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A Note on the Fundamental Theorem of Projective Geometry

M. OJANGUREN and R. SRIDHARAN1)

Introduction

The aim of this note is to prove a generalisation to commutative rings of the
classical fundamental theorem of projective geometry. In § 1, we introduce the notions
of projective spaces and projectivities. In § 2, we prove the main theorem. The method
of proof is similar to the proof of the theorem in the classical case as found for example
in ARTIN [1]. The proof, as in the classical case, is elementary, but is trickier. In § 3,
we give an example to show that a bijection between projective spaces of the same
dimension which preserves collinear points is not necessarily a projectivity. This is in
contrast to what happens in the case of projective spaces over fields.

§ 1. Projective Spaces and Projectivities

Let A be a cummutative ring with 1 and let M be a free 4-module. Let P(M)
denote the set of all A-free direct summands of rank 1 of M. This set is called the
projective space associated to M. Clearly, any element of P(M) is of the form Ae
where e is a unimodular element of M, i.e. there exists a linear form g: M— A4 with
g(e)=1.1f (ey, ..., e,) is a basis for the 4-module M and e= ) g;e,, then we note that
e is unimodular if and only if ) Ae,=A. If the ring 4 is such that every projective

1<i<n

module of rank 1 is free, then P(M) coincides with the usual projective space of
algebraic geometry [2, p. 13].

DEFINITION. Let M and N be free modules over commutative rings A and B respec-
tively. A map o: P(M)—P(N) is called a projectivity if a is bijective and for py, p;,
D3€P(M), we have ap, cap,+ap, in N if and only if pycp,+p, in M.

This definition generalises the classical notion of projectivity between projective
spaces over fields.

We note that by the very definition, a™!: P(N)—P(M) is also a projectivity. For
later purposes, we need the following

LEMMA 1. With the notation above, if e,, ..., e, is a basis of M and ee M a unimodular
element such that Ae = Y Ae,, thenadec Y ade,.

1<si<k 1<isk

1) The authors thank Prof. ECKMANN for having given them the opportunity to work at the
Forschungsinstitut fiir Mathematik, ETH.
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Proof. We prove the lemma by induction on k. Let e= ) ae;, Then

1<i<k

€= Y ae-+e is unimodular and AecAde’ +Ae, By definition this implies
1<i<k—-1

thatodecade’ +ade.Lete"= ) a;e;+e. Since e'cde’+ Ae,_,, we again have

1Kisk—-2

ade’'cade”+aAde,_,. We thus have adecade’+aAe,_, +aAe,. By induction,

aAde’'c YaAde,+ade, andhence adec Yade;.

1<ig<k—-2 1<isk

Let A and B be rings and o: A— B a homomorphism. If M and N are modules
over A and B respectively, then a map @: M— N is called o-semilinear if @ is additive
and ®¢(am)=c(a) $(m) for all ac A, me M. If M and N are free modules over 4 and B
of the same rank and @¢: M—N a o-semilinear map which takes a basis (ey, ..., e,) of
M into a basis of N, then if e=) a,e; is a unimodular element of M, then ®(e)=
=Y o(a;) P(e;)is unimodular in N. For,if ), A,a,=1, 1,64, we have Y a(4,;) o(a;)=1
which implies @(e)= > a(a;) P(e;) is unimodular. It is clear that we have an induced
map P(P):P(M)—P(N) by setting for any unimodular element e of M, P(®)(4e)=
=B®(e). We then have the following rather obvious

PROPOSITION 1: With the same notation as above, for any py, p,, p3;€P(M) with
P1Spy+ps3, P(®)p,<P(P)p,+P(P)p;. If ¢ is an isomorphism, then P(P) is a
projectivity.

§ 2 The Theorem

Our object in this section is to prove the following theorem which generalises to
commutative rings the classical ““Fundamental theorem of projective geometry’.

THEOREM. Let M and N be free modules of finite rank >3 over commutative rings A
and B respectively. If «: P(M )—P(N) is a projectivity, then there exists an isomorphism
0:A—B and a o-semilinear isomorphism ®:M—N such that o=P(®). If 6,:A— B,
i=1,2, are isomorphisms and ®;: M—N are o;-semilinear isomorphisms such that
P(®,)=P(®,), then there exists a be B such that &, =b- P, and 6,=0,.

Proof. Let ey, ..., e, be a basis for M and let a Ae;= Bf;, 1 <i<n. We assert that
f15++., f, generate the B-module N. Since any element of N is a linear combination of
elements of a basis for N, it is enough to check that any unimodular element fe N is a
linear combination of £, ..., f,. If ee M is a unimodular element with « 4e=Bf and
e= Y a,e;, we have dec Y Ae; and by lemma 1, we get Bf< Y Bf;.

1<i<n 1<i<n 1<isn

This proves that f;, ..., f, generate N. Since B is a commutative ring, this implies
that rank N<n. Since o~ ! is also a projectivity, it follows that rank M =rank N and
fis-.s £, is a basis for N.
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Let ade,=Bf; and ade,=Bg,. Now e;+e, is unimodular and A(e,+e,)c
cAe;+ Ae, which implies that « 4 (e, + e,) = Bf; + Bg,. Hencea A (e, +¢€,)=B(b, f, +
+b,g,). Since Ae,cAe,+A(e,+e,) we have Bg,cBf,+B(b,f,+b,g,). Thus
g,=bfi+c(by fi+b,g,). Since f1, g, are independent, it follows that ¢b, =1, i.e. b,
is a unit in B. Similarly b, is also a unit. Writing f, =b;'b, g,, we see that £, is uni-
modular, Bf,=Bg, and aA(e,+e,)=B(f;+/;). Doing this for any i>1, we get a
basis f1, f5, ..., f, of N such that

aAe;=Bf, l<i<n

aA(e; +e)=B(fi+f) 2<i<n. @
It is clear as before that for any ae 4 a A(e; +ae,)=B(b,f; +b,f,) with
b, a unit of B. Thus we can write
aA(e; + aey) =B(f; +0(a)f2), (2)
where : A— B is a well defined map. Clearly
6(0)=0 and o(1)=1. 3
For any fixed i>2, we can similarly define 7: 4— B by
aA(e; +ae)=B(fi +(a)f) 4)
and we have
1(0)=0 and 7(1)=1. (5)

Since e, +ae,+a'e;cA(e; +ae,)+ Ae;, we have aA(e;+ae,+a'e;)=B(f,+0(a)fs)
+ Bf;. Hence a A(e,+ae,+a’'e;))=B(b(f,+0(a)f,)+b'f;). Similarly, a A(e, +ae,+
+a'e)=B(c(fi+7(a)f)+cf2)
Combining the above equations, we find that

xA(e; +ae,+a'e)=B(f, +a(a) f, +1(d) f). (6)
Since ae,+e;eA(e;+ae,+e)+Ae;, using (6) and (5) we have aAd(ae,+e)=
=B(b(f,+0(a) f2+f:)+cf). Since aA(ae,+e;) <= Bf,+ Bf;, we get b+c=0 and this

proves
A(ae, +¢)=B(o(a) f2+ f). Y,

Now using (6) and (5), we have for a,a’e A4, aA(e;+(a+a’) e, +e;)=B(f,+a(a+
+a&)fo+f). But ad(e;+(a+a’)e,+e)cad(e,+aey)+ad(a'e,+e;). Using (7), we
therefore have ad(e;+(a+a’)e,+e;)<=B(f,+0(a)f,)+B(c(a’)f,+f;). Using the
above, we see that for a, a’e 4, we have

o(a+a)=oa(a)+0o(a). (8)

Now for a,a’eA, we have, using (6), that a4 (e, +ad'e,+ae;)=B(f,+o(ad)f2+
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+t(a)f). On the other hand, aA(e;+ad’e,+ae)cade;+aAd(a’e,+e;) which
implies that a A(e, +aa’e,+ae;)=B(bf,+b'(c (a’) f,+/;)). Comparing coefficients,
we find that o(aa’)=1(a) o(a’). Setting a’=1, we get

o(a)=1(a) forall aed 9)
and o(aad)=o0c(a)o(a’) fora,a’eA. (10)

1

Thus, the map o:A4— B defined by (2) is a homomorphism. Replacing a by o~
can define a homomorphism ¢’: B— A4 satisfying

o« 'B(fi +bf,)=A(e; + ' (b)ey)

and clearly ¢ and ¢’ are inverses of each other. Thus ¢: 4A— B is an isomorphism.
We now show that, for a,,..., a,e 4, we have

aA(ey +aze; ++a,e,)=B(fy +0(ay) fo++0(ay) f,)- (11)

,» WE

We can assume by induction that
aA(ey +a,e; ++a,_16,-1) = B(fy +a(ay) fr++0(a,-1) fu-1)-

Since

aA(e; +a,e, +--+ae)cad(e; +a,e, ++a,_1e,-1)+ade,,
we have

aAd(e; +aze, +-+a,e)=B(b(fy+0(a) fo++ 0@, 1) fu_1) + b 1)

On the other hand, we also have

aA(e; +a,e, +--+a,e)cad(e, +a,e,)+oAde, +-+ade, ;.

Comparing coefficients we find that 5’ =bo(a,) and this proves (11).
If a,,..., a,e A are such that a,e,+--- +a,e,€ M is unimodular, we have

aA(a,e, ++-+a,e,) = A(ey +a,e, +--+ae,) +ade;.
Using (11) we have
aA(aye; +-+ a,e,) = B(b(fy + 0(a) f, +-+0a(a,) f,) + b f1).

We also h
© have aA(a,e, ++--+a,e,)=Bf,+--+Bf,.

Combining these two facts, we get
aA(ae, ++-+aye,) =B(o(ay) fo +--+a(a,) f,). (12)
We now assert that for any ay, ..., a;_4, @;4+1,..., 4,64 and i=2,..., n,

tA(e;+aje; ++a_1 €1+ Qi1 €uq +oorF aye,)

= B(f;+o(ay) fi +:-+0(a,) fa). (13)
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To prove (13), we first observe, using (1) and (12) that a A(e; +e;)=B(f;+f;) for
any j#i. Fixing an i and replacing e, by e;, we can repeat the previous arguments to
get an isomorphism ¢:A4— B such that for a,,...,a;_4, a;,4,..., a,€A, we have the
following equation:

aAd(e;+aje; ++a,_1€ 1 +0a 1€, ++aye,)
instead of (11). =B(fi+e(@) fi++e(a)f). (14

Taking in (14) a, =0 and comparing this equation with (12), we find that a=p.
Now (14) gives (13).
Let e= ) a,e;,e M be a unimodular element. We now show that

1<i<n

ad(aje; +---+a,e,)=B(o(a,) fy ++-+a(a,) f,)- (15)

N\
Since fori=1, 2, 3, we have a decade;+aA(e;+ - +a;e;+ ) (where ~ indicates
that the corresponding term is omitted), we can write « 4e=Bf where

f=bya(ay) fi+ cyo(ay) f, + cio(az) f3+--
= c,0(ay) fi + bya(ay) £+ cr0(as) f5+--
= c30(a;) fi + c30(ay) f, + byo(as) fs+--.

Comparing coefficients, we find

bya(a,)a(az)=cso(a;)o(ay)=c,0(ay)a(ay)
and for every i > 3, we have (16)
bya(ay)o(a;)=cy0(a;)o(a)=c,0(ay)a(a;).
Since e=) a;e; is unimodular, it follows that) ¢(a;)f; is unimodular and hence
there exist ky, ..., k,€ B such that ) ¢(a;) k;=1. Set
d=bo(a) ky +cy0(a) ky +--+ ¢y o(a,) k,.
Using the equations (16), we easily verify that do(a,)=b,0(a,) and do(a;)=c,0(a;)
for i>2. Then d is a unit and (15) is proved.

Let @: M— N be the o-semilinear isomorphism M— N defined by ®(e;)=f;. The
equation (15) shows that a=P(®). The proof of the second statement of the theorem
is the same as in the classical case which can be found for instance in E. ARTIN [,
chap. II].

§ 3 A Counter-Example

If M, N are finite dimensional vector spaces of the same rank over fieclds 4 and B
respectively and if a:P(M)—P(N) is a bijection which is such that for any py, p2;
P3,€P(M) with p, =p, +p;, we have ap, cap, +aps, it can be proved (see for instance
Artin [1, chap. II]) that « is a projectivity. We now give an example to show that this
need not be the case if 4 and B are arbitrary rings.

Let K be a field; let A=K{x) be the ring of formal power series in x and B the
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quotient field of 4. The canonical inclusion ¢:4—B induces a o-semilinear map
A3 B? which in turn gives rise to a map P(c):P(4%)~P(B3).

PROPOSITION 2.*) The map P(c) is a bijection such that for any p;, p,, ps€P(4?)
withp, =p,+ps, we have P(o) p, = P(c) p, +P(0) p3. However P(o) is not a projectivity.

Proof. Let (ay, a,, a3), (@}, a,, a;) be unimodular elements of 4 which represent
the same element of P(B*). We then have a, a’€ 4, a#0, a’ #0 such that a’'(a}, a5, a3) =
=a(a,, a,, a3), i.e. da;=aa;1<i<3. If Y a;k;=1, we have a'A=a with A=

1<i<3

=Y a;k;A. Similarly, ap=a for some pe A. This implies that a and a’ differ by a unit of
A and hence 4(ay, a,, a;)= A(a}, ay, a3). This proves that P(o) is injective. Given any
element of P(B?), we can write it in the form Be where e 4>, Dividing if necessary
by a suitable power of x, we may assume that at least one coordinate of e has a nonzero
constant term and hence is a unit in 4. Therefore we may assume that e is a unimo-
dular element of 4> and this proves that P(o) is surjective. If py, p,, p;eP(4?) are
such that p, = p,+ps, it is trivial to check that P(¢) p, =P(0) p, +P(0) p5. Now,
P(c) A(1, 0,0)=B(1, 0,0)=B(x,0,0)=P(c) A(x,1,0)+P(c) A(0, 1, 0). However,
(1,0,0)¢ A(x, 1,0)+4(0, 1, 0). This shows that P(g) is not a projectivity.
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