e (2.1)

where e is a parameter near e 0; then substituting (1.2) into (2.1), we get a family
JcI Jci(wa, e) of admissible hypersurfaces of the form

* xl{u') + ?(x'(u'))e. (2.2)

For each value of e near e 0, we thus obtain a domain D(e) with a boundary Fm(e),
where Z)(0)=D, Fm(0)= Fm; let V(s) be the total volume of D(s). Now we hâve the

following
Theorem 2.1. If {à V/ds)e= o is thefirst variation ofthe total volume ofD(e) along D

with respect to a direction <f, then

D

Proof. Let V be the total volume of D(e), which is given by the intégral form

D(e)

wheref=g(x,e)and dxl dxl + (dÇl/dxl)dxe. For the first variation of V along D we
hâve xv C C fi fi

— — ^Jg{àx, dx) + J§j-(dx9 dx)9
Se J J ôe os
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because of dV=y/g(dx,..,,dx) and &çgij
(cf. [5], p. 4).

Therefore we evidentiy hâve the following
Corollary 2.1. The first variation of the total volume of D(e) along D, with

respect to a direction £' becomes as follows

" or

according to Ç being a conformai Killing vector {S£^ gu 2$ gl7), a homothetic
Killing vector, or a Killing vector.

Corollary 2.2. The first variation of the total volume of D(e) along D, with
respect to a direction £', is given by

ym

The proof easily follows from the intégral formula (a) and (2.3).
We consider next a closed orientable hypersurface Vm of ciass C3 imbedded in

Rm+1, locally given by (1.2). then we obtain a family jc!=x'(wa,e) of admissible hyper-
surfaces of the form (2.2). For each value of e near e 0, we hâve a hypersurface
Fm(e), where Fw(0)=Fm, and we hâve a value A(e) of the total area of Vm (e).

Then we shall prove the following theorem.
Theorem 2.2. Let (ôA/de)e:= 0 be the first variation of the total area of Vm (e) along

Vm, with respect to a direction Ç, then

(2-5)

ym

Proof As well-known, the total area of Vm (e) is given by the form

where g(e) means the déterminant of the metric tensor gafi (e) of the hypersurface
Vm («) (i.c, ga0(B)=gij(x) (dxlldu*) (Ôxj/du%

Differentiating the above intégral form with respect to e, we hâve

s-/•••/£>/«•)<*.-.*<)

where ua and e are independent parameters.
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On making use of the following results

ô

dg dgu dxl dxJ
xp ôg dxJ

â? a* eu- eu*g (£)g' â(â?/âô 2gkj(x)ëu»g (e)g'

we obtain

Consequently for the first variation of the total area of Vm (e) along Fm, we can see

fôA\ C C ôxl ôxj

Corollary 2.3. The first variation of the total area of Vm (e) along Vm, with
respect to a direction £', becomes as follows

ÔA\ (ÔA\
mCA or — =0

o
ym

according to £* being a conformai Killing vector, a homothetic Killing vector or a

Killing vector.
From Theorem 2.2 and the formula (I) of the previous paper (cf. [4], p. 3), we can

see easily the following
Corollary 2.4. The first variation of the total area Vm (s) along Vm with respect

to a direction £', has the form

_/ j _ __ j j // P ndA (2.6)

ym

If our space Rm+i is an Euclidean space Em+l and if we take to each point x the

vector Çl(x) with the components £*=.*;* (i.e., the position vector of x), then the

vector £ is a homothetic Killing vector with C= 1, and £ n{ is the support function

p for xe Vm. In this case, the formula (2.6) becomes

ym
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this being nothing but the formula of Minkowski type of Vm in Em+1 given by C. C.

Hsiung (cf. [6], p. 286). Therefore we can see the formula (2.6):

0
o

as a generalization of the formula of Minkowski type.
Remark L Àlthough the vector field il(x) is not defined on the whole Riemann

space but defined on a certain domain including both D and Fm, ail the preceding
theorems are valid.

Remark 2. In case an arbitrary vector r\l is defined on the hypersurface Vm given
by (1.2), we can find also the following formulas

ym
and

for the first variation of the total volume of D(é) along D and the first variation of the

total area of Vm (s) along Vm, by means of a family xl xl(ua,s) of the hypersurfaces
of the form a i / «\ u a\l(* l(a) + l(a)

§ 3. The isoperimetric problems

In this section, we shall prove the following theorems closely related to what may
be called an isoperimetric problem in Rm+1.

If (ôA/ds)e=o=0 for ail variations with respect to a direction such that

(SV/ds)e=o=09 then the hypersurface Vm is called a pseudo-stationary hypersurface.
Theorem 3.1. Let Vm be a closed orientable hypersurface in Rm+l. Then the first

mean curvature of Vm is constant ifand only if Vm is a pseudo-stationary hypersurface.

Proof Suppose H^ is constant; if (SV/de)e= 0=0, then we get from (2.7)

and hence from (2.8)

i — j — m I • • • I #! iy /î| dA — mHi I • • • I r\ nt dA 0.
\ôe/s=o J J J J

ym ym

Thus Vm is a pseudo-stationary hypersurface.
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Conversely suppose (ÔA/de)e=o 0 for every variation with respect to a direction
r\l such that(<5K/de)8= o 0; we must prove that Ht is constant. Let cp be an arbitrary
function defined on Vm such that j...jvm<pdA O. We wish to show first that q> is in
fact the normal component of a variation vector rf such that (ôV/de)e= 0=0. Let us
consider the family of hypersurfaces 5? (ua9e) xi (ux) + (p ri e, then from (2.4) we see

Thus q> is the normal component of a variation vector such that (ôV/ds)B= 0 0.

By hypothesis, Vm is pseudo-stationary, therefore it follows that

Thus we hâve J...§Vm Ht (p dA=O. Also if h is an arbitrary constant, we hâve

J.. .\ymh q> dA 0, and hence for any function cp such that j...JFmcp dA 0 and for any
constant h, we obtain

/¦>-
ym

Now let h be the mean value of Hi :

then we hâve

ce c c ce-" {Hx -h)dA= t hMA-ft ••• dA
J J J J J J

ym ym ym

-J.../*1^-W_/.../H.A4-J.../»,^-0.
|/m ym ym

Consequently taking Ht -h for <p, we obtain

C C

(/fi - h)ldA 0.
J J

ym

Therefore JF^ =h, which concludes the proof.
This theorem is nothing but a generalization of the same theorem in an Euclidean

space given already in [2], p. 19, and this proof follows the same argument as in [2].
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A. D. Alexandrov has already proved the following resuit in his paper ([7], p. 304),
where in the case of positive curvature, Rm+l shall be a sphère and Vm contained in a

hémisphère of Rm+1:

Theorem A. If Rm+l has constant curvature and if Vm is a simple closed hyper-
surface with Hl constant, then Vm is a hypersphère.

From this resuit, we hâve (under the same assumptions as above) :

Corollary 3.1. If Vm is a simple closed hypersurface in Rm+l with constant

curvature, then Vm is a hypersphère ifandonly if Vm is a pseudo-stationary hypersurface.
Now in Rm+1, let 5 be the collection of ail closed orientable hypersurfaces Vm

enclosing a fixed volume. Then the total area A of Vm is a function on S. Let Vm be a

fixed hypersurface and consider a one parameter family of continuous and differ-
entiable variations of Km, indexed by a parameter e. Let Vm (e) dénote the varied

hypersurface. Then we require that Vm (0) Vm and that for each e, Vm (s) e S (i.e.
thèse variations are volume preserving).

The total area A(e) of Vm(e) is a differentiable function of e. If (6A/ôs)E= 0 0 for
ail volume preserving variations, then Vm is called a stationary hypersurface. Then

we hâve

Theorem 3.2. IfRm+1 admitsahomothetic Killing vectorfieldÇ(£,;</ + Çj. 2Cgip
C^O) and if Vm is a closed orientable hypersurface in Rm+l9 then the flrst mean

curvature Ht of Vm is constant ifand only if Vm is a stationary hypersurface.

Proof Let Vm be given by (1.2) and suppose for simplicity that K(0) l and let
Vm (e) be a variation of Vm; dénote its total area and the total volume of the domain
bounded by Vm (e) by A (e) and V(s) respectively. Vm (e) can be represented by

for each value of e near £ 0, where rji(u*) (dxi/de)BZ=0. Then from (2.7) and (2.8)

we hâve

"'"- (s)...—•H""'"""1-
ym

Sufficiency in Theorem 3.2. is similar by proved as in Theorem 3.1; that is,

suppose H{ is constant and xl (u"9 e) is a volume preserving variation of Vm then

(ôV/de)e= 0= -J...JFm rf nt dA=0 and hence

Conversely, suppose (ôA/ds)e=sQ=0 for every volume preserving variation. Then

we must show that Ht is constant.
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Let (p be an arbitrary function defined on Vm such that J JKm cp dA 0, we wish
to show first that cp îs the normal component of a volume preserving variation
Consider the family of hypersurfaces

Vm(e) xl(ua,e) xl(u*) + cpnle, (3 1)

then let V(e) dénote the total volume of the domain bounded by the hypersurface
Vm (e), then V(0)= V— 1, now the normal component of (dxl/de)E=0 cp nl îs given
by (dxl/de)e= ont cp nl nt cp Hence, by virtue of (2 7) we hâve

by hypothesis But the variation xl (wa,e) need not be volume preserving
However by hypothesis, our space Rm+i admits an infinitésimal homothetic

transformation given by (1 1) with the additional condition

è, + £, 2 C glJ (C * 0, constant) (3 2)

Let us choose a coordinate System such that the path of the infinitésimal transformation

îs the new jc1-coordinate curve, that îs, a coordinate System in which the
vector il has the components ô\ (where ô) dénotes the Kronecker delta), then (1 1)

becomes xn xl + ô\ ôt and Rm+l admits a one-parameter continuous group G of
transformations given by

xn xl + à\x (3 3)

Then in this new coordinate System, the condition (3 2) becomes as follows

dgjdx1 =2 CgtJ Therefore the metnc tensor gtJ with respect to the new coordinate
System has the form giy=/(J(x2, ,xm+i)e2Cxl Now we take the family of hyper-
surfaces

K-00 • ,>-, a) *>', + ^-L^. log Jç)S\, (3 4)

we shall show that V*m(e) îs a volume preserving variation Let K*(e) be the total
volume of the domain bounded by V*m(e) and let //*l and dA* be a normal vector and

an area élément of the hypersurface x*1 (u*,e) respectively Then from Corollary 2 1

and Corollary 2 2, we hâve

(m + l)CK*(e) - J h\n?dA* ~ J JnJdA*. (3 5)

V*m(E) V*m(E)

On the other hand, from (3 4) we hâve the relations

e(2/m+l)\og(l/V(B)) ^ /^\ ^(2
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thus we obtain

\g\x V8\X)e ==:

y, r~ • 0-6)

Substituting (3.6) in (3.5) and making use of the relations

y*2 fua p\ — îr2(ua p\ *m+l/ a \ — vm+1/'fia P\

we see that

V*m(e) Vm(e)

and

5i 11,(8) A4(e) ^-- (m + 1)C F(e) (m + 1)C.

Thus we hâve F*(e) l, therefore F*m(e) is a volume preserving variation of Fm.

Now, since (ôV/de)e= 0 0 it foliows that

/e 0

and we hâve

\ ^e /e 0 \dG/e O

Therefore cp is not only the normal component of(dxl/ôe)e= 0 but is also the normal

component of(dx*i/dé)est 0 anc* thus q> is the normal component of a volume preserving
variation.

By hypothesis, since Vm is stationary, it follows that (ôA/ds)e=s0= —m j...jVm
HiCpdA^O, thus /...J^mif! (pdÂ=0. Also, if h is an arbitrary constant then

J...fKm cp hdA=0 and hence for any function <p such that J...JK«, <p <L4=0 and for

any constant h, ^..^ym^x—h) cp dA=0. Now let h be the mean value of Hx:
h=(l/A)$...jVmHidA then we hâve J...fFm(Ht-h)dA=Q. Consequently we see

J...JFm{H1 — h)2 dA*=0. Therefore Ht=h9 which complètes the proof.
From Theorem A and Theorem 3.2, we hâve the following corollary:
Corollary3.2 îfRm+Î isan Euclidean space Em+i, then a simple closed hyper-

surface with minimal hypersurface area enclosing a fixed volume is a hypersphere.
This may be called a form of the isoperimetric theorem in Em+i.

The author wishes to express to Professor Heinz Hopf her sincère thanks for his

valuable advice and suggestions.
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